
TOWARDS TRUSTWORTHY MULTIAGENT AND MACHINE LEARNING

SYSTEMS

BY

SHANGYU XIE

Submitted in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy in Computer Science
in the Graduate College of the
Illinois Institute of Technology

Approved
Adviser

Chicago, Illinois
December 2022

© Copyright by

SHANGYU XIE

December 2022

ii

ACKNOWLEDGEMENT

First of all, I would like to sincerely thank my supervisor Prof. Yuan Hong

for his continuous support and help during my whole Ph.D. study. He leads me to

privacy research, which has influenced me profoundly in my research career.

Second, I would like to thank my dissertation committee members, including

Prof. Peng-Jun Wan, Prof. Zuyi Li and Prof. Yan Yan for their generous counsel and

comments on my research. I also want to thank my collaborators for their work in

our joint publications. I would additionally like to thank my undergraduate advisor

Prof. Xinbing Wang and Prof. Lei Yang for their help prior to my Ph.D.

Last but not least, I am so grateful to my parents for their endless love.

iii

AUTHORSHIP STATEMENT

I, Shangyu Xie (S. X.), attest that the work in this thesis is substantially my

own. In accordance with the disciplinary norm of Computer Science (see IIT Faculty

Handbook, Appendix S), the following collaborations occurred in the thesis:

Dr. Yuan Hong (Y. H.) contributed to general research ideas, helped the paper

writing and guided the experimental evaluation as is the norm of Ph.D. supervisor

(see IIT Faculty Handbook, Appendix S).

Dr. Peng-Jun Wan (P. J. W.) of Illinois Institute of Technology, Chicago IL

contributed to the discussion of load balancing paper (Chapter 2).

Han Wang (H. W.) of Illinois Institute of Technology, Chicago IL collaborated

on coding of energy trading and robustness evaluation projects (Chapter 3 and 4).

Dr. My T. Thai (M. T. T.) of University of Florida, Gainesville, FL contributed

to the discussion of the energy trading project (Chapter 3).

Dr. Yu Kong (Y. K) of Rochester Institute of Technology, Rochester, NY

contributed to the discussion and helped the paper writing (Chapter 4).

Dr. Yan Yan (Y. Y) of Illinois Institute of Technology, Chicago IL contributed

to the discussion of the poisoning attack (Chapter 5) and helped the paper writing.

Bingyu Liu (B. L.) of Illinois Institute of Technology, Chicago IL collaborated

on coding a cloud-based inference project (Chapter 7).

Dr. Meisam Mohamaddy (M. M.) of Iowa State University, Ames, IA collabo-

rated on research of outsourcing paper (Chapter 8) and helped the paper writing.

Dr. Lingyu Wang (L. W) of Concordia University, Montreal CA contributed

to the discussion of outsourcing paper (Chapter 8) and helped the paper writing.

iv

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENT . iii

AUTHORSHIP STATEMENT . iv

LIST OF TABLES . viii

LIST OF FIGURES . x

ABSTRACT . xii

CHAPTER

1. INTRODUCTION . 1

1.1. Overview . 1
1.2. Privacy Preserving Load Balancing on the Power Grid . . . 3
1.3. Private Distributed Energy Trading Market 4
1.4. Robustness Evaluation of Video Recognition Systems . . . 4
1.5. Stealthy Poisoning Attacks on Video Classification 5
1.6. Privacy Evaluation of Language Models 6
1.7. Privacy Preserving Cloud-based DNN Inference 6
1.8. Secure Outsourcing Computation on the Cloud 7

2. PRIVACY PRESERVING LOAD BALANCING ON THE POWER
GRID . 9

2.1. Introduction . 9
2.2. Preliminaries . 12
2.3. Protocol Design . 18
2.4. Security Analysis . 30
2.5. Experimental Evaluation 37
2.6. Related Work . 45

3. PRIVATE DISTRIBUTED ENERGY TRADING MARKET . . 48

3.1. Introduction . 48
3.2. Problem Formulation 50
3.3. Distributed Energy Trading 54
3.4. Cryptographic Protocols 60
3.5. Analysis . 65
3.6. Discussion . 70
3.7. Evaluation . 72

v

3.8. Related Work . 76

4. ROBUSTNESS EVALUATION OF VIDEO RECOGNITION SYS-
TEMS . 79

4.1. Introduction . 79
4.2. Background . 83
4.3. U3D Attack Methodology 86
4.4. Attack Design . 90
4.5. Experiments . 98
4.6. Evaluation against Defense Schemes 115
4.7. Mitigation of U3D Perturbations 125
4.8. Related Work . 127

5. STEALTHY POISONING ATTACK ON VIDEO CLASSIFICATION 129

5.1. Introduction . 129
5.2. Background . 132
5.3. Attack Preliminaries 134
5.4. Attack Design Goals & Insights 137
5.5. Attack Framework Design 140
5.6. Experiments . 147
5.7. Discussion . 163

6. PRIVACY EVALUATION OF LANGUAGE MODELS 166

6.1. Introduction . 166
6.2. TextHide . 168
6.3. Related Work . 169
6.4. Empirical Study 1: Privacy Attack Evaluation 171
6.5. Empirical Study 2: Protection by Differential Privacy . . . 177

7. PRIVACY-PRESERVING CLOUD-BASED DNN INFERENCE 186

7.1. Introduction . 186
7.2. System Overview . 187
7.3. Protocol Design . 188
7.4. Experiments . 193
7.5. Related Work . 195

8. SECURE OUTSOURCING COMPUTATION ON THE CLOUD 198

8.1. Introduction . 198
8.2. PrefixPE and Prefix-aware Encoding 201
8.3. Security Models . 206
8.4. System and Privacy Properties 210
8.5. Generalized Framework Design 215

vi

8.6. Discussion . 226
8.7. Experimental Evaluations 227
8.8. Related Work . 236

9. CONCLUSION . 239

BIBLIOGRAPHY . 240

vii

LIST OF TABLES

Table Page

1.1 Organization of Dissertation 3

2.1 The Notation Table in Chapter 2 13

2.2 Average Runtime (sec) over m Time Slots (n = 100, ξ = 2%, λ = 5) 43

2.3 Average Bandwidth (MB) over m Time Slots (n = 100, ξ = 2%, λ = 5) 45

2.4 Priavcy Preserving Cooperation among Microgrids 46

3.1 The Notation Table in Chapter 3 51

3.2 Average Bandwidth (MB) over m Trading Windows 76

4.1 U3D parameters setting . 97

4.2 PSO vs. GA, SA and TS (learning U3D parameters offline) for U3Dp

and U3Dg (success rate “SR”). 98

4.3 U3D vs. benchmarks (success rates; C3D/HMDB51 as surrogate;
C3D/I3D and UCF101/UCF Crime as target). 101

4.4 Transferability: transfer rate (TR) on UCF101. 103

4.5 Transferability: transfer rate (TR) on HMDB51. 104

4.6 Transferability: transfer rate (TR) on UCF Crime. 105

4.7 Universality (success rate (SR); surrogate C3D). 107

4.8 Universality (success rate (SR); I3D surrogate). 108

4.9 Amortized runtime (each frame) for attacking the streaming video on
UCF101 and UCF Crime (in Seconds). 113

4.10 Success rates of U3D perturbations (boundary effect-free), injected at
10 different times for each video. 115

4.11 Adversarial training on UCF101 118

4.12 Adversarial training on the UCF Crime 119

4.13 Detection and false positive rates of AdvIT [114] 120

4.14 Detection AUC of AdvIT [114] against U3D, C-DUP, V-BAD, and
H-Opt. C3D:1st/3rd row. I3D:2nd/4th row 121

viii

4.15 Detection and false positive rates of U3D-AAT. 122

4.16 Accuracy (ACR) and success rate (SR) of PixelDP [121]. 124

4.17 Accuracy and radius of Randomized Smoothing [122] on UCF101 . 125

4.18 Accuracy and radius of Randomized Smoothing [122] on UCF101 . 126

5.1 Comparison of our work and existing clean-label poisoning attacks. . 131

5.2 Test accuracy of the clean and poisoned models. 149

5.3 Attack performance against the C3D and I3D models. ϵ = 8 and
poisoning percentage: 20%. 150

5.4 Attack performance of our attack vs. the baseline attacks [184]
and [183], denoted as “Baseline1” and “Baseline2”. Target category:
“Apply EyeMakeup”. ϵ = 8 and poisoning percentage: 30%. 150

5.5 Average runtime for crafting poisoned videos (sec). 153

5.6 Average SSIM of 100 poisoned videos with varying K. 154

5.7 SSIM and Detection AUC of AdvIT. 156

5.8 Attack performance vs. varying trigger parameters. 158

5.9 Attack rate (AR) vs. varying trigger locations. 158

5.10 Detection results of adaptive defense on UCF101 and HMDB51 . . 162

5.11 Comparison of attack results on the CIFAR10. Baseline attack [183]. 163

6.1 Attack success rate on the two datasets. 177

7.1 Benchmarking on MNIST dataset 194

7.2 Benchmarking on IDC dataset 195

7.3 Performance of PROUD on MNIST dataset 196

8.1 Prefix-aware Encoding for Representative Data 205

8.2 Notations for Chapter 6 . 212

8.3 Average Runtime of Attacks (sec) 228

8.4 Optimal x for Encrypting Locations 231

8.5 Running Time (sec) vs. Information Leakage 237

ix

LIST OF FIGURES

Figure Page

2.1 Balancing Multiparty Supply and Demand on the Power Grid . . 10

2.2 Pairing System . 21

2.3 Secure Hierarchically Paired Aggregation (SHPA) 25

2.4 Secure Approximation (SA) 28

2.5 Confidence of Collusion Attack vs. ℓ 35

2.6 Accuracy Evaluation. (a): (n = 100, λ = 5). (b): (n = 100, λ = 5).
(c): (n = 100, ξ = 2%). 38

2.7 Computational Performance Evaluation 38

2.8 System Evaluation for Building Blocks – SHPA and Secure Comparison 42

2.9 Topology of 100 microgrids (based on IEEE-123 bus) 45

3.1 Distributed Energy Trading 49

3.2 Overview of the PEM Framework 61

3.3 Private Distribution for General Market 66

3.4 Coalition Sizes vs. Trading Windows 74

3.5 Computational Performance Evaluation for the PEM 74

3.6 Energy Trading Performance Evaluation for the PEM Framework . 77

4.1 Universal 3-dimensional (U3D) Perturbation 82

4.2 The C3D Architecture [124] 83

4.3 Video Anomaly Detection System 84

4.4 Attack Framework to Video Recognition System 87

4.5 Hybrid black-box attack performance 109

4.6 Sample of Video Frames by U3D 110

4.7 Optional caption for list of figures 114

5.1 Poisoned Video Example . 130

5.2 Feature Collision Mapping vs. Ensemble Attack Oracle 138

x

5.3 Overview of 3D poisoning attack framework 140

5.4 Attack success rate . 150

5.5 Attack transferability of our attack vs. baselines 152

5.6 Results of human survey . 155

5.7 3D Poisoning Trigger Examples 159

5.8 Attack Evaluation against Defenses 160

5.9 Detection results of Spectral Detection [186]. 161

5.10 Visualization of Selected Frames of Videos 162

6.1 Attack success rate vs. size of mask pool m 178

6.2 Accuracy (learning utility) on the two datasets with DP-IE schemes 183

6.3 Attack success rate on the two datasets with DP-IE schemes . . . 184

7.1 The PROUD Framework . 188

8.1 A Prefix-aware Tree for Location Data 204

8.2 Frequency and ℓp-Optimization 207

8.3 Fingerprinting based Inferences 208

8.4 Generalized Outsourcing Framework on the Multi-view Approach [289] 210

8.5 Subprefix Collision Attack . 217

8.6 Pseudorandom Matrix to Generate 3 Data Views 221

8.7 Inference Attacks on Data Encrypted by CryptoPAn 230

8.8 Minimum N on Location Data (a,c,e), Network Data (b,d,f) . . . 232

8.9 Indistinguishability on Location Data (a,b) and Network Data (c,d) 233

8.10 Utility Evaluation on Location Data 235

8.11 Running Time on Location Data 236

xi

ABSTRACT

This dissertation aims to systematically research the “trustworthy” Multiagent

and Machine Learning systems in the context of the Internet of Things (IoT) system,

which mainly consists of two aspects: data privacy and robustness. Specifically, data

privacy concerns about the protection of the data in one given system, i.e., the data

identified to be sensitive or private cannot be disclosed directly to others; robustness

refers to the ability of the system to defend/mitigate the potential attacks/threats,

i.e., maintaining the stable and normal operation of one system.

Starting from the smart grid, a representative multiagent system in the IoT,

I demonstrate two works on improving data privacy and robustness in aspects of

different applications, load balancing and energy trading, which integrates secure

multiparty computation (SMC) protocols for normal computation to ensure data

privacy. More significantly, the schemes can be readily extended to other applications

in IoT, e.g., connected vehicles, mobile sensing systems.

For the machine learning, I have studied two main areas, i.e., computer vision

and natural language processing with the privacy and robustness correspondingly. I

first present the comprehensive robustness evaluation study of the DNN-based video

recognition systems with two novel proposed attacks in both test and training phase,

i.e., adversarial and poisoning attacks. Besides, I also propose the adaptive defenses

to fully evaluate such two attacks, which can thus further advance the robustness of

system. I also propose the privacy evaluation for the language systems and show the

practice to reveal and address the privacy risks in the language models.

Finally, I demonstrate a private and efficient data computation framework with

the cloud computing technology to provide more robust and private IoT systems.

xii

1

CHAPTER 1

INTRODUCTION

1.1 Overview

With the recent great development of the communication, computation and

other computer-related technologies, the Internet of Things (IoT) is more than a future

concept, which has tremendously changed the traditional sensing of the physical world

and bridged the gap of the physical world to the digital world. IoT technologies have

been boosting the connections between things and humans, which are widely studied

and deployed in various applications, such as smart grid, connected vehicles, smart

city, smart transportation, smart home. Considering the critical functionality of the

IoT, how to build a trustworthy IoT system has been brought on the table, which are

mainly defined with the two intriguing properties: 1) data privacy ; 2) robustness.

On the one hand, the huge amount of data is generated, transferred and

utilized inside the IoT systems for every moment, which could contain lots of privacy

information of humans. The privacy concerns of the data in IoT systems can greatly

limit the advancement and utilization of the whole system. Then how to privately

and collaboratively use data in IoT is crucial and emerging. On the other hand, the

IoT system has been facilitated with various advanced computer technologies such

as machine learning and cloud computing to boost the performance. Such newly

proposed systems may bring extra robustness and security issues while improving

the efficiency. For example, a serious issue for the machine learning models is the

adversarial attacks, which fool the model with adversarial examples and thus influence

the safety-related system using ML, e.g., autonomous driving. Studying the robustness

of a system against such attacks could help to improve stability of the system and

ensure normal operation.

2

Focusing on the two properties, i.e., data privacy and robustness above, my

dissertation systematically studies two representative components in regime of IoT

systems:

• Multiagent systems (MAS): an advanced computer system consisting of

multiple interactive intelligent agents with the integration of communication

and computer technology. One representative application of MAS is smart grid,

which integrates the MAS with the power system to improve both stability and

efficiency.

• Machine learning (ML) systems: the widely deployed smart systems with

a core machine learning-based model, especially with deep neural network

(DNN) model. For example, the DNN-based video recognition system can

be integrated with security surveillance to detect the anomaly events more

accurately. Language model can be integrated with the voice assistant system.

For the multiagent systems, I study the practice of smart grid system, which

serves as an important component in IoT systems. I demonstrate privacy-enhancing

research in two popular applications with smart grid: power load and supply balancing

(Chapter 2) and energy trading market (Chapter 3). Both applications can help to

improve the stability of the power grid and also economic benefits while protecting

data.

For the machine learning systems, I present two popular domains, i.e., computer

vision and natural language processing, respectively. First, I propose a complete

robustness evaluation for video recognition systems in aspects of newly proposed

adversarial attack (Chapter 4) and poisoning attack (Chapter 5). Second, I study the

privacy risks of language models and give a comprehensive evaluation with previous

protection schemes to show the privacy risks (Chapter 6). I also present a preliminary

3

work (Chapter 7) on utilizing cloud to do the secure DNN inference, e.g., image

classification as advanced data analysis in IoT systems.

Table 1.1. Organization of Dissertation

System Applications Data Privacy Robustness

Multiagent Smart Grid Chapter 2, 3 Chapter 2

Machine Learning
Computer Vision Chapter 7 Chapter 4, 5

Natural Language Chapter 6 Chapter 6

Additionally, I present my work on the secure outsourcing computation (Chapter

8) with the facilitation of cloud computing for the general data in IoT-based domains,

e.g., network trace data and location data. I propose a general outsourcing framework

to protect various prefix-preserving data, which can further improve the utilization of

data in IoT systems.

Table 1.1 demonstrates the organization of the dissertation with following

chapters. The abstract of each chapter are also given below.

1.2 Privacy Preserving Load Balancing on the Power Grid

Microgrids equipped with renewable energy resources have proven to be critical

building blocks on the power grid that can greatly improve the grid performance.

A promising application would be enabling microgrids to utilize their local energy

for further balancing the regional supply and demand at different times – ensuring

better system economics and reliability. However, due to the privacy concerns on

continuously revealing each microgrid’s local data for deriving real-time optimal

balancing decisions, the application of such promising cooperative technique is still

limited. In this paper, we design an efficient cryptographic protocol for privately

balancing the regional supply and demand, as well as each microgrid’s local supply and

4

demand in real time. We prove the security of our protocol against both passive and

active adversaries. Meanwhile, we implemented a prototype of the Pairing system

that integrates cryptographic protocol and the power transmission network. We mount

the real smart grid datasets into Pairing in real time for system evaluations. The

experimental results demonstrate the practicality of our system by scaling to hundreds

of microgrids with high accuracy and efficient system performance.

1.3 Private Distributed Energy Trading Market

The smart grid incentivizes distributed agents with local generation (e.g., smart

homes, and microgrids) to establish multi-agent systems for enhanced reliability and

energy consumption efficiency. Distributed energy trading has emerged as one of the

most important multi-agent systems on the power grid by enabling agents to sell

their excessive local energy to each other or back to the grid. However, it requests

all the agents to disclose their sensitive data (e.g., each agent’s fine-grained local

generation and demand load). In this paper, to the best of our knowledge, we propose

the first privacy preserving distributed energy trading framework, Private Energy

Market (PEM), in which all the agents privately compute an optimal price for their

trading (ensured by a Nash Equilibrium), and allocate pairwise energy trading amounts

without disclosing sensitive data (via novel cryptographic protocols). Specifically, we

model the trading problem as a non-cooperative Stackelberg game for all the agents

(i.e., buyers and sellers) to determine the optimal price, and then derive the pairwise

trading amounts. Our PEM framework can privately perform all the computations

among all the agents without a trusted third party. We prove the privacy, individual

rationality, and incentive compatibility for the PEM framework. Finally, we conduct

experiments on real datasets to validate the effectiveness and efficiency of the PEM.

1.4 Robustness Evaluation of Video Recognition Systems

5

Widely deployed deep neural network (DNN) models have been proven to be

vulnerable to adversarial perturbations in many applications (e.g., image, audio and

text classifications). To date, there are only a few adversarial perturbations proposed

to deviate the DNN models in video recognition systems by simply injecting 2D

perturbations into video frames. However, such attacks may overly perturb the videos

without learning the spatio-temporal features (across temporal frames), which are

commonly extracted by DNN models for video recognition. To our best knowledge, we

propose the first black-box attack framework that generates universal 3-dimensional

(U3D) perturbations to subvert a variety of video recognition systems. U3D has many

advantages, such as (1) as the transfer-based attack, U3D can universally attack

multiple DNN models for video recognition without accessing to the target DNN

model; (2) the high transferability of U3D makes such universal black-box attack

easy-to-launch, which can be further enhanced by integrating queries over the target

model when necessary; (3) U3D ensures human-imperceptibility; (4) U3D can bypass

the existing state-of-the-art defense schemes; (5) U3D can be efficiently generated

with a few pre-learned parameters, and then immediately injected to attack real-time

DNN-based video recognition systems. We have conducted extensive experiments to

evaluate U3D on multiple DNN models and three large-scale video datasets. The

experimental results demonstrate its superiority and practicality.

1.5 Stealthy Poisoning Attacks on Video Classification

Deep Neural Networks (DNNs) have been proven to be vulnerable to poisoning

attacks that poison the training data with a trigger pattern and thus manipulate the

trained model to misclassify data instances. In this paper, we study the poisoning

attacks on video recognition models. We reveal the major limitations of the state-of-the-

art poisoning attacks on stealthiness and attack effectiveness : (i) the frame-by-frame

poisoning trigger may cause temporal inconsistency among the video frames which

6

can be leveraged to easily detect the attack; (ii) the feature collision-based method for

crafting poisoned videos could lack both generalization and transferability. To address

these limitations, we propose a novel stealthy and efficient poisoning attack framework

which has the following advantages: (i) we design a 3D poisoning trigger as natural-like

textures, which can maintain temporal consistency and human-imperceptibility; (ii)

we formulate an ensemble attack oracle as the optimization objective to craft poisoned

videos, which could construct convex polytope-like adversarial subspaces in the feature

space and thus gain more generalization; (iii) our poisoning attack can be readily

extended to the black-box setting with good transferability. We have experimentally

validated the effectiveness of our attack (e.g., up to 95% success rates with only less

than ∼ 0.5% poisoned dataset).

1.6 Privacy Evaluation of Language Models

A private learning scheme TextHide was recently proposed to protect the

private text data via instance encoding. We propose a novel reconstruction attack

to break TextHide, and thus unveil the privacy risks of instance encoding. Our

attack would advance the development of privacy preserving machine learning in the

context of natural language processing. As a complete privacy evaluation, we also

integrate differential privacy into the instance encoding scheme, and thus provide a

provable guarantee against privacy attacks. The experimental results also show that

the proposed scheme can defend against privacy attacks while ensuring learning utility

(as a trade-off).

1.7 Privacy Preserving Cloud-based DNN Inference

Deep learning as a service (DLaaS) has been intensively studied to facilitate

the wider deployment of the emerging deep learning applications. However, DLaaS

may compromise the privacy of both clients and cloud servers. Although some privacy

7

preserving deep neural network (DNN) techniques have been proposed by composing

cryptographic primitives, the challenges on computational efficiency have not been

fully addressed due to the complexity of DNN models and expensive cryptographic

primitives. In this paper, we propose a novel privacy preserving cloud-based DNN

inference framework (“PROUD”), which greatly improves the computational efficiency.

Finally, we conduct experiments on two datasets to validate the effectiveness and

efficiency for the PROUD while benchmarking with the state-of-the-art techniques.

1.8 Secure Outsourcing Computation on the Cloud

Property preserving encryption techniques have significantly advanced the

utility of encrypted data in various data outsourcing settings (e.g., the cloud). However,

while preserving certain properties (e.g., the prefixes or order of the data) in the

encrypted data, such encryption schemes are typically limited to specific data types

(e.g., prefix-preserved IP addresses) or applications (e.g., range queries over order-

preserved data), and highly vulnerable to the emerging inference attacks which

may greatly limit their applications in practice. In this paper, to the best of our

knowledge, we make the first attempt to generalize the prefix preserving encryption

via prefix-aware encoding that is not only applicable to more general data types (e.g.,

geo-locations, market basket data, DNA sequences, numerical data and timestamps)

but also secure against the inference attacks. Furthermore, we present a generalized

multi-view outsourcing framework that generates multiple indistinguishable data views

in which one view fully preserves the utility for data analysis, and its accurate

analysis result can be obliviously retrieved. Given any specified privacy leakage bound,

the computation and communication overheads are minimized to effectively defend

against different inference attacks. We empirically evaluate the performance of our

outsourcing framework against two common inference attacks on two different real

datasets: the check-in location dataset and network traffic dataset, respectively. The

8

experimental results demonstrate that our proposed framework preserves both privacy

(with bounded leakage and indistinguishability of data views) and utility (with 100%

analysis accuracy).

9

CHAPTER 2

PRIVACY PRESERVING LOAD BALANCING ON THE POWER GRID

2.1 Introduction

The smart grid has integrated a large number of renewable energy resources

(e.g., solar panels and wind turbines) which provide supplementary power supply

[1–3]. Microgrids equipped with such renewable energy resources can be isolated

into autonomous power islands to feed their demand load with local energy sources

(e.g., wind and solar) [1]. To date, many organizations or regional districts (e.g.,

hospitals, university campuses, groups of households and industrial sites) have deployed

their microgrids by manipulating and maintaining their own energy resources in

addition to the external feed. More importantly, besides feeding local demand,

microgrids have been identified as the key building blocks of the power grid for

cooperatively improving the grid performance with their flexibility, interoperability

and scalability [4, 5]. Recently, novel cooperative models among microgrids have

attracted significant interests in both industry and academia [2, 3, 6, 7].

Balancing the supply and demand at all times is essential for both energy saving

and stability of the power system [8]. The goal is to balance supply and demand within

a tight margin in real time: if supply exceeds demand, besides storing the extra energy

(may result in huge energy loss), voltage spike would occur in the power system; when

the supply lags behind demand, the voltage sags. Both of these unbalanced situations

would be detrimental to power grid operations and devices connected to the grid [9].

In the recent smart grid infrastructure, the deployed microgrids (which are both power

suppliers and consumers) could facilitate the main grid to further balance the regional

supply and demand – ensuring better system economics and reliability [10]. For

example, at peak times, the regional demand may exceed the supply, then microgrids

can reduce their external supply and consume their local energy; at off-peak times,

10

microgrids can increase their external supply to some extent (while balancing their

own supply and demand). Thus, the application of such supply and demand balancing

involves multiple parties (main grid 1 and microgrids) to cooperate with each other, as

shown in Figure 2.1 (any entity with local generation can be considered as a microgrid,

e.g., a smart home with solar panels).

balancing

regional

supply and

demand

balancing local supply and demand

each microgrid’s

optimal external

supply in real

time?

Figure 2.1. Balancing Multiparty Supply and Demand on the Power Grid

However, the above cooperation requests all the parties to jointly compute

the real-time optimal energy allocation with their private local data (most of which

are generated in real time), such as the regional supply, each microgrid’s demand

load, maximum local supply and maximum tolerable gap between its supply and

demand. Clearly, disclosing these data for optimizing the supply and demand balancing

decisions would explicitly compromise their privacy. For instance, the demand load of

a household may leak the pattern of using appliances at different times [12,13] while

the local supply of a microgrid (e.g., hospital) could reveal its generation capacities

and patterns in the organization [14,15].

1Main grid is referred to the substation of the involved microgrids (which is a
part of the main grid). Regional supply is considered as the supply from the substation,
which is adjusted for its covered region [11].

11

Technical Contributions.2 Although numerous privacy preserving schemes [12,15,

18] have been proposed to address the privacy concerns in the smart grid, most of them

focus on the smart metering data and propose relevant privacy preserving metering

applications. Essentially, there are two main categories of such works: 1) encryption of

the metering data for computation or aggregation in specific applications, e.g., regional

statistics [19], aggregation [20], and billing [18]; 2) obfuscation of the smart metering

data with a defined privacy model [13, 21]. Note that, the first category of techniques

cannot be directly applicable to the studied balancing problem since they are designed

for specific applications. The second category of techniques can be tailored to let the

microgrids preprocess their metering data (i.e., consumption and generation) and the

main grid solve the optimization problems in real time. However, they may result

in significant utility loss by the metering data obfuscation and greatly increase the

computational load for the main grid. To address these limitations, we propose a light-

weight cryptographic protocol under Secure Multiparty Computation (SMC) [22,23],

and implement our Pairing system based on the cryptographic protocol. The major

technical contributions of this paper are detailed as follows.

• Protocol and its Security. To the best of our knowledge, we take the first

step to propose a novel efficient cryptographic protocol for enabling secure

collaborations among microgrids that address the privacy, collusion and integrity

issues in the smart grid infrastructure. The cryptographic protocol securely seeks

for each microgrid’s external supply (at different times) for optimally balancing

the multiagent (microgrids) supply and demand (both regional and local) in

real time. To construct our cryptographic protocol, we leverage Homomorphic

Encryption (e.g., Paillier Cryptosystem [24]) and Garbled Circuits [22] (e.g., the

Fairplay system [25]).

2This work has been published in ACM AAMAS [16] and IEEE TIFS [17].

12

Furthermore, we first provide formal security proof for our proposed protocol

against passive adversaries under the SMC theory [22,23] (each party’s view is

shown to be simulated in polynomial time to guarantee privacy). Furthermore,

we conducted experiments to validate that the proposed cryptographic protocol

can mitigate the collusion attacks [26] among the adversarial main grid and

microgrids. Finally, we also show that our protocol can provide verifiability to

detect data integrity attacks [27, 28] against active adversaries.

• Privacy Preserving System Prototype. Since energy should be routed from

the main grid to multiple microgrids based on the computational decisions of

the protocol (external supplies) for balancing multiparty supply and demand,

the secure communication protocol should be integrated with the power system.

Then, we design and implement a privacy preserving system Pairing based on

the proposed cryptographic protocol. To the best of our knowledge, our Pairing

system is the first real-time system to securely collaborate the microgrids on

the power grid with the integration of both secure multiparty computation,

communication and power distribution.

• Real-time System Performance. Since the time series demand load and

supply of each party (including the regional supply) are frequently generated

in real time, the deployed system (w.r.t. the cryptographic protocol) should be

highly efficient and scalable. As validated in the system evaluations, our Pairing

system enables hundreds of microgrids and the main grid to optimally balance

their supply and demand without disclosing their private data, and continuously

transmit energy in real time with high accuracy and negligible latency.

2.2 Preliminaries

In this section, we present some preliminaries. Table 2.1 shows some frequently

13

used notations.

Table 2.1. The Notation Table in Chapter 2

Symbol Definition

G main grid

St the regional supply of main grid at time t

Mi the ith microgrid where i ∈ [1, n]

sti, d
t
i microgrid Mi’s local supply and demand at time t

xti the external supply of microgrid Mi at time t

ηi the energy transmission efficiency between G and Mi

ξi the balancing margin of microgrid Mi

x̄ti the optimal external supply of microgrid Mi at time t

2.2.1 Cooperative Supply and Demand Balancing. Many microgrids are

equipped with renewable energy sources and storage devices to generate local energy,

which may not be sufficient to feed the local demand occasionally. At this time,

external energy from the main grid should still be requested [29]. On the contrary, if

the amount of any microgrid’s local supply exceeds its local demand at any time t, we

will consider the (isolated) mode [1] at that time, and the unconsumed energy will be

locally stored in the energy storage device rather than sharing to other parties [3].

We now formulate such cooperative model. Given n microgrids ∀i ∈ [1, n],Mi,

we denote the main grid G’s regional supply allocated for all the microgrids at time

t as St (excluding the supply for non-microgrid consumers). In addition, we denote

each microgrid Mi’s local demand load and supply as dti and s
t
i, respectively, and its

external supply as xti. The variable x
t
i denotes how much energy is externally requested

14

from the main grid by microgrid Mi at time t. To facilitate the regional supply and

demand balancing, it may not equal to di − si since each microgrid has the capacity

of local energy storage (e.g., a battery). While transmitting electricity from the main

grid G to each microgrid Mi, the energy transmission efficiency [30] can be defined as

ηi ∈ [0, 1], which is mainly determined by the distance between Mi and G as well as

the power quality data. Then, as microgrid Mi requests external supply x
t
i from main

grid G, the amount
xt
i

ηi
should be routed by G since the energy transmission would

result in the amount of
xt
i(1−ηi)

ηi
loss over the power transmission wires [30].

Specifically, at time t, a cooperative model is to find the optimal external supply

x̄ti of individual microgrid Mi, i ∈ [1, n] such that the overall deviation between the

regional demand
∑n

i=1
xt
i

ηi
and supply St is minimized.2 Then, we can formulate the

objective function as below:

min :

∣∣∣∣∣
n∑

i=1

xti
ηi
− St

∣∣∣∣∣ (2.1)

Meanwhile, the deviation between each microgrid Mi’s overall supply (local sti

and external xti) and local demand dti should be bounded by a tight balancing margin

ξi (which can be specified by itself as a ratio or value; the smaller the margin, the

closer the supply and demand) [31,32].

∀i ∈ [1, n],
∣∣xti + sti − dti

∣∣ ≤ ξi (2.2)

Hence, the cooperative supply and demand balancing problem at time t can

be mathematically formulated as below:

2We minimize the deviation between regional supply and demand rather than
bounding it within a margin. If strictly bounding the deviation is required, St can be
readily adjusted by the main grid with energy dispatch [11].

15

min :

∣∣∣∣∣
n∑

i=1

xti
ηi
− St

∣∣∣∣∣ (at time t)

s.t.

|xt1 + st1 − dt1| ≤ ξ1

|xt2 + st2 − dt2| ≤ ξ2

...
...

...

|xtn + stn − dtn| ≤ ξn

xti ≥ 0, ηi ∈ [0, 1], i ∈ [1, n]

(2.3)

Since we aim at proposing a privacy preserving system running continuously

over any period, our designed protocol splits the real time balancing problem into

individual balancing problems in continuous equal-length time slots (each time slot

can be very short, e.g., close to real time), as shown in Equation 2.3. In each time slot,

the nonlinear programming (NLP) problem is securely formulated and solved within

the time slot. After securely deriving the optimal solution at time t, each microgrid

will learn how much external supply it will request from the main grid xti. Finally, if

xti + sti > dti, the excessive energy xti + sti − dti will be stored and rolled over to its local

supply at the next time slot t+ 1.

2.2.2 Cryptographic Building Blocks. We adopt homomorphic encryption

[24,33,34] and garbled circuit [22,23] as the cryptographic building blocks to construct

our protocols.

Homomorphic Encryption (e.g., Naccache-Stern cryptosystem [33], Paillier cryp-

tosystem [24], Okamoto-Uchiyama cryptosystem [34] is a semantically-secure public

key encryption with an additional property to generate the ciphertext of an arith-

metic operation between two plaintexts by other operations between their individual

ciphertexts. For instance, Pailler Cryptosystem [24] has the following properties:

16

1. Homomorphic addition: given two plaintexts A and B as well as the public-

private key pair (pk, sk), the ciphertext of (A+B) can be derived as Encpk(A+

B) = Encpk(A)⊗ Encpk(B), where ⊗ denotes the multiplication of ciphertexts

(in some abelian group).

2. Self-blinding: any ciphertext can be transformed to another ciphertext without

changing the plaintext.

3. Probabilistic: if one plaintext A is encrypted for different times, the ciphertexts

are different.

Garbled Circuit was originally proposed by Yao [22]. It enables two semi-honest

parties to jointly compute a function f(x1, x2) without disclosing their private inputs

x1, x2: one party creates the garbled circuit and the other party evaluates the circuit to

generate the result. In our protocols, we leverage garbled circuit (e.g., the Fairplay

system [25]) to realize secure comparison in the protocol.

2.2.3 Operational Constraints in the Power System. Note that Equation 2.3

provides a core form for the studied problem which involves the balancing constraints.

Moreover, some operational constraints within each microgrid (e.g., internal power

quality, battery capacity for storing excessive energy) [35]) and the power transmission

network (maintained by the main grid, e.g., external power quality, conversion/phase

synchronization) [11] can be readily incorporated into the cooperative model and

cryptographic protocol since such constraints are locally computed by either each

microgrid or the main grid. For instance, internal power quality may also arouse

energy loss within each microgrid, which can be calculated and updated in the protocol

by the microgrid itself.

Thus, for simplifying notations, we design our cryptographic protocol based

on the core form (Equation 2.3). In our Pairing system implementation, additional

17

operational constraints are integrated with proper local computations on the OpenDSS

platform [36] (with revised IEEE-123 bus system, refer to Section 2.5.1).

2.2.4 Private Data. The protocol/system will be executed in an (n + 1)-party

setting: the main grid G and n microgrids. All parties’ private data over any period

∀t ∈ [1,m] are illustrated as below:

• Main grid G privately holds its regional supply at different times St, t ∈ [1,m].

Moreover, the energy transmission efficiencies i ∈ [1, n], ηi are originally known

to the main grid G which maintains the power transmission network and chooses

the power quality utilized for transmitting energy to each microgrid. Since ηi

does not involve any private information, it can be shared to Mi.

• Microgrid Mi, i ∈ [1, n] privately holds its local demand load dti, local supply s
t
i

and the selection of running modes as well as its requested external energy xti.

• The global objective (for regional balancing) is jointly held by G and n microgrids

while each constraint (for local balancing) is privately held by each microgrid.

2.2.5 Threat Model and Security Properties. We now discuss the threat

model and security properties of our protocol. The details of security analysis are

given in Section 3.5. Recall that all the (n + 1) parties generate their own private

data for secure computation. We assume the main grid G is semi-honest but may

collude with ℓ microgrids (where ℓ < n) to compromise the remaining parties’ private

data. In addition, besides colluding with the main grid G, all the microgrids would

be malicious by tampering with the protocol messages to compromise data integrity

(e.g., injecting false data [28]) in the system. In our protocol, we assume that all the

messages are transmitted via a secure channel.

To mitigate the above security threats, our proposed protocol/system will

18

desire the following security properties.

• Privacy: while executing the protocol over any period ∀t ∈ [1,m], main grid G

and each microgridMi will only learn the microgrid’s requested external supplies

∀t ∈ [1,m], x̄ti, nothing else; microgrids cannot learn any private information

from each other.

• Collusion Mitigation: the confidence of successful collusion attacks (among

main grid and microgrids) is limited.

• Verifiability: the integrity of exchanged messages/data can be verified in the

protocol to detect the false data.

Notice that, we assume that the main grid (“substation”) tries to provide true

data for computation in practice since correctly balancing the regional supply and

demand would be beneficial to the grid performance. Thus, our protocol/system is

assumed to not protect against the case that malicious main grid tampers with the

protocol messages.

2.3 Protocol Design

2.3.1 Overview. Recall that each party’s demand and supply (which are the inputs

of the problem) are continuously generated in sequence. Thus the nonlinear balancing

problem (Equation 2.3) should be solved in real time. Then, at any time t ∈ [1,m], all

the parties (G and ∀i ∈ [1, n],Mi) securely solve the NLP problem to get their share

of the optimal solution (i.e., Mi obtains x̄
t
i at time t), and Mi requests the external

energy amount x̄ti from G.

As shown in Protocol 1, in initialization, main grid G and all the microgrids

generate their own key pairs (pk, sk) and ∀i ∈ [1, n], (pki, ski), and share the public

19

// Sub-protocols: SHPA, SC, SA, SR

1 main grid G generates a key pair (pk, sk), and distributes its public key

pk to all the parties

2 for microgrid Mi : i← 1 to n do

3 microgrid Mi generates a key pair (pki, ski), and distributes its

public key pki to all the parties

4 for timestamp t← 1 to m do

5 for microgrid Mi : i← 1 to n do

6 Mi generates two hash values: h(
dti−sti+ξi

ηi
) and h(

dti−sti−ξi
ηi

), and

then sends them to G (for verifiability)

7 G and all the microgrids jointly call sub-protocol SC (which calls

2-round sub-protocol SHPA and Secure Comparison)

8 if Case (III) is returned in SC (Line 7) then

9 G and all the microgrids jointly call sub-protocol SA (which calls

λ-round sub-protocol SHPA and Secure Comparison)

// At time t, Mi has received the optimal or

near-optimal x̄ti in three Cases

10 for microgrid Mi : i← 1 to n do

11 Mi requests the amount of x̄ti energy from G

12 G verifies the data integrity (details are given in Section 2.4.3)

13 if ACCEPT is returned by verifying the data from all of

M1, . . . ,Mn then

14 G transmits energy
x̄t
i

ηi
to Mi where i ∈ [1, n]

15 G and all the microgrids jointly call sub-protocol SR

Algorithm 1: Overview of Pairing

20

keys pk and pk1, . . . , pkn to all the parties (keys are generated per Homomorphic

Encryption, e.g., Paillier Cryptosystem [24]).

Then at each time t ∈ [1,m], all the parties (G and ∀i ∈ [1, n],Mi) jointly

call sub-protocol Secure Categorization (SC) and possibly call sub-protocol Secure

Approximation (SA) to derive the optimal external supplys ∀i ∈ [1, n], x̄ti (SA is only

called in a certain output case of SC). Then, each microgrid Mi, i ∈ [1, n] requests the

energy with amount x̄ti from G at time t. Note that both SC and SA also call another

sub-protocol Secure Hierarchically Paired Aggregation (SHPA).

Finally, main grid G verifies the integrity of messages (detailed in Section 2.4.3),

and transmits energy
x̄t
i

ηi
to Mi. Before moving to the next time slot, all the parties

(G and ∀i ∈ [1, n],Mi) jointly call the sub-protocol Secure Rollover (SR) to locally

store the excessive energy for the next time slot. Sub-protocols SC, SA, SHPA and

SR will be elaborated in the upcoming subsections. Figure 2.2 outlines the primary

components of the designed protocol for our Pairing system.

2.3.2 Securely Seeking Optimal External Supplies at Time t. Our Pairing

system securely solves the balancing problem at each specific time t in real time. We

then first look at time t. Indeed, the constraints in Equation 2.3 are equivalent to

∀i ∈ [1, n], dti − sti − ξi ≤ xti ≤ dti − sti + ξi.

Intuitively, the objective function
∣∣∣∑n

i=1
xt
i

ηi
− St

∣∣∣ can be minimized to 0 if the

variables ∀i ∈ [1, n], xti can make
∑n

i=1
xt
i

ηi
= St hold. Thus, we have:

Lemma 1. The optimal solution of the supply and demand balancing problem at time

t can be derived as below:

• Case (I): if St ≥
∑n

i=1
dti−sti+ξi

ηi
, then external supply ∀i ∈ [1, n], x̄ti =

dti−sti+ξi
ηi

are

optimal.

21

Main

Grid
MnM1

2. Secure

Approximation (SA):

iteratively calls SHPA

and Secure Comparison

…

…

PAIRING

System

M2
Mn-1

1. Secure

Categorization (SC):

calls SHPA and Secure

Comparison

5. Secure Rollover

(SR): excessive

energy for time t+1

Case (III)

Case (I) or (II):

optimal

external supply

At time t

3. Verify Data

(by Main

Grid)

near-

optimal

external

supply

4. Transmitting

Energy

(by Main Grid)

to time t+1

if ACCEPT

Figure 2.2. Pairing System

• Case (II): if St ≤
∑n

i=1
dti−sti−ξi

ηi
, then external supply ∀i ∈ [1, n], x̄ti =

dti−sti−ξi
ηi

are optimal.

• Case (III): if
∑n

i=1
dti−sti−ξi

ηi
< St <

∑n
i=1

dti−sti+ξi
ηi

, then multiple optimal solutions

minimize
∣∣∣∑n

∀i=1
xt
i

ηi
− St

∣∣∣ to 0.

Proof. We prove Case (I) and (II) using contradictions.

In Case (I), if St ≥
∑n

i=1
dti−sti+ξi

ηi
, we assume there exists another solution ∀i ∈

[1, n], x∗i ∈ [
dti−sti−ξi

ηi
,
dti−sti+ξi

ηi
] such that |

∑n
∀i=1 x

∗
i −St| < |

∑n
∀i=1 x̄

t
i−St| holds. Then,

|
∑n

∀i=1
dti−sti+ξi

ηi
− St| = St −

∑n
i=1

dti−sti+ξi
ηi

> |
∑n

∀i=1 x
∗
i − St| = St −

∑n
∀i=1 x

∗
i . Thus,

we have
∑n

∀i=1 x
∗
i >

∑n
i=1

dti−sti+ξi
ηi

, which contradicts with ∀i ∈ [1, n], x∗i ≤
dti−sti+ξi

ηi
.

Such contradiction also exists in Case (II).

In Case (III),
∑n

i=1
dti−sti−ξi

ηi
< St <

∑n
i=1

dti−sti+ξi
ηi

holds. Since
∑n

i=1
dti−sti−ξi

ηi
<∑n

i=1 x
t
i <

∑n
i=1

dti−sti+ξi
ηi

. It is straightforward to see that
∑n

i=1 x
t
i can equal St with

22

multiple solutions (since all the variables ∀i ∈ [1, n], xti have the same coefficient in

the constraints and the objective function).

The optimal solutions for Case (I) and (II) are constants while the optimal

solution for Case (III) can be securely searched among all the parties (as long as∑n
i=1

xt
i

ηi
= St holds). As shown in Protocol 1, at time t, all parties first securely

categorize Case (I), (II) or (III) by securely comparing St with
∑n

i=1
dti−sti+ξi

ηi
and∑n

i=1
dti−sti−ξi

ηi
, respectively (via the sub-protocol illustrated in Section 2.3.2.2). Then,

if Case (I) or (II), per Lemma 1, the optimal solution can be locally derived by each

party; if Case (III), all parties securely approximate the optimal solution (via the

sub-protocol SA illustrated in Section 2.3.2.3). Since sub-protocols SC and SA securely

aggregate data (from all the microgrids, e.g.,
∑n

i=1
dti−sti−ξi

ηi
) for comparison with the

data (from the main grid G, e.g., St), we first propose a sub-protocol for aggregation

(denoted as Secure Hierarchically Paired Aggregation (SHPA)) in Section 2.3.2.1.

2.3.2.1 Secure Hierarchically Paired Aggregation (SHPA). As discussed

above, SHPA is invoked to aggregate shares of the data from all the parties for

“Two Rounds” in which both aggregated results will be securely compared later. For

instance, while comparing
∑n

i=1
dti−sti−ξi

ηi
and St, each microgrid Mi will generate a

random nonce ri such that
∑n

i=1(
dti−sti−ξi

ηi
+ ri) (Round A) and St+

∑n
i=1 ri (Round B)

are aggregated for comparison (to securely obtain an equivalent result as the original

comparison).

SHPA primarily utilizes the homomorphic encryption building block (e.g.,

Paillier Cryptosystem [24]) for summing up the distributed shares as pairs. Specifically,

at the beginning of SHPA, a microgrid (say Mr, r ∈ [1, n]) is randomly picked to

utilize its public key pkr for encryption in Round A. The main grid G’s public key pk

is used for Round B’s encryption.

23

Furthermore, both Round A and B adopt the hierarchical pairing to expedite

the secure aggregation via parallelization. It can also mitigate the collusion threats

(via iterative random pairing), as validated in Section 2.4.2. In Protocol 2 and Figure

2.3: (1) Round A requests ⌈log(n− 1)⌉ levels of secure sum for pairs of shares (Mr is

not involved). SHPA randomly decides the paired parties at each level, and also picks

a party out of each pair for aggregation of next level. The aggregation terminates

until the last microgrid (at the root of the hierarchy, denoted as “root microgrid”) has

collected the encrypted sum Encpkr{
∑n

i=1,i ̸=r[
dti−sti−ξi

ηi
+ ri]}. Then, the root microgrid

sends the encrypted sum to Mr which thus decrypts the ciphertext using its private

key skr and computes the aggregated value
∑n

i=1[
dti−sti−ξi

ηi
+ ri] with its share; (2)

Similarly, Round B requests ⌈log(n)⌉ levels of secure sum for pairs of shares (Mr is

involved). Finally, the main grid G receives Encpk(
∑n

i=1 ri), decrypts the ciphertext

and computes St +
∑n

i=1 ri with its input St.

Note that
dti−sti−ξi

ηi
can be replaced with other private inputs in SHPA for

aggregation, e.g.,
dti−sti+ξi

ηi
.

2.3.2.2 Secure Categorization (SC). At each time t ∈ [1,m], Secure Catego-

rization (SC) only executes once to securely decide the case of the current supply

and demand balancing (per Lemma 1). To decide Case (I), (II) or (III), two secure

comparisons should be executed:

• St +
∑n

i=1 ri (held by G) and
∑n

i=1(
dti−sti+ξi

ηi
+ ri) (held by a random microgrid

Mr)

• St +
∑n

i=1 r
′
i (held by G) and

∑n
i=1(

dti−sti−ξi
ηi

+ r′i) (held by a random microgrid

M ′
r)

Each of the above comparisons calls sub-protocol SHPA once to get the two

random numbers for G and Mr (we use Mr and M ′
r to represent two randomly picked

24

1 randomly pick Mr and Ψ← {M1, . . . ,Mn} \Mr

// Round A (using public key pkr)

2 ∀Mi ∈ Ψ: vi ← dti−sti−ξi
ηi

+ ri (note that vi can be also initialized as

dti−sti+ξi
ηi

+ ri, etc.)

3 while sizeof(Ψ) > 1 do

4 randomly pair all the microgrids in Ψ

5 for every pair: Mi,Mj do

6 randomly pick a receiver, w.l.o.g., Mi

7 Mj sends its encrypted share Encpkr(vj) to Mi

8 Mi computes Encpkr(vi + vj) with its locally encrypted data

Encpkr(vi): Encpkr(vi + vj) = Encpkr(vi)⊗ Encpkr(vj)

9 Encpkr(vi)← Encpkr(vi + vj)

10 Ψ← Ψ \Mj

11 if sizeof(Ψ) mod 2 = 1 then

12 keep the last unpaired microgrid in Ψ

13 root microgrid sends Encpkr(
∑n

i=1,i ̸=r vi) to Mr

14 Mr decrypts Encpkr(
∑n

i=1,i ̸=r vi) with its private key skr and computes∑n
i=1(

dti−sti−ξi
ηi

+ ri) as the output

// Round B (using G′s public key pk)

15 repeat Line 2-12 with Ψ← {M1, . . . ,Mn} and initialize

∀Mi ∈ Ψ, vi ← ri

16 root microgrid sends Encpk(
∑n

i=1 ri) to G

17 G decrypts Encpk(
∑n

i=1 ri) with its private key sk and computes

St +
∑n

i=1 ri as the output

Algorithm 2: Secure Hierarchically Paired Agg. (SHPA)

25

Mn-1

Main

Grid

… Mn
M2

M1 M3

M4
…

Mr

Encryption

with pk
Main

Grid

…

… MeMk

Mk

MjMi

Mi

Mx

…

…

…

…

…

… MiMe

Me

MkMj

Mj

My

…

…

…

…

Decryption with skr

Decryption with sk

Encryption

with pkr

Round I

Round II
Random

Pairing

Random

Pairing

Random

Pairing

Random

Pairing

Figure 2.3. Secure Hierarchically Paired Aggregation (SHPA)

microgrids in two different SHPA executions, though they might be the same microgrid).

Our Pairing system integrates Fairplay [25] to securely compare every pair of results

held by two different parties. Then, Fairplay will be called twice in the sub-protocol

SC (Line 1 and 2 in Protocol 3).

2.3.2.3 Secure Approximation (SA). If Case (III) is identified in sub-protocol

SC, another sub-protocol Secure Approximation (SA) will be called to jointly identify

a near-optimal solution such that the deviation between the regional supply and

demand lies close to 0. SA is established by performing λ-round secure distributed

binary search by all the microgrids (which also calls SHPA and secure comparison with

the main grid G for locating each microgrid’s upper/lower bounds of the search). As

discussed before, secure distributed binary search can be locally performed to ensure

26

// At time t ∈ [1,m]

1 call Fairplay between G and Mr to securely compare St +
∑n

i=1 ri and∑n
i=1(

dti−sti+ξi
ηi

+ ri)

2 call Fairplay between G and M ′
r to securely compare St +

∑n
i=1 r

′
i and∑n

i=1(
dti−sti−ξi

ηi
+ r′i)

3 broadcast the two comparison results to all the parties

4 if St +
∑n

i=1 ri ≥
∑n

i=1(
dti−sti+ξi

ηi
+ ri) then

5 Case (I): return x̄ti =
dti−sti+ξi

ηi
as the external supply of Microgrid

Mi, i ∈ [1, n] at time t

6 else

7 if St +
∑n

i=1 r
′
i ≤

∑n
i=1(

dti−sti−ξi
ηi

+ r′i) then

8 Case (II): return x̄ti =
dti−sti−ξi

ηi
as the external supply of Microgrid

Mi, i ∈ [1, n] at time t

9 else

10 Case (III): return (SA will be called next)

Algorithm 3: Secure Categorization (SC)

27

strong security and parallelization of computation.

Specifically, each microgridMi securely conducts their λ-round binary search for

x̄ti in range [
dti−sti−ξi

ηi
,
dti−sti+ξi

ηi
] such that |

∑n
i=1

x̄t
i

ηi
−St

i | (a global objective) is minimized

to 0. Mi’s lower and upper bounds are denoted as lbi (initialized as
dti−sti−ξi

ηi
) and ubi

(initialized as
dti−sti+ξi

ηi
). In each iteration of SA, Mi’s lbi or ubi is updated as lbi+ubi

2

(depending on the secure comparison result of two random numbers aggregated in

the SHPA): if
∑n

i=1
lbi+ubi

2
< St

i (random nonces are securely added to both sides in

SHPA), then ∀i ∈ [1, n], lbi ← lbi+ubi
2

(by Mi); Else ∀i ∈ [1, n], ubi ← lbi+ubi
2

(by Mi).

After λ iterations, the solution lies close to one of the true optimal solutions at

time t (where |
∑n

∀i=1
xt
i

ηi
− St| = 0). Figure 2.4 and Protocol 4 illustrate the details of

the sub-protocol SA.

Theorem 1. Secure Approximation (SA) approximates the optimal solution with a

negligible deviation
∑n

i=1[ξi/2
(λ−1)]2.

Proof. Sub-protocol SA securely invokes distributed binary search for λ iterations, each

of which consists of an SHPA and a secure comparison (among all the microgrids and

main grid G). Notice that, Mi’s lower and upper bounds of the search are initialized

as lbi =
dti−sti−ξi

ηi
and ubi =

dti−sti+ξi
ηi

, thus we have (ubi − lbi) = 2ξi. After λ iterations,

the range [lbi, ubi] (continuous) can be divided to 2λ ranges with equal-length ξi/2
(λ−1).

Since Mi’s share in the optimal solution (denoted as xi) falls into one of the 2λ ranges,

the deviation between the search output x̄ti and xi is:

∆i =

∫ ξi

2(λ−1)

0

(
ξi

2(λ−1)
− xi)dxi +

∫ ξi

2(λ−2)

ξi

2(λ−1)

(xi −
ξi

2(λ−1)
)dxi

= [ξi/2
(λ−1)]2

28

In summary, the overall deviation
∑n

i=1[ξi/2
(λ−1)]2 converges to 0 quickly as λ

increases.

Main

Grid

Mn

Mi

M1

Call SHPA and

Secure Comparison

()

St as the input

for every round

of comparison

Each microgrid Mi :

1. Locally updates lbi or ubi as

(lbi + ubi)/2 per the comparison

result of previous round

2. Loads the updated lbi or ubi as

the input for the current round of

comparison

3. Receives the comparison result

M2

Mn-1

Figure 2.4. Secure Approximation (SA)

2.3.3 Real-time Cryptographic Protocol. The substations (as main grid) or

microgrid are generally equipped with a battery that can store excessive energy for

balancing the load at different times [10]. As a consequence, if the (local or regional)

supply exceeds the demand (still balanced with a tight margin) at time t, the excessive

energy should be stored by each microgrid or the main grid.3

To achieve this, we design our sub-protocol Secure Rollover (SR) from three

perspectives:

• If Case (I) is derived, main grid G stores the excessive energy and updates the

regional supply at time (t+1) with the excessive energy. In the meanwhile, each

3In case of short time intervals (e.g., 1 minute), the battery capacity of each
party is greater than its locally rolled over amount, and energy loss in the storage can
be negligible in general.

29

// At time t, Case (III) occurs in SC

1 for iteration k ← 1 to λ do

2 for microgrid Mi : i← 1 to n do

3 Mi calculates
lbi+ubi

2

4 call SHPA to aggregate
∑n

i=1(
lbi+ubi

2
+ ri) and S

t
i +

∑n
i=1 ri

5 call Fairplay to compare
∑n

i=1(
lbi+ubi

2
+ ri) (held by Mr) and

St
i +

∑n
i=1 ri (held by G)

6 broadcast the comparison result to all the parties

7 if
∑n

i=1(
lbi+ubi

2
+ ri) < St

i +
∑n

i=1 ri then

8 for microgrid Mi : i← 1 to n do

9 lbi ← lbi+ubi
2

10 else

11 ubi ← lbi+ubi
2

12 return x̄ti =
lbi+ubi

2
as the external supply of Microgrid Mi, i ∈ [1, n] at

time t
Algorithm 4: Secure Approximation (SA)

30

microgrid Mi also stores its the excessive energy ξi and updates its local supply

at time (t+ 1) with the excessive energy.

• If Case (II) is derived in SC, no excessive energy to roll over for all the parties.

• If Case (III) is derived in SC, the regional margin is close to 0 (G does not need

to roll over) while each microgrid Mi may roll over their excessive energy (if∑n
i=1

dti−sti
ηi

< St holds, every microgrid has excessive energy at time t due to

nature of binary search) or not (otherwise, no excessive energy at time t).

Notice that, sub-protocol SA has decided whether
∑n

i=1
dti−sti
ηi

< St holds or not

while calling SHPA and Fairplay for the first time (all the microgrids have

known that before calling sub-protocol SR).

In summary, while streamlining the sub-protocols for securely solving the

cooperative balancing problems in real time, our Pairing system locally rolls over

each party’s excessive energy at time t to time (t+ 1).

2.4 Security Analysis

2.4.1 Privacy in the Protocol. We first prove that our Pairing system preserves

privacy under the Secure Multiparty Computation (SMC) theory [22,23]. Privately

computing a function in semi-honest model has been defined in [37] – simulating each

party’s received messages (viz. view) from the protocol in polynomial time.

Given any time period ∀t ∈ [1,m], the Pairing system calls sub-protocols

Secure Categorization (SC), Secure Approximation (SA) and Secure Rollover (SR) for

at most m times, where SC and SA invoke Secure Hierarchically Paired Aggregation

(SHPA) for constant times. Then, we first examine the security of the aforementioned

four sub-protocols.

Lemma 2. Secure Hierarchically Paired Aggregation (SHPA) only reveals two public

31

// At time t, Mi requested x̄ti from G

1 switch Case do

2 case (I) do

3 at G: St+1 ← St+1 + St −
∑n

i=1
dti−sti+ξi

ηi

4 at ∀i ∈ [1, n],Mi: s
t+1
i ← st+1

i + ξi

5 case (II) do

6 return

7 case (III) do

8 if
∑n

i=1
dti−sti
ηi

< St
i then

9 at ∀i ∈ [1, n],Mi: s
t+1
i ← st+1

i + x̄ti + sti − dti

10 else

11 return

Algorithm 5: Secure Rollover (SR)

keys and the IDs (i.e., IP address for communication) of at most ⌈log(n2−n)⌉ randomly

paired microgrids to each party.

Proof. Recall that sub-protocol SHPA includes two rounds secure aggregation to get

two random numbers for comparison: Round I aggregates
∑n

i=1(vi+ri) using a random

microgrid’s public key pkr where vi can be
dti−sti+ξi

ηi
,

dti−sti−ξi
ηi

or updated lower/upper

bounds in sub-protocol SA, and Round II aggregates St +
∑n

i=1 ri using the main grid

G’s public key pk. Then, SHPA reveals two public keys (pkr and pk).

In addition, since participants in Round I are Ψ = {M1, . . . ,Mn} (including

Mr) while participants in Round II are main grid G and Ψ, we then analyze their

views in both rounds (besides receiving the two public keys).

Mr’s view (in both Round I and II). In Round I, Mr only receives a ciphertext

32

Encpkr
∑n

i=1,i ̸=r(vi + ri) from the SHPA, which can be simulated in polynomial time

by repeating the encryption to the (random) output with its public key pkr. To send

and receive messages, Mr learns only the ID of another microgrid randomly picked

out of Ψ \Mr (the last microgrid at the root of the hierarchy). In Round II, Mr’s

view is similar to any random microgrid ∀Mi ∈ Ψ \Mr, which is discussed as below.

∀i ∈ [1, n], i ̸= r,Mi’s view (in both Round I and II). In Round I, Mi will be

paired for at most ⌈log(n − 1)⌉ times with different microgrids out of Ψ \Mr. At

each level of the hierarchy, Mi receives a ciphertext from the other paired microgrid

(encrypted by pkr), but cannot decrypt it without the private key skr. Similarly, such

message can be simulated by executing the encryption. Therefore, Mi learns the IDs

of at most ⌈log(n− 1)⌉ microgrids out of Ψ \Mr.

Similarly, in Round II, Mi learns the IDs of at most ⌈log(n)⌉ microgrids out

of Ψ (including Mr). Therefore, in both rounds, SHPA reveals the IDs of at most

⌈log(n − 1) + log(n)⌉ = ⌈log(n2 − n)⌉ different randomly paired microgrids to each

party Mi (paired with Mi at different levels).

G’s view (only in Round II). G only receives the ciphertext of a random

number Encpk(
∑n

i=1 ri) and can decrypt it to learn the random number
∑n

i=1 ri. The

random number
∑n

i=1 ri (denoted by ϕ) can be polynomially simulated by generating

a random number from the uniform probability distribution over F (note that the

random numbers are scaled to fixed precision over a closed field, enabling such a

selection). Thus, Prob[
∑n

i=1 ri is simulated] =
1
F .

Note that both the public keys and participants’ IDs are not generally considered

as private information since secure communication protocols may need IDs (i.e., IP

addresses) of the participants for communication. If necessary, we can also implement

an anonymized network to hide such IDs using existing tools, e.g., Tor [38]. Thus, we

33

will consider that SHPA does not disclose private information in this paper.

Lemma 3. Secure Categorization (SC) securely compares two pairs of numbers,

revealing only the results.

Proof. Sub-protocol SC calls two times SHPA and two times secure comparisons (for

comparing
∑n

i=1(
dti−sti+ξi

ηi
+ ri) and

∑n
i=1(

dti−sti−ξi
ηi

+ ri) with S
t+

∑n
i=1 ri, respectively).

Besides executing the sub-protocol SHPA, SC calls two times Fairplay [25] (for

secure comparison) which outputs a pair of comparison results (as 0 or 1 to Mr and

G, which then broadcast them to all the parties). The security of this sub-protocol

can be proven as the composition of two secure comparisons [25] with garbled circuits.

Essentially, two pairs of comparison results {0, 1} × {0, 1} can be simulated in

polynomial time with 1/4 probability for each. This completes the proof.

Lemma 4. Secure Approximation (SA) does not reveal any private information.

Proof. Sub-protocol SA calls λ times SHPA and λ times secure comparisons (via

Fairplay) among G and all the n microgrids, and then each microgrids locally

approximates the global optimal solution simultaneously by updating the lower or

upper bounds (no message exchange before the next iteration). Since SHPA does

not reveal any private information, we only look at the results of λ times secure

comparisons. Each party (G and ∀i ∈ [1, n],Mi) receives a sequence of λ comparison

results ∈ {0, 1}. We can build a simulator for each party to locally run binary research

on its own range (its input of the protocol) to look for x̄ti (its output of the protocol).

Clearly, a sequence of λ comparison results ∈ {0, 1} can be simulated in polynomial

time (actually linear time).

In summary, per the Composition theory [39], sub-protocol SA does not reveal

any private information to all the parties (similar to SHPA, each party can only learn

34

the public keys and the IDs of some paired peers for communication).

Theorem 2. Pairing system does not reveal any private information against passive

adversaries.

Proof. Since Pairing system runs continuously, we examine the protocol security

over any period t ∈ [1,m]. In any m time slots, it calls m times SC (including 2m

times SHPA and 2m times secure comparison), and possibly m times SA (if Case (III)

in SC; including mλ times SHPA, mλ times secure comparison) and m times Secure

Rollover (SR).

Per Lemmas 2, 3 and 4, sub-protocols SC and SA (including SHPA) do not

disclose private information (except the public keys and microgrid IDs). Since sub-

protocol SR only involves local computation (rolling over local energy and updating

local supply for the next time slot), we conclude that our Pairing system does not

reveal any private information while running in real time 4 (per the Composition

Theorem [37]).

2.4.2 Mitigating Collusion Attacks. We now analyze the security/privacy of

our protocol against colluding main grid and microgrids. In the collusion attacks, we

assume colluding parties do not corrupt the protocol, e.g., tampering with messages.

At time t, our Pairing system calls one time SC, possibly λ times SA (if

Case (III)), and one time SR (right after time t). Recall that in every SHPA and

secure comparison of our Pairing system, each microgrid Mi locally generates a new

private random nonce ri to be securely aggregated with each of the two true numbers

4Amounts of energy ∀i ∈ [1, n], x̄ti (G receives them from each microgrid at time
t) are the outputs of the protocol. Notice that, in Case (II) or (III), even if G can

learn that
dti−sti+ξi

ηi
or

dti−sti−ξi
ηi

as Mi’s output (for transmitting energy to Mi at time

t), it cannot disaggregate dti, s
t
i and ξi from the result.

35

for secure comparison (eventually decrypted and held by Mr and the main grid G,

respectively). Specifically, in such two rounds of aggregation, some microgrids and

the main grid can share all their information via collusion to infer other microgrids’

local information, e.g., local demand dti, supply s
t
i and the nonce ri.

Our protocol can mitigate such collusion threats. We simulate such collusion

attacks in our deployed Pairing system. In every attack scenario, we select ℓ

microgrids to share all their information with each other and the main grid G (e.g.,

their local data, private keys, random nonces). Then, all the (ℓ+ 1) colluding parties

try to infer other (n− ℓ) microgrids’ information. If any local information of another

microgrid (e.g., local demand, supply, random nonce) can be inferred, then we consider

such collusion attack as a “successful attack”. Then, we plot the “Confidence of

Collusion Attacks” in Figure 2.5 (given n = 150 and 300, ℓ varies from 1 to 75; the

confidence is calculated based on averaging the results of simulating any single attack

for 20 times). It shows that the confidence of collusion attacks is below 8% even if

50% of microgrids and the main grid are colluding with each other.

0 10 20 30 40 50 60 70
Number of Colluding Microgrids ℓ

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

C
on

fid
en
ce
 o
f C

ol
lu
si
on

 A
tta

ck
s

n=150
n=300

Figure 2.5. Confidence of Collusion Attack vs. ℓ

36

2.4.3 Verifiability. At time t, all the microgrids call SC and possibly SA (if Case

(III) in SC), both of which include SHPA and secure comparison (via Fairplay [25]).

Possible data integrity attacks [27, 28] in the protocol are illustrated as follows.

I. Any Mi modifies its received cipthertext in SHPA.

II. In SC and SA (any round of SHPA and/or secure comparison), the randomly

picked microgridMr can fake
∑n

i=1(vi+ri) so as to further minimize the difference

between its local supply and demand to 0 (by tampering with the comparison

result, the output case in SC, and/or the result in SA).

III. Any Mi can intentionally inject a false random nonce ri (e.g., extremely large

or small; similar to false data injection attack [28]) in one of Round I and II to

modify the comparison result (and know the result beforehand). The modified

comparison results may lead to an inaccurate external supply of each microgrid:

x̄ti.

IV. Any Mi can directly tamper with its external supply x̄ti to pursue its local

optimum | x̄
t
i

ηi
+ sti − dti| = 0.

Attack I can be detected whenMr orG decrypts the ciphertext of the aggregated

result – if modified, decryption may not work, then the attack can be directly detected.

Attacks II-IV can be summarized as tampering with any microgrid’s x̄ti in different

phases of the protocol and by different parties (since all of them lead to the same

outcome). Thanks to the inherent constraints on power supply, our protocol can

effectively detect such attacks at any time t.

Case (I) and (II) in sub-protocol SC. We have ∀i ∈ [1, n], x̄ti =
dti−sti+ξi

ηi
and

dti−sti−ξi
ηi

, respectively. To ensure integrity verification, at the beginning of each time

slot t, our protocol requests each microgrid Mi, i ∈ [1, n] to generate two hash values

37

h(x) and h(x)′ (e.g., MD5 or SHA-256/512 [40]) for
dti−sti+ξi

ηi
and

dti−sti−ξi
ηi

(as the

checksums), and then send h(x) and h(x)′ to main grid G (before calling SC).

After receiving h(x) and h(x)′ before calling SC, main grid G generates another

hash value h(x̄) (using the same MD5 or SHA-256/512) for the output x̄ti (received

from Mi) to verify the integrity of the outputs for the entire time slot t. In Case (I),

ACCEPT if h(x̄) ≡ h(x); otherwise, REJECT. Similarly, In Case (II), ACCEPT

if h(x̄) ≡ h(x)′; otherwise, REJECT. Due to the non-invertible property of the hash

function, if SC returns Case (III) at time t, then main grid cannot reconstruct
dti−sti+ξi

ηi

and
dti−sti−ξi

ηi
from h(x) and h(x)′.

Case (III) in sub-protocol SC. We have
∑n

i=1(x̄
t
i) ≈ St. Once x̄ti is faked while

executing the protocol (without collusion), main grid G can explicitly detect it with

a high probability by checking |
∑n

i=1
x̄t
i

ηi
− St|

?
≈ 0 (if

∑n
i=1

x̄t
i

ηi
is close to St in the

approximation).

• If no microgrid’s x̄ti is modified, then return ACCEPT.

• If only one microgrid’s x̄ti is modified, we thus have |
∑n

i=1
x̄t
i

ηi
−St| ̸≈ 0 (resulting

in a detectable deviation). Then, return REJECT with detected false data.

• If more than one microgrid’s x̄ti is modified, the probability of |
∑n

i=1
x̄t
i

ηi
−St| ̸≈ 0

is extremely low (if not all the adversaries collude with each other). Then, return

REJECT with detected false data.

As shown above, it is straightforward to prove completeness, soundness, and

zero-knowledge [41] for the verifiability of our protocol against malicious microgrids.

Thus, data integrity attacks can be greatly mitigated in our Pairing system.

2.5 Experimental Evaluation

38

0 100 200 300 400 500 600 700
Number of Time Slots

0

1

2

3

4

5

Lo
ca
l D

ev
ia
tio

n
(%

)

ξ=2%
ξ=5%
ξ=10%

(a) Local Deviation vs. m

0 100 200 300 400 500 600 700
Number of Time Slots

0

1

2

3

4

5

G
lo
ba
l D

ev
ia
tio

n
(%

)

ξ=2%
ξ=5%
ξ=10%

(b) Global Deviation vs. m

0 100 200 300 400 500 600 700
Elapsed Time

0

2

4

6

8

10

A
pp

ro
xi
m
at
io
n
R
at
io
 (%

)

λ=5
λ=10

(c) µ at Time 1 to 720

Figure 2.6. Accuracy Evaluation. (a): (n = 100, λ = 5). (b): (n = 100, λ = 5). (c):
(n = 100, ξ = 2%).

0 100 200 300 400 500 600 700
Number of Time Slots

102

103

104

R
un

tim
e
(s
ec
)

n=100
n=200
n=300

(a) Runtime vs. m

0 100 200 300 400 500 600 700
Number of Time Slots

102

103

104

R
un

tim
e
(s
ec
)

λ=5
λ=10

(b) Runtime vs. m

100 125 150 175 200 225 250 275 300
Number of Parties

100

101

102

103

104

105

R
un

tim
e
(s
ec
)

m=60
m=120
m=360

(c) Runtime vs. n

Figure 2.7. Computational Performance Evaluation (no idle time for minute-level
inputs). (a): (λ = 5, ξ = 2%, 2048-bit). (b):(n = 100, ξ = 2%, 2048-bit). (c):
(λ = 5, ξ = 2%, 2048-bit).

2.5.1 System Implementation. Our system is deployed on the NSF CloudLab

platform (see https://docs.cloudlab.com/) at the University of Utah. Each server has

eight 64-bit ARMv8 cores with 2.4 GHZ, 64GB memory and 120GB of flash storage.

The OS is Ubuntu:16.04. We leverage Docker (https://docs.docker.com/) to start a

container for each party (both main grid and microgrids). We created the image for

container based on the raw image of Ubuntu 16.04 by integrating all the environments

required by the system (e.g., JRE and JDK), and source codes.

We also integrate OpenDSS (https://sourceforge.net/projects/electricdss/files/)

by revising IEEE-123 bus (https://www.xendee.com/home/testcase123node) into our

system, which is an electrical power distribution system simulator for real-world

39

smart grid simulation. OpenDSS collects results from all parties (each of which has a

counterpart in OpenDSS), calculates the optimal power distribution plan, and simulate

the power flow with practical operational constraints in power system. Note that the

energy transmission efficiency ηi (extremely close to 1 in regional supply) are also

simulated on the IEEE-123 bus, provided by OpenDSS. After outputs are generated

from the protocol (requested energy amounts to main grid), the power flow from main

grid to all the microgrids can be simulated in OpenDSS.

2.5.2 Experimental Setup. We conducted experiments for our system evaluations

on 300 real microgrids’ power generation (via solar panels) and consumption (aka.

the demand load) data over a period of 24 hours (which is available at UMass

Trace Repository http://traces.cs.umass.edu/index.php/Smart/Smart). We start 301

containers for 300 microgrids and the main grid, and mount their time series input

datasets into each container where the power grid topology is shown in Figure 2.9.

According to our protocol, we tune the following factors in our experiments.

1. The number of microgrids n ∈ [100, 300].

2. The number of time slots m ∈ [1, 720]: from 7:00AM to 7:00PM (which covers

most of peak times every day).

3. The number of iterations in sub-protocol SA λ ∈ [5, 10].

4. The key size: 512-bit, 1024-bit, and 2048-bit.

5. The balancing margin as ratios: ξ ∈ [2%, 10%].

2.5.3 Accuracy Evaluation. We first evaluate the accuracy of the results returned

by our Pairing system. Before demonstrating the results, we define the following

three metrics:

40

Definition 1 (Global Deviation). Given the (near) optimal solutions for m time slots

returned by Pairing as ∀t ∈ [1,m],∀i ∈ [1, n], x̄ti, global deviation is defined as

G-Dev =

∑m
t=1 |

∑n
i=1

x̄t
i

ηi
− St|∑m

t=1 S
t

(2.4)

Definition 2 (Local Deviation). Given the (near) optimal solutions for m time slots

returned by Pairing as ∀t ∈ [1,m],∀i ∈ [1, n], x̄ti, local deviation is defined as

L-Dev =

∑m
t=1

∑n
i=1 |x̄ti + sti − dti|∑m

t=1

∑n
i=1 |x̄ti + sti|

(2.5)

To benchmark our (near) optimal solutions, we solve the NLP problems at time

t ∈ [1,m] to obtain the true optimal solutions without privacy/security consideration.

Since our Pairing system efficiently finds the near-optimal solutions while calling

sub-protocol SA, approximation ratio is defined to measure the accuracy of our near

optimal solutions.

Definition 3 (Approximation Ratio). Given the (near) optimal solution at time t

returned by Pairing as ∀i ∈ [1, n], x̄ti, and the corresponding true optimal solution as

∀i ∈ [1, n], x̂ti, approximation ratio is defined as

µ =

∑n
i=1 |x̂ti − x̄ti|∑n

i=1 |x̂ti|
(2.6)

Figure 2.6(a) and 2.6(b) demonstrate the local and global deviation on different

ξ and different number of time slots (100 microgrids, λ = 5 in sub-protocol SA, m

41

grows to all 720 time slots). Local deviation is low (less than 5%) and quickly converges

to 0 as the number of time slots m increases. Also, smaller ξ results in lower local

deviation (which balances the supply and demand better in each microgrid). Global

deviation is even lower (< 1% most of the time), and it has an opposite trend on ξ as

local deviation – larger ξ would generate lower global deviation. This reflects the fact

that more flexibility of microgrids could better contribute to the balancing of regional

supply and demand. Figure 2.6(c) shows the evaluated approximation ratio for all the

m = 720 time slots (x axis presents each time slot). Given different λ = 5 and 10, all

the approximation ratios at different time slots are less than 4% (λ = 5) and close to

0 (λ = 10). This result experimentally validated our proof for Theorem 1.

Furthermore, we can anticipate that Case (I) and (II) would result in 0 ap-

proximation ratio while Case (III) may have a difference between x̂ti and x̄ti. The

approximation ratio in Figure 2.6(c) also reveals the fact that Case (I) starts from

the beginning in the morning (the overall supply exceeds the demand load approxi-

mately between 7:00AM and 7:30AM) while at the peak times (approximately between

6:00PM and 7:00PM), Case (II) would occur more frequently. Finally, Case (III)

indicates the regional supply and demand are well balanced (as approximation ratio

would be non-zero but less than 3.08% as λ = 5 and 0.087% as λ = 10).

2.5.4 Computational Performance Evaluation. We evaluate the computational

cost of our protocol among n = 100 to 300 different microgrids, using λ = 5 and 10,

as well as three different key lengths (512/1024/2048-bit), with different λ (5 and

10). Note that the runtime evaluation is performed by skipping the idle time for

minute-level inputs (note that our protocol can finish the secure computation in the

time interval between two coming inputs, which may result in some idle time and

negligible latency).

Indeed, balancing involving sub-protocol SA (Case (III)) would require more

42

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Sample Time

0

5

10

15

20

25

30

35

40

M
em

or
y
(M

B
)

Root Microgrid
Random Microgrid
Main Grid

(a) Memory

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Sample Time

0

5

10

15

20

25

30

35

40

M
em

or
y
(M

B
)

Root Microgrid
Random Microgrid
Main Grid

(b) Memory

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Sample Time

0

5

10

15

20

25

30

35

40

45

Th
ro
ug

hp
ut
 (K

B
/s
ec
)

Root Microgrid
Random Microgrid
Main Grid

(c) Throughput

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Sample Time

0

5

10

15

20

25

30

35

40

45

Th
ro
ug

hp
ut
 (K

B
/s
ec
)

Root Microgrid
Random Microgrid
Main Grid

(d) Throughput

Figure 2.8. System Evaluation for Building Blocks – SHPA and Secure Comparison
(via Fairplay [25]). (a) and (b): (n = 100, λ = 5, ξ = 2%, 1024-bit key). (c) and
(d), 2048-bit key.

computational cost by calling λ times SHPA and secure comparison. The average

runtime for balancing involving sub-protocol SA among 100 microgrids at a single

time slot is 23.6s (2048-bit key), and among 200 microgrids is 41.0s (2048-bit key). As

n grows to 300, the average runtime is 71.6s (2048-bit key). If sub-protocol SA is not

called (Case (I) and (II)), the runtime is much less. This indicates that our Pairing

system can handle minute-level real-time energy input data (with negligible latency),

which can be sufficiently efficient for the current smart grid deployment (e.g., 10 or 15

minutes per time slot).

Figure 2.7 demonstrates the cumulative runtime with m different time slots

(2048-bit key) in 12 hours (from 7:00AM to 7:00PM). Intuitively, larger λ, m and n

requires more total computational costs. Table 2.2 shows the computational perfor-

mance on different key size (512/1024/2048-bit) – the average runtime in each time

43

slot as m grows. Given the same number of time slots m and different key sizes, we

observe that key sizes for encryption/decryption do not influence the runtime too

much (since encryption/decryption are independently executed in the docker container

in parallel, the one-time encryption/decryption in each round aggregation can be

computed during idle time and considered as “offline cost”).

Table 2.2. Average Runtime (sec) over m Time Slots (n = 100, ξ = 2%, λ = 5)

m 240 300 360 420 480 540 600 660 720

512-bit 21.6 20.3 20.7 21.5 20.4 20.3 21.2 20.6 20.1

1024-bit 22.2 21.7 22.8 22.7 21.8 21.5 21.7 21.0 20.6

2048-bit 24.3 23.6 23.0 23.2 22.9 23.1 23.0 22.2 21.5

2.5.5 System Evaluation. To investigate the performance of our Pairing system,

we have also evaluated the docker container memory, throughput, and bandwidth at

different times when executing the protocol among the 100 microgrids with different

key size 1024-bit and 2048-bit (note that Pairing system has negligible latency as

the number of microgrids n grows to 300).

Docker container is lightweight in initialization, then the most memory-consuming

part of the protocol would be secure computation (e.g., encryption after each pairing,

decryption, and invoking Fairplay). Moreover, since sub-protocol SHPA and secure

comparison (via Fairplay [25]) are the most frequently called (and also expensive)

building block, we capture the memory, throughput and bandwidth of different parties

for the lifecycle of a pair of SHPA and secure comparison. Recall that SHPA includes

two rounds secure aggregation in which the role and performance of a randomly

selected microgrid Mr in Round I is similar to main grid G in Round II. Therefore,

we plot the evaluation results for three representative parties’ containers in Round

44

II (which involves main grid G and performs similar to Round I) and Fairplay at

15 different sample time slots: (1) main grid G, (2) root microgrid Mi, and (3) a

randomly selected microgrid Mj (other than Mi, denoted as “random microgrid”).

Figure 2.8 demonstrates the memory and throughput for 1024-bit and 2048-bit keys,

respectively. As seen from the figures, the required memory and throughput are very

small, even for peak times.

More specifically, we denote 15 sample time slots as T1, T2, . . . , T15. The

allocated memory for main grid G is only high at T14 (for decryption and executing

Fairplay withMr). The throughput forG is also high at T14 (for receiving the ciphertext

from the root microgrid Mi). In addition, the root microgrid Mi will participate in

⌈log(100)⌉ = 7 rounds pairing in which it receives ciphertext from other parties and

perform multiplication. As shown in Figure 2.8, its allocated memory and throughput

are high and relatively fluctuated at the peak times, e.g., T2, T5, T7, T8, T10, T12 and

T13 for 1024-bit key size. Similarly, another random microgrid Mj only participated

in 4 rounds pairing (when using 1024-bit key, as shown in Figure 2.8(a) and 2.8(c))

which correspond to 4 peak times for both memory and throughput. Comparing

Figure 2.8(a) and 2.8(b) (and Figure 2.8(c) and 2.8(b)), we discover that the allocated

memory and throughput for each container does not change much per different key

size. Notice that, both root microgrid and random microgrid are very likely to be

different in two experiments with different key sizes, then the random microgrid might

be involved in different rounds of pairing in two experiments (e.g., 4 for 1024-bit and

3 for 2048-bit).

In addition, Table 2.3 shows the average bandwidth over m time slots (of all

the parties). With such minor bandwidth consumption, our Pairing system can be

deployed in most of the networking environments. Finally, we demonstrate a sample

power flow example after executing the protocol with OpenDSS on IEEE-123 bus

45

Table 2.3. Average Bandwidth (MB) over m Time Slots (n = 100, ξ = 2%, λ = 5)

m 240 300 360 420 480 540 600 660 720

512-bit 0.73 0.65 0.64 0.68 0.72 0.67 0.68 0.65 0.66

1024-bit 1.29 1.24 1.18 1.13 1.28 1.19 1.28 1.16 1.11

2048-bit 2.37 2.12 2.38 2.43 2.40 2.37 2.25 2.01 1.92

system in Figure 2.9.

Figure 2.9. Topology of 100 microgrids (based on IEEE-123 bus) and a sample power
flow from the main grid to different microgrids. ID “150” represents the main grid
(substation) while the remaining IDs represent either microgrids or devices such
as transformers. X and Y axes are defined as coordinates. The line thickness is
proportional to power relative to a maximum scale of 500kW.

2.6 Related Work

Secure Computation. Secure Multiparty Computation (SMC) [22,23] has signif-

icantly advanced the development of privacy preserving collaborative computation

46

Table 2.4. Priavcy Preserving Cooperation among Microgrids

Property Privacy Collusion Mitigat. Verifi. Real Time System Impl.

Rottondi et al. [21] ✓ ✗ ✗ ✗ ✓

Hong et al. [42] ✓ ✓ ✗ ✗ ✗

Wang et al. [43] ✓ ✗ ✗ ✗ ✗

Zhu et al. [44] ✓ ✗ ✗ ✗ ✓

Pairing ✓ ✓ ✓ ✓ ✓

among multiple parties. Specifically, SMC ensures that many functions can be securely

computed with private inputs via garbled circuits, such that all parties can only learn

the output or their shares of the output. If extending the function to solve complex

problems (e.g., data mining [45]), novel secure communication protocols are generally

designed by composing the cryptographic building blocks with corresponding securi-

ty/privacy analysis [22]. Besides the semi-honest model, many existing works have

been proposed against malicious adversaries [46, 47]. Recently, secure computation

has been leveraged to design privacy preserving systems in different contexts, e.g.,

location-based services [48], medical data analysis [49] and smart grid [7]. As far as

we know, we take the first step to design a system for entities on the power grid to

privately cooperate with each other (for improving the grid performance).

Smart Grid Privacy. In literature, mitigating privacy risks in smart grid systems

primarily focuses on the protection of metering data which is the consumer’s fine-

grained meter readings [50]. Researchers have developed various of techniques to resolve

the privacy issues for smart meters [12,18]. For instance, Ács and Castelluccia [12]

developed a differentially private smart metering scheme which allows power suppliers

to periodically collect data from smart meters and compute aggregated statistics

47

with rigorous privacy guarantees. Rottondi et al. [18] presented a privacy preserving

infrastructure along with a multiparty communication protocol (based on applied

cryptography) which allows utilities and data consumers to collect measurement data

by securely aggregating smart meters. Moreover, Rottondi et al. [21] proposed a

distributed perturbation technique via Gaussian Noise to aggregate user’s data to

achieve the demand side management. However, all of these may cause the latency or

the high utility loss because of the centralized setting or the obfuscated data input.

Renewable energy sources like batteries can also be utilized to hide the load/metering

information of individual households, which are studied in [51, 52]. Energy harvesting

is also an effective solution to increase smart meter privacy [52] via diversifying the

energy source. We list the differences of our work from previous works in Table 2.4.

Furthermore, privacy preserving schemes are also proposed for applications

functioned by metering data analysis [53,54], including spatial and temporal power

consumption [54], load monitoring [55], billing protocols [53], regional statistics [19],

dynamic pricing [56]. However, only a few privacy preserving schemes have been

presented for microgrids in literature very recently, to facilitate applications such

as energy routing [44], energy exchange/sharing [6, 42], and energy scheduling [43].

For instance, Hong et al. [42] proposed a privacy energy sharing scheme among

the microgrids while minimizing the energy losses during transmission. To the best

of our knowledge, such schemes can neither quantify the privacy risks with formal

security/privacy analysis, nor has been implemented as systems on the power grid.

We propose and design a novel prototype of system to address this deficiency.

48

CHAPTER 3

PRIVATE DISTRIBUTED ENERGY TRADING MARKET

3.1 Introduction

Distributed energy resources (DERs) have been increasingly deployed in the

smart grid infrastructure to supplement the power supply with renewable energy such

as solar and wind. Equipped with DERs, electricity consumers (e.g., small homes

with installed solar panels, hospitals and campuses with deployed microgrids) can

also be considered as suppliers that have reduced their dependence on the electricity

grid [57]. Recently, multi-agent systems in the smart grid [58] have attracted significant

interests by considering the smart homes or microgrids as distributed agents [59,60].

In reality, smart homes or microgrids may generate excessive energy that cannot be

consumed immediately during routine operations. A current solution to deal with the

excessive energy is to either consume/waste it or sell it to the main grid [61, 62], even

if many of the smart homes/microgrids have been equipped with local storage devices.

Essentially, from the economic perspective of such multi-agent systems, transmitting

excessive energy back to the main grid or storing the energy is not an ideal outcome,

compared to involving more consumers (which requests external energy) to receive

the excessive electricity and consume them immediately.

To this end, the smart grid begins to incentivize agents with local energy to

cooperate with each other, e.g., decentralized power supply restoration [63], energy

sharing [64] and three-party energy trading [61]. Inspired by them, we study the

distributed energy trading problem which enables smart homes or microgrids to sell

their excessive energy to other consumers besides selling back to the power market

monopoly, the main grid [65,66]. It will greatly benefit all the agents: (1) sellers can

receive more rewards with a trading price generally higher than the price requested

by the main grid, (2) buyers can reduce their costs (i.e., electricity bill) with the

49

trading price generally lower than the retail price of the main grid [67], and (3)

interactions/loads between the consumers and the main grid can be reduced to provide

better reliability via autonomy [68].

Sharing

Private Data

for Trading?

Main Grid

Distributed

Energy Trading:

Sell Local

Excessive

Electricity to other

Consumers

Figure 3.1. Distributed Energy Trading

However, as shown in Figure 3.1, distributed energy trading requests significant

amounts of local data from all the agents (e.g., each seller/buyer’s local generation and

demand load at different times) to compute the optimal price and allocate the energy

trading amounts for all the sellers and buyers [61]. Disclosing such local data for

computation would explicitly compromise their privacy. For instance, local generation

reveals the generation capacities and time series generation patterns [20], and the local

demand load reveals consumption patterns (e.g., which appliance is used at which

time) [12,13].

To address such privacy concerns, we propose a novel privacy preserving dis-

tributed energy trading framework, namely “Private Energy Market (PEM)” in which

all the agents privately compute the optimal price (ensured by a Nash Equilibrium of

a designed Stackelberg game) and allocate pairwise energy trading amounts without

disclosing local data. To this end, our PEM framework ensures that all the compu-

tations are performed in novel cryptographic protocols under the theory of secure

multiparty computation (MPC) [22,23] which provides provable privacy guarantee.

50

Thus, the major contributions of this paper are summarized as follows: 4

1. To our best knowledge, the propose PEM is the first privacy preserving dis-

tributed energy trading framework, which enables all the agents on the electric

grid to privately compute their optimal trading price (ensured by a Nash Equi-

librium) and pairwise trading amounts, as well as complete their pairwise

transactions without disclosing their private data (via cryptographic protocols).

2. We model a Stackelberg game [70] in the PEM framework, which ensures

privacy [22], individual rationality, and incentive compatibility [71] for all the

agents. Theoretical analyses are given to prove all of the three properties.

3. We implement a prototype for the proposed PEM framework with negligible

latency in real time. We also conduct substantial experimental evaluations on

real datasets to validate the system performance of the PEM.

3.2 Problem Formulation

In this section, we present some preliminaries for the distributed energy trading

and the PEM framework. Table 3.1 shows some frequently used notations.

3.2.1 Distributed Energy Trading. We first introduce the background [6,59,61,67]

on the power grid, where agents represent the consumers with local generation, e.g.,

smart homes, and microgrids.

• Energy trading occurs over a fixed length of periods, each of which is referred as

a “trading window”. All the agents complete their transactions (either selling or

buying energy) within each trading window.

4This work has been published in IEEE ICDCS [69].

51

Table 3.1. The Notation Table in Chapter 3

Symbol Definition

M the main grid obtains unlimited power supply

Hi the ith agent i ∈ [1, |Φ|], Φ: set of agents

gti , l
t
i Hi’s local generation and demand at time window t

bti Hi’s energy amount charging/discharging at t

snt
i Hi’s net energy (snt

i = gti − lti − bti)

Φt
s Seller set Φt

s = {∀Hi ∈ Φ, snt
i > 0}

Φt
b Buyer set Φt

b = {∀Hj ∈ Φ, snt
j < 0}

Et
s Market supply Et

s =
∑

Hi∈Φt
s
snt

i

Et
b Market demand Et

b =
∑

Hj∈Φt
b
|snt

j|

pt the optimal price in the PEM (to reach an equilibrium in the game)

pbtg the electricity price offered via the main grid

pstg the regular retail electricity price from the main grid

[pl, ph] acceptable market price range to incentivize agents to join the trading

• Agent can be a buyer in a trading window, and a seller in another trading

window, but cannot be both in any trading window (otherwise, its payoff would

not be optimal [6]).

• Each seller can decide how much energy it consumes (including charging its

battery if available [62]) and how much energy is available in the current trading

window.

52

• We assume that the main grid has unlimited power supply with a higher price

than distributed trading [67], and energy is transmitted with a negligible loss.

We denote the main grid as M and the set of agents as Φ (with cardinality |Φ|).

For each agent Hi, i ∈ [1, |Φ|], we denote its generation (e.g., from solar panels) and

demand load in trading window t as gti and l
t
i, respectively. Each agent Hi optionally

installs an energy storage device or battery [72] with capacity Capi (the maximum

energy storage after charging), which can be specified as 0 (if “no battery”). Denoting

the energy amount charging into or discharging out of the battery as bti (in trading

window t), if charging, we have bti > 0; if discharging, we have bti < 0. Then, we can

define the net energy of Hi as sn
t
i:

snt
i = gti − lti − bti (3.1)

In every trading window t, each agent Hi will be classified as either buyer

or seller according to their net energy: (1) if snt
i > 0, Hi is a seller, (2) if snt

i < 0,

Hi is a buyer, and (3) if snt
i = 0, Hi will be off market. Then, we formally define

Φt
s = {∀Hi ∈ Φ, snt

i > 0} as the set of sellers and Φt
b = {∀Hj ∈ Φ, snt

j < 0} as the set

of buyers, where the market supply of sellers Et
s and the market demand of buyers Et

b

can be derived as:

Et
s =

∑
Hi∈Φt

s

snt
i > 0 and Et

b =
∑

Hj∈Φt
b

|snt
j| (3.2)

Optimal Trading Price. At the end of every trading window, a seller can store

the unsold energy or sell the unsold energy to the main grid [62]. However, the

price offered by the main grid (denoted as pbtg) is much lower than the regular retail

electricity price for purchasing from the grid (denoted as pstg) [67]. In the energy

53

trading market, while trading energy in window t, all the buyers and sellers will jointly

learn an optimal price pt between pbtg and pstg [67] where all the players achieve an

equilibrium in a game (with individual rationality and incentive compatibility [73]).

PEM also sets an acceptable market price range [pl, ph] to incentivize the sellers

or buyers to join the trading [67] such that the price pt in the trading window t

satisfies:

pbtg < pl ≤ pt ≤ ph < pstg (3.3)

which is set by the PEM rather than specific agents. If pt > pstg, all the rational

buyers will purchase energy directly from the main grid; if pt < pbtg, all the rational

sellers will sell the energy directly to the main grid. Thus, PEM specifies a reasonable

price range. Section 3.3 will illustrate how to derive the optimal price and allocate

energy trading amounts in every trading window.

3.2.2 Threat Model. More importantly, our PEM framework addresses the privacy

concerns of all the participants (e.g.,. agents with local energy) in the distributed

energy trading. Specifically, to realize the energy trading, all the agents ∀i ∈ [1, |Φ|], Hi

should share its local private information to a trusted third party so as to compute

their optimal price as well as allocating pairwise energy trading amounts. However,

such shared local information are sensitive in general [13,15,52], e.g., Hi’s local energy

generation amount, energy consumption amount, battery storage amount, and its

utility parameter (which are detailed in Section 3.3).

To tackle the above concerns, we propose the PEM framework (without a

trusted third party) based on efficient cryptographic protocols [22, 23] to privately

function distributed energy trading without disclosing local information. We define

the threat model in the distributed energy trading as below:

54

• We assume semi-honest adversarial model for preserving the privacy in our

cryptographic protocols: all the agents are curious to learn private information

from each other [22,39] but do not maliciously corrupt the protocol.

• Besides the semi-honest model, all the agents have the incentive to improve its

payoff by cheating on its data.

• All the messages in the framework are assumed to be transmitted in a secure

channel.

3.2.3 PEM Framework. To sum up, PEM will provide the following three

properties against the adversaries:

• Privacy: each seller/buyer’s privacy is protected in the PEM with provable

privacy guarantee.

• Individual Rationality: each seller/buyer has a higher payoff by participating

in the PEM.

• Incentive Compatibility: each seller/buyer cannot improve its payoff by

untruthfully changing its strategy.

Section 3.4 will illustrate the cryptographic protocols for our PEM framework,

and Section 3.5 will analyze the privacy/security and incentive compatibility to protect

the trading under the threat model defined earlier.

3.3 Distributed Energy Trading

In this section, we first present the distributed trading scheme for PEM without

privacy consideration.

55

3.3.1 Incentive Measurement. We first define two functions to measure the

incentives for both sellers and buyers in the trading [61]. The utility function measures

the payoff received by each seller while the cost function measures how much each

buyer pays.

Seller’s Utility Function [72,74] is defined to quantify the total utility of any seller

Hi ∈ Φt
s in trading window t:

U t
i = kti log(1 + lti + ϵti ∗ bti) + pt ∗ (gti − lti − bti) (3.4)

where kti > 0 is the load behavior preference parameter of the seller Hi (either

locally consuming more energy or selling them), pt is the market price. lti and g
t
i are

defined as the load and generation of Hi. For the battery, bti is defined as the energy

charging/discharging amount: charging if positive (as additional load) and discharging

if negative (as additional supply); ϵti ∈ (0, 1) represents the battery loss coefficient,

which measure the ratio of battery’s contribution amount as load (charging) utility.

Buyer’s Cost Function is defined to measure the cost of any buyer Hj ∈ Φt
b from

the energy market and main grid:

Ct
j = pt ∗ xtj + pstg ∗ (ltj + btj − gtj − xtj) (3.5)

Similarly, ltj, g
t
j, and b

t
j denote the buyer’s local load, generation, and battery

charging/discharging amounts, respectively. Moreover, xtj is defined as the energy

amount that Hj purchased from the trading market, thus we have 0 < xtj ≤ ltj + b
t
j−gtj .

3.3.2 Stackelberg Game for PEM. To further pursue the cooperation of agents,

two coalitions are formed based on each agent’s net energy in every trading window

(seller coalition and buyer coalition; the agents in two coalitions change over time). In

56

our PEM framework, the seller coalition sells energy with the total supply while the

buyer coalition purchases energy with their total demand, and their shares of energy

to sell/buy are allocated proportional to their input shares (as detailed in Section

3.3.4). Such trading mechanism could make the market more stable, and guarantee

the payoffs for conservative sellers/buyers who may not want to fully compete with

other sellers/buyers.

Stackelberg Game Per the two (utility and cost) functions defined for sellers and

buyers, the objectives of two coalitions consist of two aspects: (1) buyers incline

to minimize their costs (as a coalition); (2) sellers incline to maximize their utility.

To learn the optimal price, we propose a Stackelberg game for seller and buyer

coalitions [70].

Specifically, the market supply (from agents) is generally less than market

demand (since renewable energy cannot feed all the load in current practice [61]).

Therefore, in the Stackelberg game, the buyer coalition is specified as the leader while

the seller coalition is defined as the follower (otherwise, sellers will dominate the

market). Then, the game G can be formally defined as:

G = {Φt
b ∪ Φt

s, {lti}Hi∈Φt
s
, {U t

i }Hi∈Φt
s
, pt,Γt} (3.6)

with the following components in each trading window t:

• the buyer coalition Φt
b is the leader to set up the price while the seller coalition

Φt
s chooses their strategies as a response to the proposed price.

• {lti}Hi∈Φt
s
is the set of load profiles of all the sellers (strategies) to maximize their

payoffs.

• U t
i is the utility function of seller Hi.

57

• pt is the price proposed by the buyer coalition.

• Γt is the total cost for the buyer coalition:

Γt =
∑

Hj∈Φt
b

Ct
j = pt ∗ Et

s + pstg ∗ (Et
b − Et

s) (3.7)

where Et
s and E

t
b are the market supply/demand (Eq. 3.2).

Then, the objective of the model is to minimize the total costs of the buy-

ers/leader and to maximize the individual utility function of each seller/follower

(such that the seller coalition’s total utility is also maximized) by choosing their own

strategies. We define the equilibrium as below:

Definition 4. The set of strategies ({lt∗i }Hi∈Φt
s
, pt∗) is an equilibrium for the game G,

if and only if it satisfies:

U t
i ({lt∗i }Hi∈Φt

s
, pt∗) ≥ U t

i ({ltk, {lt∗i }Hi∈Φt
s,i ̸=k}, pt∗)

Γt({lt∗i }Hi∈Φt
s
, pt∗) ≤ Γt({lt∗i }Hi∈Φt

s
, p)

where pl ≤ pt∗ ≤ ph.

Therefore, we seek for the equilibrium of this game in which the follower (aka.

sellers) derives the best response to the optimal price proposed by the leader (aka.

buyers). At this equilibrium, neither the leader nor any follower can increase its

payoff via any unilateral strategic move. In other words, when the game reaches

the equilibrium, the buyers cannot reduce the cost by decreasing the price pt while

the sellers cannot improve their utility by adjusting their strategies on load profiles

{lti}Hi∈Φt
s
.

Optimal Price We prove the existence and uniqueness of the equilibrium [61,70] for

G:

58

Lemma 5. A unique equilibrium ({lti}Hi∈Φt
s
, pt∗) exists.

Proof. First, we get the second derivative of the utility function U t
i (Eq. 3.4):

∂2U t
i

∂lti
2 =

−kti
(1 + lti + ϵtib

t
i)

2
(3.8)

which is always less than 0 since kti > 0. The utility function is concave with

lti. Then given any price pt, each seller Hi ∈ Φt
s can only find a unique lti to get its

maximum utility. On the contrary, the buyers can also find the optimal price while

the sellers specify their load profiles in the Nash Equilibrium. Thus, the equilibrium

({lti}Hi∈Φt
s
, pt∗) exists.

Second, to prove the uniqueness of the equilibrium, we need to prove that the

optimal price is unique for the minimum cost of the buyer coalition (leader of the

game). We first find the optimal load profile for each seller Hi ∈ Φt
s: l

t
i. We then get

the first derivative of Hi’s utility function (whose value should be 0 for the maximum

utility):

∂U t
i

∂lti
=

ktiϵ
t
i

(1 + lti + ϵtib
t
i)
− pt = 0 (3.9)

Thus, we get the optimal load profile for seller Hi:

lti =
ktiϵ

t
i

pt
− 1− ϵtibti (3.10)

Replacing lti in the total cost function Γt, then we get the second derivative of Γt:

∂2Γt

∂pt2
=

∑
Hi∈Φt

s

2pstgk
t
i

(pt)3
> 0 (3.11)

59

Then, Γt is strictly convex with pt, which generates a unique optimal price.

Thus, equilibrium ({lti}Hi∈Φt
s
, pt∗) is unique. This completes the proof.

To find the optimal price pt∗ in game G, we calculate the first derivative of Γt:

∂Γt

∂pt
=

∑
Hi∈Φt

s

(gti + 1 + ϵtib
t
i − bti)−

pstg
∑

Hi∈Φt
s
kti

(pt)2
= 0 (3.12)

Solving Eq. 3.12, we have

p̂t =

√
pstg

∑
Hi∈Φt

s
kti∑

Hi∈Φt
s
(gti + 1 + ϵtib

t
i − bti)

(3.13)

Therefore, we can get the optimal price pt∗ by integrating Eq. 3.13 and 3.3.

pt∗ =

p̂t, p̂t ∈ [pl, ph]

pl, p̂t < pl

ph, p̂t > ph

(3.14)

Replacing pt in the load profile lti (Eq. 3.10) with p
t∗, we can get the optimal

load profile (strategy) for each seller Hi:

lt∗i =
ktiϵ

t
i

pt∗
− 1− ϵtibti (3.15)

Note that if there is no battery installed for the seller, we thus have bti = 0.

3.3.3 Trading Scheme in an Extreme Market. If the market supply in the

PEM is greater than or equal to the market demand (this rarely occurs in the current

smart grid infrastructure, “extreme market”), to maintain a robust market, the market

electricity price should be set to the lower bound pl which is still greater than the

60

price pbtg offered by the main grid. Different from the general market case, the sellers

also maximize their utilities by selling the remaining energy to the main grid and the

buyer coalition will buy the electricity for all its demand from the market (to minimize

their costs).

3.3.4 Energy Distribution and Payment. Considering Et
s < Et

b as the general

market and Et
s ≥ Et

b as the extreme market, our PEM framework allocates trading

amount for each pair of buyer and seller based on the demand (general market) or

supply ratio (extreme market) out of the total market supply and demand to ensure

fairness of distribution. We now discuss the allocation strategies for the two markets.

1. General Market: the optimal price pt∗ is proposed by the buyer coalition in

the Stackelberg Game and all the market supply should be sold to the buyer

coalition with price pt∗. In the buyer coalition, the amount of electricity should

be allocated in terms of their demand ratio out of the total demand Et
b. Then,

each buyer Hj ∈ Φt
b requests energy with the amount eij = snt

i ∗
|snt

j |
Et

b
from seller

Hi ∈ Φt
s, and pays mji = pt∗eij to seller Hi.

2. Extreme Market: the price is directly set as pl. Similarly, each seller Hi ∈ Φt
s

sells the amount of eij = |snt
j| ∗

snt
i

Et
s
to buyer Hj ∈ Φt

b and receives the payment

of mji = pleij from buyer Hj.

3.4 Cryptographic Protocols

In this section, we present the cryptographic protocols for the distributed

energy trading in PEM.

3.4.1 Cryptographic Building Blocks. We adopt homomorphic encryption [24]

and garbled circuit [22,23] as the building blocks to construct our protocols.

61

Homomorphic Encryption (e.g., Paillier cryptosystem [24]) is a semantically-

secure public key encryption to generate the ciphertext of an arithmetic operation

between two plaintexts by other operations between their ciphertexts. It has the

additional property that given any two encrypted messages E(A) and E(B), we have

E(A+B) = E(A) ∗E(B), where ∗ denotes the multiplication of ciphertexts (in some

abelian group).

Garbled Circuit was originally proposed by Yao [22]. It enables two parties to

jointly compute a function without disclosing their private inputs where one party

creates the garbled circuit and the other party evaluates the circuit to derive the

result of the secure computation. Our protocols only incorporate garbled circuit (e.g.,

the Fairplay system [25]) for realizing some light-weight computations (e.g., secure

comparison) instead of the entire trading scheme.

Seller

Coalition
Buyer

Coalition

Private Pricing

(Homomorphic

Encryption)

Private Distribution

(Homomorphic Encryption)

Private Market Evaluation

(Homomorphic Encryption

and Garbled Circuit)

1

4

H+

3

5

2
.2

 E
x

trem
e M

ark
et

1. Form the seller and buyer coalitions

2. Two Market Cases in PEM

2.1 trading with an optimal price

2.2 trading with a specified price

by the seller coalition

3. Trading price to all the sellers/buyers

4. Determine distributed trading amounts

5. Pairwise energy routing and pay

H+

H+

H+

Figure 3.2. Overview of the PEM Framework

3.4.2 Overview of the PEM. As shown in Figure 3.2 and Protocol 6, in the PEM

framework, all the agents firstly form the seller and buyer coalitions (Initialization).

Then, in Private Market Evaluation, the two coalitions securely evaluate the market.

If a general market case is returned, Private Pricing is executed to securely compute

the optimal price. For both general and extreme market cases, Private Distribution is

62

executed to complete the trading.

1 for agent Hi ∈ Φ do

2 Hi generates key pair (pki, ski), and shares pki in Φ

3 for each trading window t do

4 Initialize seller and buyer coalitions: Φt
s, Φ

t
b

5 Φt
s and Φt

b execute Private Market Evaluation

6 if Et
s < Et

b (general market) then

7 Execute Private Pricing (Protocol 8): pt = pt∗

8 else

9 Set the current price pt = pl (extreme market)

10 Φt
s and Φt

b execute Private Distribution (Protocol 9)

Algorithm 6: Private Energy Market (PEM)

3.4.3 Initialization. Since secure computation in the PEM primarily utilizes the

Homomorphic encryption (e.g., Paillier Cryptosystem [24]), each seller/buyer locally

generates its own public-private key pair and shares all their public keys. At the

beginning of each trading window, each agent claims its role as buyer or seller or off

the market to form the seller and buyer coalitions. If the seller coalition is empty

(Et
s = 0), all the buyers should buy energy from the main grid with the retail electricity

price.

3.4.4 Private Market Evaluation. After the initialization, PEM determines

the market to be a general or extreme market, where the seller coalition Φt
s and

buyer coalition Φt
b jointly aggregate their private net energy, and then compare the

overall supply Et
s and demand Et

b. Specifically, there are “two rounds” of aggregations.

In the first round, an arbitrary seller Hr1 will be chosen, then each buyer Hj ∈ Φt
b

encrypts the demand |snt
j| plus a random nonce rj using Hr1’s public key pkr1, i.e.,

Encpkr1(|snt
j|+ rj) for summing up

∑
Hj∈Φt

b
Encpkr1(|snt

j|+ rj). The ciphertext will be

63

1 Randomly choose Hr1 ∈ Φt
s with key pair (pkr1, skr1)

2 for each Hj ∈ Φt
b do

3 Hj generates random nonce rj and initializes C = 1

4 Hj computes C ← C ∗ Encpkr1(|snt
j|+ rj)

5 The last agent in Φt
b sends C to Φt

s \Hr1

6 for each Hi ∈ Φt
s do

7 Hi generates random nonce ri

8 Hi computes C ← C ∗ Encpkr1(ri)

9 The last agent in Φt
s sends C to Hr1

10 Hr1 obtains Rb =
∑

Hj∈Φt
b
(|snt

j|+ rj) +
∑

Hi∈Φt
s
ri by decrypting the

ciphertext with skr1

11 Randomly choose Hr2 ∈ Φt
b with key pair (pkr2, skr2)

12 Repeat Lines 2-10 with Hr1 ← Hr2

13 Hr2 obtains Rs =
∑

Hi∈Φt
s
(snt

i + ri) +
∑

Hj∈Φt
b
rj by decrypting the

ciphertext with skr2

14 Hr1, Hr2 execute secure comparison with input Rb, Rs

15 if Rs < Rb then

16 return general market

17 else

18 return extreme market

Algorithm 7: Private Market Evaluation

sent to one random seller in the seller coalition except Hr1. Similarly, each seller Hi

of the seller coalition generates a nonce ri and encrypts it for summing up the value

in the ciphertext. Finally, Hr1 decrypts the ciphertext to get the aggregated value

Rb =
∑

Hj∈Φt
b
(|snj|+ rj) +

∑
Hi∈Φt

s
ri with its private key (see Lines 2-10 in Protocol

7). The second round is similar to the first: one random selected buyer Hr2’s public

64

key pkr2 is used to aggregate the sni + ri of each seller Hi ∈ Φt
s and the nonce rj of

each buyer to get Rs =
∑

Hi∈Φt
s
(sni + ri) +

∑
Hj∈Φt

b
rj (see Lines 11-13).

As shown in Protocol 7, neither the chosen seller Hr1 nor buyer Hr2 knows

the value of Et
b or E

t
s and they only obtain the aggregated random value (Rb or Rs).

Furthermore, Private Market Evaluation securely compares Rb and Rs by Hr1 and Hr2

to determine the market case using the garbled circuits (e.g., the Fairplay system [75],

see Lines 14-18). Note that the comparison result of Rb and Rs is equivalent to the

comparison result of Et
b or E

t
s since the same sum of random nonces are added to Et

b

and Et
s to obtain Rb and Rs.

3.4.5 Private Pricing. If general market is returned in Protocol 7, Private

Pricing will be executed to find the optimal price pt∗ of the Stackelberg Equilibrium.

Specifically, a seller Hb will be chosen at random to securely aggregate two local values

of each seller Hi ∈ Φt
s: (1) k

t
i , and (2) gti + 1 + ϵtib

t
i − bti (locally computed). Then Hb

derives the optimal price pt∗ per the Eq. 3.14 in Section 3.3.2 once getting p̂t, and

broadcasts the optimal price pt∗ (see Lines 8-9 in Protocol 8).

1 Choose randomly Hb ∈ Φt
b with key pair (pkb, skb)

2 for each Hi ∈ Φt
s do

3
∏i

s=1Encpkb(k
t
s)←

∏i−1
s=1Encpkb(k

t
i) ∗ Encpkb(kti)

4 The last agent sends
∏|Φt

s|
i=1 Encpkb(k

t
i) to Hb

5 Hb decrypts
∏|Φt

s|
i=1 Encpkb(k

t
i) using skb for

∑
Hi∈Φt

s
kti

6 Repeat Lines 2-5 with kti ← gti + 1 + ϵtib
t
i − bti

7 Hb decrypts the ciphertext to obtain
∑

Hi∈Φt
s
(gti + 1 + ϵtib

t
i − bti)

8 Hb calculates: p̂t =

√
pstg

∑
Hi∈Φt

s
kti∑

Hi∈Φt
s
(gti+1+ϵtib

t
i−bti)

9 Hb derives p
t∗ per the Eq. 3.14 and broadcasts it

Algorithm 8: Private Pricing

65

3.4.6 Private Distribution. As discussed in Section 3.3.4, the trading amount

of electricity between each pair of seller and buyer should be allocated in proportion

to its demand/supply ratio out of the market demand/supply in both general and

extreme market case. W.l.o.g., we discuss the protocol for the general market (which

can be simply extended for the extreme market). For buyer Hj , the allocated amount

of electricity from seller Hi should be eij =
|snt

j |
Et

b
∗ snt

i. Since any buyer may intend to

cheat by using a larger demand snt
i to increase its share in the allocation (reduce costs

with a lower price to buy energy), the market demand cannot be directly disclosed to the

buyers. The seller coalition cannot get the market demand considering the privacy and

fairness. Since the homomorphic encryption schemes (e.g., Paillier Cryptosystem [24])

only obtain additive and/or multiplicative property (not fully homomorphic [76] to

securely compute “division”), we cannot directly adopt homomorphic encryption for

privately computing the pairwise allocated amounts using their input ratios.

To address such issue, we transform the ciphertext computation for the “di-

vision/ratio”
|snt

j |
Et

b
in eij. Specifically, each buyer Hj locally computes Encpks(

Et
b

|snt
j |
)

with 1
|snt

j |
. Note that 1

|snt
j |
should be multiplied by an integer k to be converted to an

integer. Then Encpks(
Et

b

|snt
j |
) and k will be sent to the seller Hs, and Hs decrypts it to

get the allocation ratio via (
Et

b

|snt
j |
)−1 =

|snt
j |

Et
b
. The only information that the seller Hs

knows is the allocation ratio for buyer coalition (while Et
b and |snt

j| are unknown).

Thus, the seller Hs can broadcast the allocation ratio in the seller coalition. Finally,

each seller Hi calculates the allocated amount of energy eij and routes the energy to

each buyer Hj; Hj pays mji to Hi (see Lines 10-12 in Protocol 9). Similarly, in an

extreme market, the protocol can be implemented by swapping their roles. Figure 3.3

illustrates the major procedures of Private Distribution (note that the random seller

Hs is chosen as H+
1).

3.5 Analysis

66

H1
+

…

…

…

H1
- H2

- Hj
-

H2
+ Hi

+

(pk1, sk1)

Seller Coalition

1. aggregate the market demand among the buyers with a random

seller’s public key (w.l.o.g., pk1)

2. each buyer locally computes its demand ratio

Buyer Coalition

4. each seller Hi calculates

eij (for each buyer Hj) and

routes energy eij to Hj

5. each buyer Hj pays mji

to seller Hi

3. w.l.o.g., H1
+ decrypts and broadcasts

the demand ratio to other sellers

Figure 3.3. Private Distribution for General Market (which can be adapted for extreme
market by swapping the roles of two coalitions: each buyer Hj calculates eij and
pays mji).

In this section, we give theoretical analysis for privacy, incentives, and the

complexity in our PEM framework.

3.5.1 Security/Privacy Analysis. We now prove the security/privacy for the

protocols in our PEM framework under the theory of secure multiparty computation

[22, 23], which requires each party to simulate all its received messages with only

its input and output in polynomial time (“Computational Indistinguishability”) [39].

The PEM framework executes Private Market Evaluation, Private Distribution and

possibly Private Pricing in each trading window. Then, we first examine the security

of the three protocols and then discuss the composition [39].

Lemma 6. The Private Market Evaluation (Protocol 7) does not reveal any private

information.

Proof. Three different types of parties are involved in Protocol 7: a randomly selected

67

1 if general market then

2 Randomly choose Hs ∈ Φt
s with key pair (pks, sks)

3 for each Hj ∈ Φt
b do

4 Hj computes∏j
s=1Encpks(|snt

s|)←
∏j−1

s=1Encpks(|snt
j |) ∗ Encpks(|snt

j |)

5 The last agent broadcasts
∏|Φt

b|
j=1Encpks(|snt

j |) in Φt
b

6 for each Hj ∈ Φt
b do

7 Hj computes and sends
∏|Φt

b|
j=1Encpks(|snt

j |)
1

|snt
j
| to Hs

8 Hs decrypts the ciphertexts and broadcasts the allocation ratio within the

seller coalition Φt
s

9 repeat

10 Hi computes eij =
|snt

j |
Et

b
∗ snt

i

11 Hi routes eij to Hj

12 Hj pays mji = eij ∗ pt to Hi

13 until each Hi ∈ Φt
s finishes transaction;

14 else

15 Repeat Lines 2-13 by replacing Φt
s with Φt

b

16 return eij =
snt

i
Et

s
∗ |snt

j | and mji = eij ∗ pt

Algorithm 9: Private Distribution

seller Hr1, a randomly selected buyer Hr2, and the remaining sellers/buyers.

We first examine the received messages of the remaining sellers/buyers. Each

of them only receives a ciphertext of a random number (which cannot be decrypted

without the private key), which can be polynomially simulated by repeating the

encryption with the public key. Thus, the protocol does not reveal private information

to them.

Hr1 and Hr2 can decrypt the ciphertexts to obtain two different random

68

numbers Rb and Rs (which are decrypted with the private keys), respectively. Each

random number can be polynomially simulated by generating a random number from

the uniform probability distribution over range F . Notice that the random numbers

are scaled to fixed precision over a closed field (after decryption), enabling such a

selection. Thus, Pr[
∑n

i=1Rb is simulated] = Pr[
∑n

i=1Rs is simulated] =
1
F . Finally,

Hr1 and Hr2 also securely execute Fairplay to compare two random numbers for market

evaluation, which does not reveal any private information (as proven in [25]).

Lemma 7. The Private Pricing (Protocol 8) only reveals non-private information∑
Hi∈Φt

s
kti and

∑
Hi∈Φt

s
(gti + 1 + ϵtib

t
i − bti) to a randomly selected buyer Hb.

Proof. This Protocol involves two different types of parties: a randomly selected buyer

Hb and all the sellers.

We first analyzeHb’s received messages. Hb can decrypt the received ciphertexts

with its private key to obtain
∑

Hi∈Φt
s
kti and

∑
Hi∈Φt

s
(gti + 1 + ϵtib

t
i − bti). Although

such two aggregated values are revealed to Hb, Hb cannot learn any seller’s private

data, e.g., kti , g
t
i , b

t
i, ϵ

t
i from the aggregated results.

On the other hand, all the sellers receive only two ciphertexts and cannot

decrypt them without the private key. Since each seller can polynomially simulate its

received two ciphertexts using the public key (by repeating the encryption), we can

claim that the protocol does not reveal any information to the sellers.

Lemma 8. The Private Distribution (Protocol 9) only reveals the non-private market

demand ratios
Et

b

|snt
j |
, Hj ∈ Φt

b to the seller coalition (in the general market), or the

non-private market supply ratios Et
s

|snt
i|
, Hi ∈ Φt

s to the buyer coalition (in the extreme

market).

Proof. Similar to the proof in Lemma 7, we can prove that the seller coalition can

69

only receive the demand ratios
Et

b

|snt
j |
, Hj ∈ Φt

b (from the buyer coalition) in general

market. Moreover, buyer coalition can only receive the supply ratios Et
s

|snt
i|
, Hi ∈ Φt

s

(from the seller coalition) in extreme market. However, they cannot learn any supply

or demand from the ratios in these two cases.

Theorem 3. The PEM framework only reveals the aggregated information articulated

in Lemma 7 and 8.

Proof. Since Private Market Evaluation does not reveal any privacy where the secure

comparison result (either 0 or 1) can be polynomially simulated, PEM only reveals

some trivial information articulated in Lemma 7 and 8 per the composition theory of

secure multiparty computation [39].

3.5.2 Incentive Analysis. We give the formal proof of incentive for our protocols.

Theorem 4. The PEM framework ensures individual rationality and incentive com-

patibility.

Proof. We first evaluate the individual rationality. In the general market, if each buyer

Hj directly purchases energy from the main grid at the price pstg, which is greater

than pt∗ ∈ [pl, ph], the cost will increase; if each seller Hi directly sells the energy

to the grid at the price pbtg, which is less than the pt∗: the payoff will decrease. In

the extreme market, the buyer can buy the energy from the PEM with a lower price

(pl < pstg) and the seller can still sell the energy with a higher price (pl > pbtg), both

of which receive more payoffs. This proves the individual rationality.

Second, we discuss the incentive compatibility for two different markets: for

the general market, we assume that there exists one seller Hi ∈ Φt
s which untruthfully

utilizes its net energy snt
i
′
by adjusting its load profile to lti

′
. Per Lemma 5, there

exists only one load profile lt∗i to reach the equilibrium and return the optimal price

70

pt∗. Then, it is impossible to find another lti
′ ̸= lt∗i since pt∗ is derived only if all the

sellers hold the lt∗i , Hi ∈ Φt
s profile. On the contrary, as all the sellers hold the optimal

load profile, the buyers cannot reduce the total costs by decreasing market price.

In addition, for the extreme market, the buyers purchase all the energy from

the PEM with a lower price pl < pstg, then rational buyers cannot gain more payoff

with untruthful participation (since the payment cannot be lower). For any rational

seller Hi, if Hi untruthfully utilizes a higher supply to increase its allocated amount

of sold energy, the market price would be reduced (no additional payoff, either). This

proves the incentive compatibility.

3.5.3 Complexity Analysis. We present the complexity analysis as following.

Lemma 9. The complexity of protocols in the PEM is O(n2).

Proof. It is straightforward to analyze the complexity of algorithms in our PEM

framework. First, Private Market Evaluation algorithm has complexity O(n) – securely

aggregating random values is O(n) while secure comparison is O(1). Similarly, Private

Pricing algorithm has complexity O(n), and Private Distribution algorithm has

complexity O(n2). Therefore, the complexity of the PEM framework is O(n2).

3.6 Discussion

Generalization of PEM. PEM can be extended to Vehicle-to-Grid (V2G) applica-

tions [77] by considering electrical vehicles as agents with local energy. Last but not

least, the proposed PEM is a general framework for privacy preserving energy trading

(focusing on privacy and incentive compatibility), which can be readily extended for

ensuring privacy and incentive compatibility for other applications on the power grid

(e.g., energy trading w.r.t. future prices, energy trading by possibly storing energy for

the future, and demand response [78]). Finally, PEM can also be adapted for trading

71

other products, such as the allocation of spectrum in the cognitive radio networks [79],

and the Wifi & LTE sharing [80].

Seller/Buyer Coalitions. We forms coalitions for sellers and buyers in our PEM.

First, the formation of coalition can enable the agents to cooperate to achieve more

benefits/social welfare compared with trading directly with the monopoly, the main

grid. Recall that coalitions make the market more stable for such emerging applications,

e.g., ensuring the fairness among the seller/buyer coalition by allocating the amounts

based on sellers/buyers’ shares in the market supply/demand. Such setting would be

more applicable for conservative agents. Nevertheless, it is also worth exploring the

privacy preserving schemes for non-cooperative energy trading or fully competitive

energy market [81], which left for future work.

Malicious Model. PEM is based on the semi-honest model, and each agent (rational)

is also assumed to have incentives to cheat for payoffs. Our model can also be extended

to defend against malicious agents, which may deviate the protocol (regardless of their

payoffs) by faking the trading data, colluding with other agents, and/or performing

advanced attacks. For instance, we can design verifiable and collusion-resistant schemes

(e.g., detect the violation of data integrity, and prevent collusion by randomly picking

agents [82]).

Scalability. With the advancement of distributed computation [2,82], secure com-

putation [22,23] can be applied to perform complex computation on the smart grid.

Each distributed agent (e.g., a smart home) can also locally compute the data, such

that the computational load of whole system can be greatly reduced. As shown in the

experimental settings in Section 3.7.1, we take advantage of the container technology,

e.g., Docker, to emulate local computing agents for different smart homes in the PEM.

High efficiency and scalability of PEM have been demonstrated.

72

Blockchain Deployment. PEM can also be integrated with the emerging blockchain

technology [83]. Specifically, the final distribution and transaction between the sellers

and buyers can be realized by the smart contract of the blockchain to ensure the

integrity and truthfulness (extra anonymity and privacy should be ensured on the

blockchain) [84]. Moreover, the on-line blockchain can also facilitate the communication

of the MPC protocols in the PEM.

Secure Computation. The recent protocols/systems on secure computation (e.g.,

MPC-as-a-service [85], against both semi-honest and malicious adversaries [86], MPC

for small number parties [87]) cannot be adapted to solve our problem for the following

two major reasons: (1) whether the system can function real time transactions has

not been validated in most of such systems (we have validated the feasibility and

scalability of deploying PEM in real time in Section 3.7), and (2) incentive problems

are not studied in most of such systems. Thus, the proposed cryptographic protocols in

PEM can also complement the literature of secure computation for privacy preserving

trading (which is limited to our best knowledge).

3.7 Evaluation

In this section, we illustrate our system implementation for the PEM framework

and demonstrate the experimental results.

3.7.1 Experimental Setup. Our PEM framework is deployed on the NSF

CloudLab platform (https://docs.cloudlab.com), of which the server has eight 64-

bit ARMv8 cores with 2.4 GHZ, 64GB memory and 120GB of flash storage with

Ubuntu:16.04 OS. Docker (https://docs.docker.com/) is utilized to start a container

for each buyer/seller. We created the image for container based on the raw image of

Ubuntu 16.04 by integrating all the system environments (e.g., JRE and JDK), and

source codes.

73

We conducted the experiments on 300 smart homes’ real power generation data

(solar panels) and load data over one day (available at UMASS Trace Repository [88]).

We tune the following parameters in evaluations:

• the number of smart homes n ∈ [100, 300];

• the number of trading windows m ∈ [1, 720]: from 7:00AM to 7:00PM (a trading

window per minute);

• the key size: 512/1024/2048-bit.

Benchmark. There is no existing schemes which can be directly applicable to our

problem setting. Then, we use the traditional energy trading (without PEM) as the

benchmark: all the agents directly purchase energy from the main grid. Specifically, if

a seller (with excessive energy) will sell them back to the main grid with the offered

price pbtg, and the buyer (short of energy) will buy energy from the main grid with the

retail electricity price pstg. We set the retail price as pstg=120 cents/kWh and offered

price from the main grid pbtg= 80 cents/kWh. We also set the price range of PEM

as [90, 110] cents/kWh. Note the interaction between agents and the main grid will

increase greatly for trading without PEM.

Figure 3.4 illustrates the sizes of seller and buyer coalitions (the number of

smart homes) in all 720 trading windows. The roles of smart homes change over time.

3.7.2 Computational Performance Evaluation. We evaluate the computational

cost of PEM among 100 to 300 agents, using three different key sizes (512/1024/2048-

bit). Fig. 3.5(a) shows the average runtime for a single trading window (including

securely evaluating the market, computing the optimal price as well as the energy

trading distribution amounts) as the number of trading windows varies from 1 to 720.

The average runtime for each trading window is around 1 sec. This indicates that our

74

0 100 200 300 400 500 600 700
Trading Windows

0

25

50

75

100

125

150

175

200

Size of Buyer Coalition
Size of Seller Coalition

Figure 3.4. Coalition Sizes vs. Trading Windows

PEM framework can efficiently function real-time trading in practice (with negligible

latency).

Fig. 3.5(b) demonstrates the total runtime on different number of trading

windows among 200 agents (with three different key sizes 512/1024/2048-bit). Given

the same number of trading windows, we observe that the key size for encryption and

decryption executed in our protocols does not affect the runtime (since the encryption

and decryption are independently executed in parallel during idle time). Finally, Fig.

3.5(c) validates that the total runtime increases as the number of agents increases.

0 100 200 300 400 500 600 700
Number of Trading Windows

0.0

0.5

1.0

1.5

2.0

2.5

3.0

A
ve
ra
ge
 R
un
tim

e
(s
ec
)

n=100
n=200
n=300

(a) Runtime (2048-bit)

0 100 200 300 400 500 600 700
Number of Trading Windows

0

100

200

300

400

500

600

700

To
ta
l R

un
tim

e
(s
ec
)

key size=512-bit
key size=1024-bit
key size=2048-bit

(b) Runtime

100 125 150 175 200 225 250 275 300
Number of Sellers and Buyers

600

650

700

750

800

850

900

R
un

tim
e
(s
ec
)

key size=512-bit
key size=1024-bit
key size=2048-bit

(c) Runtime (720 Windows)

Figure 3.5. Computational Performance Evaluation for the PEM Framework (negligible
latency for minute-level inputs)

75

3.7.3 Energy Trading Performance Evaluation. We have also evaluated the

trading performance of our PEM framework from the following perspectives:

• the optimal price in all the trading windows;

• utility received by some representative sellers;

• total cost Γt for the buyer coalition;

• interactions with the main grid.

3.7.3.1 Optimal Trading Price. Fig. 3.6(a) shows the optimal prices in all the

720 trading windows. We can observe that the price changes over time: in the first

few trading windows, the price equals pstg (purchasing all the energy from the grid).

This shows that at the beginning of the day, the generation is close to 0, all the agents

have to buy energy from the main grid. Similarly, at the end of day (around 7:00pm),

the price is still pstg for the same reason. Furthermore, in many trading windows in

the middle of the day, the trading price would be lower bounded: either the optimal

price in the general market is out of range (this also applies to the upper bound), or

the extreme market occurs.

3.7.3.2 Utility and Total Cost. We fix the preference parameter k = 20, 40 for all

the sellers in different trading windows. Fig. 3.6(b) presents the utility of two agents

(which are sellers in all 720 trading windows). We have the following observations:

• The utility of the agents with our PEM framework is higher than their utility

without PEM (buyers only purchase energy from the main grid).

• The utility improvement (with the PEM) in case of k = 40 is higher than k = 20.

since lower preference parameter would make the sellers to sell more local energy

(which results in more payoff).

76

In addition, Fig. 3.6(c) shows the total cost of buyer coalition in the PEM (for

100 and 200 agents), which can be greatly reduced in all trading windows (e.g., 25.3%

in the current setting on average).

3.7.3.3 Interaction with the Main Grid. Our PEM framework can also benefit

the main grid by reducing the interactions between the agents and the grid, which is

measured by the amount of electricity all the agents request from or feed into the grid.

As shown in Fig. 3.6(d), since more energy can be traded in the PEM framework

among agents, the interactions with the PEM are much lower than the original energy

consumption (without the PEM).

3.7.4 Communication Overheads. We have also evaluated the bandwidth

consumption of all the smart homes while executing the secure computation and

communication among the 200 smart homes with different key sizes (512-bit, 1024-bit

and 2048-bit). Table 3.2 shows the average bandwidth over different numbers of

trading windows (of all the smart homes). With such minor bandwidth consumption,

our PEM framework can be deployed in most of the networking environments.

Table 3.2. Average Bandwidth (MB) over m Trading Windows

m 300 360 420 480 540 600 660 720

512-bit 0.45 0.54 0.48 0.52 0.47 0.48 0.55 0.46

1024-bit 0.84 0.88 1.02 0.93 0.98 1.06 0.97 0.96

2048-bit 1.87 2.12 2.05 2.11 2.20 2.16 2.05 2.01

3.8 Related Work

Smart Grid Privacy. Most smart grid privacy research focuses on protecting data

collected from smart meters integrated in the power grid [50]. Different privacy

77

0 100 200 300 400 500 600 700
Trading Windows

60

80

100

120

140

160

180

200

Tr
ad

in
g
Pr
ic
e
(c
en

ts
/k
W

h)

Trading Price in PEM
Grid Purchase Price
Regular Grid Price
Lower Bound
Upper Bound

(a) Trading Price (200 smart homes)

0 100 200 300 400 500 600 700
Trading Windows

0

5

10

15

20

25

30

35

40

U
til
ity

k=20, with PEM
k=20, without PEM
k=40, with PEM
k=40, without PEM

(b) Utility of Two Sellers

0 100 200 300 400 500 600 700
Trading Windows

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

To
ta
l C

os
t (
do

lla
rs
)

100 Party, without PEM
100 Party, with PEM
200 Party, without PEM
200 Party, with PEM

(c) Total Costs of Buyer Coalition

0 100 200 300 400 500 600 700
Trading Windows

0.0

0.5

1.0

1.5

2.0

2.5

In
te
ra
ct
io
n
w
ith

 th
e
M
ai
n
G
rid

 (k
W
h)

Without PEM
With PEM

(d) Interactions with Main Grid

Figure 3.6. Energy Trading Performance Evaluation for the PEM Framework

preserving techniques have been proposed to tackle such privacy concerns [12, 18].

For instance, He et al. [89] presented a distortion based privacy preserving metering

scheme by introducing tolerable noise to obfuscate the consumption data. Rottondi et

al. [18] leveraged secure communication protocols to implement a privacy preserving

infrastructure which allows utilities and data consumers to collect measurement data

by securely aggregating smart metering data. [72] studied how to utilize the renewable

energy sources (i.e., batteries) to hide the load/metering information of individual

households. [90] proposed a privacy-preserving way to aggregate smart metering data

for the billing of utility provider. Recently, [60] researches on privately balancing the

power load between the main grid and agents (microgrids). However, none of such

techniques can be applied to multiagent energy trading.

Secure Computation. The theory of Secure multiparty computation (MPC) [22,23]

has significantly advanced the development of collaborative computation among

multiple parties, which guarantees that functions can be securely computed with limited

78

disclosure. Recently, secure computation has been intensively applied for privacy

preserving system design in different contexts such as location-based services [48], and

medical data analysis [49]. Moreover, Furukawa et al. [86] have recently proposed a

three-party secure computation against both semi-honest and malicious adversaries,

which achieves low communication complexity and simple computation. Barak et

al. [85] have proposed the MPC-as-a-service concept and implemented an end-to-end

system for large scale P2P secure computation with low bandwidth.

Energy Trading. Energy trading has been widely discussed with the development

of smart grid. The integration of renewable energy sources has greatly motivated

studies of energy market, e.g., incentive mechanisms for trading [91] and multi-agent

energy management [92], which could improve the stability and utility of the grid.

Furthermore, distributed energy trading has been identified as a promising scheme for

the energy market in [65,66]. There are also many ongoing projects, e.g., LO3 Energy

(https://lo3energy.com/) which focuses on the commercial energy trading to

encourage residential units to trade with the neighborhoods. [93] focuses on the energy

trading by blockchain. However, the scalability of the proposed scheme is not very

clear. To the best of our knowledge, we design and implement the first privacy

preserving distributed energy trading framework.

79

CHAPTER 4

ROBUSTNESS EVALUATION OF VIDEO RECOGNITION SYSTEMS

4.1 Introduction

Deep neural network (DNN) models have been extensively studied to facilitate

a wide variety of intelligent video recognition systems, such as face recognition [94],

action recognition [95] and anomaly detection [96]. For instance, self-driving vehicles

are equipped with many cameras to capture the visual information. Then, DNNs

are adopted to accurately recognize road signs, detect and predict trajectories of

pedestrians and vehicles, and thus make the driving decisions [97, 98]. Video anomaly

detection systems [96, 99] integrate DNNs to monitor the activities under surveillance,

and trigger alarms once anomalies (e.g., traffic accident, theft, and arson) are visually

identified to advance the public safety. 5

However, DNNs have been revealed to be inherently vulnerable to adversarial

attacks, where attackers can add well-crafted imperceptible perturbations to the

inputs to deviate the learning results. Such attacks are initially identified in the

image domain [101–105], and have also attracted significant interests in other contexts,

e.g., text understanding [106], and voice recognition [107–109]. Similarly, adversarial

perturbations to the DNNs in video recognition systems could potentially cause

severe physical and financial damages. For instance, they may misdirect the DNN

models in autonomous vehicles to inaccurately recognize objects and make detrimental

decisions towards accidents. Furthermore, DNN-based anomaly detection models in

video surveillance or CCTV might be deviated via the perturbations to misclassify

anomalous activities to routine ones, and vice-versa [96].

Although the adversarial attacks on images have been well-explored, there are

5This work has been published in IEEE S&P [100].

80

very limited works on attacking DNN models for videos [110–113], which need to

address additional challenges, e.g., larger data sizes, a new set of DNN models for

learning actions in the videos, different types of features extracted with additional

temporal convolution, and different realizability. To our best knowledge, current video

attacks [110–113] adapt image perturbations in a frame-by-frame fashion to subvert

DNNs for video classification, which have the following major limitations.

1. Frame-by-frame image perturbations may overly perturb the videos (human

perceptible), and also lack the temporal consistency in the perturbations. These

make the attacks not robust against the state-of-the-art detection schemes (e.g.,

AdvIT [114]). Adversarial examples crafted by [111–113] can be accurately

detected by AdvIT (as evaluated in our experiments).

2. Frame-by-frame image perturbations may not be well aligned with the video

frames (boundary effect by misaligning the perturbation and video frames) [111].

3. Crafting adversarial examples for videos frame-by-frame results in heavy com-

putation overheads and lacks universality. It limits the application to attack

large-scale videos or streaming videos (e.g., CCTV surveillance).

To address the above limitations, we propose a black-box attack framework

that generates universal 3-dimensional (U3D) perturbations to subvert a wide variety

of video recognition systems. U3D has the following major advantages: (1) as a

transfer-based black-box attack [115–117], U3D can universally attack multiple DNN

models for video recognition (each of which can be considered as the target model)

without accessing to the target DNN models; (2) the high transferability of U3D makes

such black-box attacks easy-to-launch, which can be further enhanced by integrating

queries over the target model when necessary (validated); (3) U3D ensures good

human-imperceptibility (validated by human survey); (4) U3D can bypass the existing

81

state-of-the-art defense schemes (extended towards defending against U3D), including

universal adversarial training (UAT) [118, 119], detection schemes [114, 120], and

certified schemes (e.g., PixelDP [121] and randomized smoothing [122]); (5) U3D

perturbations can be generated on-the-fly with very low computation overheads (e.g.,

∼0.015s per frame) to attack DNN models for streaming videos.

Specifically, in the attack design, we generate perturbations by maximally

deviating features over the feature space representation of the DNNs while strictly

bounding the maximum perturbations applied to the videos. We aim at generating

more transferable adversarial examples (to be misclassified by multiple DNN models)

by explicitly optimizing the attack performance w.r.t. layer-wise features of a video

DNN model. Moreover, we integrate boundary effect mitigation and universality into

the optimization for learning the U3D perturbations.

Different from traditional black-box attacks that may request intensive queries

over the target DNN model, U3D perturbations can be efficiently derived independent

of the target DNN model. Assuming that the adversary does not need to know the

target DNN model under the black-box setting (and no need to query over the target

model by default), our U3D attack computes the perturbation using a surrogate

DNN model (any public DNN model, which can have very different model structure

and parameters from the target model). Such black-box attacks are realized via high

transferability across multiple DNN models on different datasets (as validated in

Section 4.5.3). We have also shown that our U3D attack can integrate queries over

target model when necessary (turning into a hybrid black-box attack [123]).

Figure 4.1 demonstrates an example of the U3D perturbation, which is con-

tinuously generated. Compared to the state-of-the-art universal perturbations (see

Section 4.5), U3D achieves higher success rates with significantly less perturbations

(mostly between [0,10] in grayscale [0,255]). It is also highly efficient for attacking mul-

82

Figure 4.1. Universal 3-dimensional (U3D) Perturbation

tiple video recognition systems (e.g., classification and real-time anomaly detection).

Therefore, we summarize our main contributions as below:

• To our best knowledge, we propose the first black-box attack that generates

3D perturbations to universally subvert multiple DNN-based video recognition

systems.

• We construct two different types of novel U3D perturbations optimized in the

feature space representation of DNNs, which can practically attack various

DNN models and the related video recognition systems (e.g., classification and

anomaly detection) with high transferability.

• We conduct extensive experiments to validate the U3D attack while bench-

marking with the state-of-the-art attacks (e.g., C-DUP [111], V-BAD [113]

and H-Opt [112]). Evaluations include success rate, transferability, universality,

human-imperceptibility, performance against defenses, physical realization, and

efficiency. The results have shown the superiority and practicality of U3D.

• In particular, we also evaluate the U3D against different types of state-of-the-

art defense schemes. We have extensively adapted the defenses w.r.t. U3D,

and studied the potential mitigation of the U3D. The high attack performance

83

against defenses reveals the potential severity of the adversarial attack and the

vulnerabilities in the DNN-based video recognition systems. Our novel U3D

attack can facilitate the development of more robust and trustworthy DNN

models for video recognition.

4.2 Background

Figure 4.2. The C3D architecture [124] consists of 8 convolution, 5 max-pooling, and
2 fully connected layers, followed by a softmax output layer. All 3D convolution
kernels are 3 ×3 ×3 with a stride of 1 in both spatial and temporal dimensions. The
number of filters is denoted in each box [124]. The 3D pooling layers are represented
as pool1 to pool5. All pooling kernels are 2 × 2 × 2, except for pool1, which is 1 ×
2 × 2. Each fully connected layer has 4,096 output units.

4.2.1 DNN-based Video Recognition Systems. DNNs have been widely

adopted for accurate video recognition in numerous real-world applications, e.g.,

anomaly detection [96], self-driving vehicles [98] and smart security cameras [125].

There have been a series of works on designing video DNNs to improve model accuracy

[124,126–128]. For instance, Donahue et al. [127] proposed the long-term recurrent

convolutional networks (LRCNs) for video recognition and description via combining

convolutional layers and long-range temporal recursion. Moreover, two-stream network

(TSN) [128] fusing static frames and optical flows was proposed for action recognition.

Later, Tran et al. [124] proposed the C3D model to significantly improve classification

accuracy by focusing on spatio-temporal feature learning with 3D convolutional neural

network. Figure 4.2 shows the detailed structure and the characteristics of the

C3D network. Recently, more networks built on spatio-temporal convolutions (e.g.,

I3D [129]) have been exhibited high performance, which greatly promoted the video

recognition systems. Figure 4.3(a) illustrates a video anomaly detection system with

the I3D model (by integrating additional optical flow information into the spatio-

84

temporal features). Figure 4.3(b) illustrates the curve of anomaly scores inferred by

the I3D model in time series. At first, the score is close to 0 for the normal scenery.

Then, it increases as the explosion occurs to report such anomalous event (with a

threshold).

……

32 temporal segments

Normal videos

1x1x1
conv

3x3x3
conv

3x3x3
conv

1x1x1
conv

1x1x1
conv

1x1x1
conv

3x3x3
maxpool

concat

An
om

al
y
Sc
or
e

1x1x1 conv

1x1x1 conv

3x3x3maxpool

1x1x1 conv

1x1x1 conv

3x3x3 conv

3x3x3 conv

co
nc
at

in
pu

t

ou
tp
ut

Inception block

…

t

a long video
divided into
32 segments

segment
i-th

…
…

Segment with
the highest
anomaly score

Video
anomalous
or normal?I3

D
Co

nv

Po
ol … fc
6

fc
7

I3
D
Co

nv

I3D

…
…

(a) Anomaly detection [96] with I3D. (b) Sample Output of Anomaly

Figure 4.3. Video anomaly detection system for detecting an “Explosion” event. The
score increases from 0 (normal scenery) to high (explosion).

4.2.2 Threat Model. The U3D attack is applicable to the offline scenario,

which is identical to the attack scenario of adversarial perturbations for other types

of data, e.g., images [102, 104, 105], texts [106], and audio signals [107–109]. For

instance, the adversary can craft adversarial examples by adding the pre-generated

U3D perturbations to static videos. Then, the perturbed videos will be misclassified

to wrong labels.

Furthermore, our U3D attack can work online to perturb the streaming video

(e.g., real-time anomaly detection in CCTV surveillance). This is also feasible since

our U3D perturbations are designed to universally perturb any video at any time

(from any frame in the streaming video) without the boundary effect. Thus, the U3D

perturbations can be generated offline and injected into the online videos in real-time

applications.

Adversary’s Capabilities. The adversary can either craft adversarial examples offline

85

on static videos, or inject the U3D perturbations (pre-learned) into the streaming

videos, similar to the attack setting in [105, 111]. Specifically, the adversary can

manipulate the systems via malware, or perform man-in-the-middle (MITM) attack

to intercept and perturb the streaming videos. Furthermore, the adversary could also

slightly delay the streaming video when performing injections without affecting the

overall quality of the streaming video.

Note that MITM adversary is unable to perform attacks by simply replac-

ing streaming videos with pre-recorded videos or static frames while ensuring the

stealthiness of the attack, since the adversary does not know what will happen in

the future [111]. For instance, if the adversary wants to fool the video surveillance

system in a parking lot, he/she may need to replace the video streams in long run

(ideally all the time) to perform the attack. However, without prior knowledge on the

future objects/events in the parking lot, it would be very hard to make the replaced

video visually consistent with the real scenario (e.g., moving vehicles, humans, and

weather). Then, the replaced video can be easily identified by the security personnel.

Instead, U3D attack can be easier to be covertly realized (always human-imperceptible).

The universal and boundary effect-free perturbation will be efficiently generated and

continuously injected in real time (see our design goals in Section 4.3.1). Thus, it

can universally attack video streams in long run even if video streams may differ at

different times.

We experimentally study the practicality of attack vectors (e.g., man-in-the-

middle attack) in a video surveillance system [130–132] and implement the real-time

attack based on U3D. The results show that U3D is efficient to attack real-time video

recognition systems (as detailed in Section 4.5.6).

Adversary’s Knowledge (black-box). Similar to other black-box transfer-based

attacks [115–117], the adversary does not necessarily know the structure and parameters

86

of the target DNN model. U3D aims to generate universal perturbations that can

successfully subvert a variety of DNN models, each of which can be the potential

target DNN model. By default, the adversary does not need to query the learning

results (e.g., classification score or label) from the target model either.

To successfully perform the attack, the adversary will leverage the high trans-

ferability of U3D to deviate the target DNN models. Specifically, we assume that

the adversary can utilize any public DNN model as the surrogate (e.g., C3D, I3D,

LRCN and TSN) and some labeled videos (e.g., from any public data such as the

HMDB51 dataset [133]). Such data are not necessarily included the training data

of the target DNN model. The surrogate model can be very different from the target

model. Without querying the target model, the U3D attack is even easier to realize

than the conventional query-based black-box attacks [134–136].

Indeed, the U3D attack can also integrate queries over the target DNN model

when necessary (see such extended attack design and evaluations in Section 4.5.4).

Thus, the transfer-based back-box attack will turn into a hybrid black-box attack [123],

which integrate both query-based and transfer-based attack strategies to improve the

attack performance under the black-box setting. We have experimentally validated

that integrating a number of queries over the target DNN model could slightly enhance

the success rates.

4.3 U3D Attack Methodology

4.3.1 U3D Attack Design Goals. The goals in our U3D attack design include:

• G1: The attack should achieve high performance on the video recognition systems

under the black-box setting.

• G2: The adversarial perturbations should be very small to obtain good human-

87

U3D
Generator

U3D
Perturbation

Streaming Video (Online)

Perturb Static Video (Offline) Attack G3
(validated)

U3D
NoiseOpt

Transferability

Boundary
Effect-Free

Universality

Attack G1U3D
Parameter

Space

Public Video Set

Public DNN
Model

Attack Surrogate

s*

Attack G2

H
um

an-
Im

perceptibility

(a) U3D Generator (b) U3D Perturbation Injection

s*

Adversarial
Training

Certified
Robustness

Detection

Figure 4.4. U3D attack framework (including three design goals: G1, G2 and G3). (a)
U3D Generator learns the near-optimal U3D parameters s∗. (b) U3D perturbations
can be generated on-the-fly with s∗ to perturb both static and streaming videos.

imperceptibility.

• G3: The adversarial examples are robust against existing defense schemes (cannot

be easily detected or mitigated).

G1: High Attack Performance. To launch the U3D attack, the following properties

are desired: (1) transferable on a wide variety of DNN models for video recognition;

(2) universal on a large number of videos; (3) boundary effect-free.

Different from increasing the magnitude of the perturbations for transferability

[101,108,137], we formulate an optimization problem with a surrogate DNN model

(which can be any public DNN model) in an interpretable fashion. The objective

is to maximize the distance between the clean video and perturbed video in the

feature space representation (Section 4.4.2.1). First, the change of feature space

representations via perturbations (especially the deep spatio-temporal feature space

for videos) will non-trivially impact the classification results. This will increase the

success rates of the attack. Second, the explicit attack in the feature space could

craft more transferable adversarial examples since the intermediate layer features of

DNNs have shown to be transferable [138]. Experimental results in Section 4.5 have

demonstrated high cross-model transferability for feature space perturbations.

88

Moreover, the adversary does not have prior knowledge on the video (especially

the streaming video), then the 3D perturbations should universally attack [103] a

large number of videos (ideally, any video). We construct U3D perturbations from a

relatively small set of videos to fool the target DNN model on arbitrary input videos

with high success rates.

With temporal dimensions on multiple frames, the video perturbations should

address the potential misalignment with the input video (boundary effect [111]), which

can degrade the attack performance, especially in long run. While launching attacks,

the perturbation should be effectively injected at any time in the video. To address

the misalignment, we employ a transformation function to convert the perturbation

temporally, and then optimize the attack on all temporal transformations (see Section

4.4.2.2), which enable the U3D perturbations to be injected at random times without

the boundary effect.

G2: Human-Imperceptibility. We add a bound on the U3D perturbations with

ℓ∞-norm, which strictly restricts the pixel deviations. Later, we use MSE metrics to

quantify the perturbations in the experiments. Moreover, we conduct surveys among

humans to illustrate the imperceptibility of U3D.

G3: Robustness against Defenses. To show the robustness of our U3D attack, we

implement attacks on the video recognition models equipped with defense schemes

(G3 is not directly designed but ensured with post-validation). There are two rules of

thumb for evaluating attacks: (1) we should carefully utilize current effective defenses

to explicitly defend against the newly proposed attack, e.g., developing adaptive

schemes which uncover the potential weaknesses of the attack; (2) the defenses should

be in white-box setting, i.e., the defender should be aware of the attack, including

the adversary’s knowledge and strategy. The rules of thumb also work for evaluating

89

newly proposed defenses vice versa [139–141].

Specifically, we adapt three types of major defense schemes: (1) adversarial

training [118, 119]; (2) detection [114, 120]; (3) certified robustness [121, 142]. We

redesign the defense schemes to defend against universal perturbations or U3D per

the rules of thumb. For example, based on the adversarial training (AT) [118,119], we

design the U3D-AT, which utilizes the capability of AT to defend against the best

U3D (iteratively updating U3D perturbations). See details in Section 4.6.

4.3.2 U3D Attack Overview. We now overview the U3D attack in Figure 4.4.

We first formulate the U3D perturbation generation (U3D Generator) by synthesizing

the procedural noise [143,144] (which can be efficiently generated with low-frequency

patterns) with the U3D parameters s (see Section 4.4.1). Meanwhile, the attack

goals of U3D are optimized: transferability, universality, and boundary effect-free (see

Section 4.4.2). Then, we apply the particle swarm optimization (PSO) to solve the

problem to derive the near-optimal parameters s∗ for generating U3D perturbations

(see Section 4.4.3). Finally, U3D perturbations can be generated on-the-fly to be

injected into the videos in the attack scenarios (either static or streaming videos).

4.3.3 U3D Attack Formulation. The DNN model can be modeled as a function

f(·) that infers the video v with a label (e.g., the label with the top-1 probability).

The attack crafts a video adversarial example v′ by injecting the perturbation ξ into

the original video v: v′ = v + ξ, where the output label of v′ by the DNN model f(·)

would be f(v′) ̸= f(v) (as a universal attack).

To pursue human-imperceptible perturbations, ℓ∞-norm is adapted to bound

the distance between the original and perturbed videos (w.r.t. U3D perturbation ξ)

with a pre-specified small value ϵ: ||v′ − v||∞ = maxi |ξ| ≤ ϵ. Then, we formulate an

optimization problem to generate U3D perturbations:

90

argmin
ξ

: Γ(v + ξ), s.t. ||ξ||∞ ≤ ϵ (4.1)

where Γ is a loss metric function, e.g., a distance or cross-entropy metric. In Section

4.4.2, we align the objective function with the attack goals in the optimization for the

U3D design.

4.4 Attack Design

4.4.1 U3D Perturbation Formalization. “Procedural noise” [143–146] refers to

the algorithmically generated noise with a predefined function, which can be added

to enrich visual details (e.g., texture, and shading) in computer graphics. It can be

directly computed with only a few parameters, and has no noticeable direction artifacts

[104, 143, 144]. These properties make it potentially fit for inexpensively computing

adversarial perturbations. While constructing U3D perturbations, we utilize two types

of common procedural noises: (1) “Perlin noise” [143,145] (a lattice gradient noise) due

to its ease of use, popularity and simplicity; (2) “Gabor noise” [146] (a convolutional

sparse noise) with good sparsity and accurate spectral control. We propose two types

of U3D perturbations, “U3Dp” and “U3Dg”, both of which universally perturb videos

to subvert the DNN models.

We first formally define the U3D noise function. Denote N (x, y, t;S) as the

U3D noise function, where (x, y, t) represents the 3D coordinates of each pixel in the

video, and S is the parameter set for noise generation.

4.4.1.1 U3Dp Noise. Perlin noise [143, 145] originally works as an image modeling

primitive to produce natural-looking textures in realistic computer generated imagery.

Specifically, we denote every pixel in a video by its 3D coordinates (x, y, t)

where (x, y) are the coordinates in frame t, and denote the Perlin noise value of the

pixel (x, y, t) as p(x, y, t). To model the change of visual perturbations, we define three

91

new parameters of wavelength λx, λy, λt to determine the octaves along the three

dimensions x-axis, y-axis, and frame t, respectively, and define the number of octaves

as Λ. The newly updated noise is computed as the sum of all the corresponding

octaves for 3D coordinates:

N (x, y, t) =
Λ∑

ℓ=0

p(x · 2
ℓ

λx
, y · 2

ℓ

λy
, t · 2

ℓ

λt
) (4.2)

Moreover, we compose the noise function with a color map function [147] to

generate distinct visual perturbations in the video. Then, the noise of pixel (x, y, t)

can be derived as:

Np(x, y, t) = cmap(N (x, y, t), ϕ) (4.3)

where cmap(p, ϕ) = sin(p · 2πϕ) is a sine color map function, which ensures

the bound of noise value with the circular property. ϕ indicates the period of the sine

function, and the visualization of perturbations can be tuned with ϕ.

U3Dp Parameters. Combining Equation 4.2 and 4.3, we denote the corresponding

parameter set as Sp for U3Dp noise:

Sp = {λx, λy, λt,Λ, ϕ} (4.4)

4.4.1.2 U3Dg Noise. Gabor noise [144, 146] is a type of sparse convolution

noise that obtains a better spectral control via the Gabor kernel, a multiplication of

circular Gaussian envelope and a harmonic function [148]. We construct U3Dg noise

by extending 2D Gabor kernel to 3D Gabor kernel (adding the temporal dimension t):

92

g(x, y, t) = Ke−πσ2(x2+y2+t2) cos [2πF (x′ + y′ + t′)] (4.5)

where x′ = x sin θ cosω, y′ = y sin θ sinω, t′ = t cos θ; K and σ are the mag-

nitude and width of the Gaussian envelope; F and (θ, ω) are the magnitude and

orientation angles of the frequency in the harmonic function. Then, we derive the

noise N (x, y, t) with the sparse convolution and 3D Gabor kernel:

N (x, y, t) =
∑
k

g(x− xk, y − yk, t) (4.6)

where the point set {∀(xk, yk, t)} are a set of sampled pixel points in the same

frame t with Poisson distribution. Furthermore, to model the isotropy of the Gabor

noise [144], we realize the two frequency orientations (θ, ω) as random variables (θi, ωi)

uniformly distributed in [0, 2π]. Then, the updated U3Dg noise is given as below:

Ng(x, y, t) =
∑
i

N (x, y, t; (θi, ωi)) (4.7)

U3Dg Parameters. Similar to U3Dp, we denote the following parameter set as Sg

for U3Dg with Equation 4.5 and 4.7:

Sg = {K, σ, F} (4.8)

We synthesize the procedural noise to construct the U3D perturbations, whose

low-frequency patterns and low computational overhead can greatly advance the

attacks. Formally, given the U3D noise function N and the parameters s, the

generated U3D perturbation ξ of length T will be:

ξ = {N (t; s)|t ∈ [0, T − 1]} (4.9)

93

If T is less than the video length, ξ will be circular. Note that T works as a

pre-specified parameter. For simplification, we use ξ = N (T ; s) to represent Equation

4.9. Next, we will present how to calibrate U3D perturbation to achieve the design

goals.

4.4.2 Calibrating U3D Perturbations.

4.4.2.1 Improving Transferability in Feature Space. U3D aims to deviate the

intermediate layer’s features, which could improve the transferability of the attacks.

Large distance between the original and perturbed videos’ features at intermediate

layers of the DNN model can result in relatively high deviations in the final results.

This will increase the probabilities on false learning by the unknown target DNN

model and videos.

Specifically, we formally define fL(·, d) as the truncated DNN model function,

which outputs the intermediate feature of the input video at layer Ld, d ∈ [1,M] of

the DNN model f(·), M is the number of DNN layers. Then, fL(v, d), fL(v
′, d) are

denoted as the intermediate features of the original video v and perturbed video v′,

respectively. Thus, we have the ℓ2-norm distance between the feature representations

of the original video v and perturbed video v′ = v + ξ at layer d of the DNN as:

D(v, v′; d) = ||P (fL(v, d))− P (fL(v′, d))||2 (4.10)

where P (z) = sign(z)⊙ |z|α is a power normalization function α ∈ [0, 1] and

⊙ is the element-wise product [149].

Then, we maximize the distance D(v, v′; d) between the original and perturb

videos over all the intermediate feature space as our attack objective function:

94

max
ξ

:
∑

d∈[1,M]

D(v, v + ξ; d) (4.11)

4.4.2.2 Mitigating Boundary Effect. Recall that the boundary effect may

potentially degrade the attack performance due to the misalignment between the

adversarial perturbation and the input video. To tackle such issue, we introduce a

temporal transformation function Trans(·) for the U3D perturbation with a shifting

variable denoted as τ . Specifically, given a U3D perturbation ξ of length T , then

Trans(ξ; τ) represents the U3D perturbation ξ temporally shifted by τ ∈ [0, T − 1].

Then, we maximize the expectation of the feature distances with all the T possible

temporal shift transformation τ ∈ U [0, T − 1] for U3D perturbation ξ (U denotes the

uniform distribution):

max
ξ

: E
τ∼U [0,T−1]

[
∑
d∈M

D(v, v + Trans(ξ, τ); d)] (4.12)

To achieve such objective, we can consider all the possible transformed U3D

perturbation (the size of transformation will be T) uniformly shifted with τ ∈ [0, T −1]

(step 1 frame by frame in the video). τ will be sampled in the corresponding algorithm.

Then, our U3D attack can learn a generic adversarial perturbation without the

boundary effect, which can be injected into the streaming video anytime.

4.4.2.3 Improving Universality with Public Videos. Another goal is to

find a universal perturbation learned from a relatively small set of videos, which can

effectively perturb the unseen videos for misclassification. Denoting a set of public

videos as V , the optimization integrates the universality maximization on videos in V

(and ℓ∞-norm bound) as below:

95

max
ξ

: E
v∼V,τ∼U [0,T−1]

[
∑
d∈M

D(v, v + Trans(ξ, τ); d)]

s.t. ξ = N (T ; s), ||ξ||∞ ≤ ϵ

(4.13)

4.4.3 Optimizing and Generating U3D Perturbations. Since the U3D

perturbation ξ can be efficiently generated if the U3D parameter set S is pre-computed,

Equation 4.13 will optimize the attack w.r.t. S. To search the optimal U3D parameter

set S), we solve it with the Particle Swarm Optimization (PSO) method [150]. Specif-

ically, the parameter values in S are viewed as the particles’ positions, and the set of

parameter ranges can be constructed as the search space. Then, the objective function

(Equation 4.13) is the fitness function A(f, V,N (T ; s⃗)), where s⃗ is the current position

for U3D parameter set S in the iterations.

In the initialization phase,m points will be randomly selected from the searching

space for S while satisfying ℓ∞-norm bound. Then, in the iterations, every particle

will iteratively update its position by evaluating the personal and group best location

(determined by the output of the fitness function). Notice that, before fed into the

fitness function, the algorithm validates if the U3D perturbation ξ generated by

the parameter set s⃗i
k+1 satisfies ℓ∞-norm bound ϵ or not. Finally, we can get the

near-optimal parameter set s∗. Then, we generate the U3D perturbation ξ = N (T ; s∗).

More specifically, we first define the fitness function A(f, V,N (T ; s⃗i)), detailed

in Algorithm 11. Then we aim to find the optimal particle position (i.e., U3D

parameters value) for such fitness function. Algorithm 10 demonstrates the detailed

process of U3D optimization. At the beginning, a swarm of m particles denoted

as S = {x⃗1k, x⃗2k, . . . , x⃗mk} will be initialized. For each iteration k, each particle i

holds a position x⃗i
k = [xki,1, x

k
i,2, . . . , x

k
i,d], where d is the dimension of the searching

parameter space and xi,j, j ∈ [1, d] indicates the parameter value of jth dimension. To

update its position x⃗i
k+1 = x⃗i

k + v⃗i
k, each particle i compute with its current velocity

96

v⃗i
k = [vki,1, v

k
i,2, . . . , v

k
i,d] as the following equations:

vk+1
i,j = W ∗ vki,j + c1 ∗ r1(si,j − xki,j) + c2 ∗ r2(sg,j − xki,j) (4.14)

xk+1
i,j = vki,j + xki,j (4.15)

where (1) si,j is the value for kth dimension of the best solution searched via

particle i so far; Si = [si,j], j ∈ [1, d] is called personal best; (2) sg,j is the value for kth

dimension of the best solution in the Swarm S so far; Sg = [sg,j], j ∈ [1, d] is called

leader. Note that every particle can use the Si (local information) and Sg (social

information) to iteratively update its velocity and position. c1, c2 ∈ R are weights for

quantifying the impacts of the personal and social best solution correspondingly; r1, r2

is uniformly distributed values of range [0, 1] which represents of randomness in the

search. W = {Ws,Wf ,We} is called inertia weight, which can control the impacts of

the previous velocity on the current iteration, and then influence searching ability. W

will be decreased with every iteration via the following equation: W = W − Ws−We

k∗Wf
,

where W is initialized as Ws and ended as We.

Comparison of PSO with Other Meta-Heuristic Algorithms. We have evalu-

ated PSO by benchmarking with genetic algorithms [151], simulated annealing [152],

and Tabu search [153]. PSO slightly outperforms them for U3D optimization. We

use the C3D model as the public DNN model and randomly sample 500 videos from

the HMDB51 dataset as the public dataset. The ϵ is set as a small bound 8. The

parameter of the normalization α is set to 0.5. Table 4.1 shows the specified value

ranges of the parameters for U3Dp and U3Dg, respectively. As for PSO, we set up

the parameters as follows: (1) swarm size m = 20; (2) individual and social weight

c1 = c2 = 2; (3) inertia weight W = {1.2, 0.5, 0.4}; (4) maximum iteration times

h = 40.

97

Input: U3D function N (·), DNN model f , video dataset V , ℓ∞-norm

bound ϵ, search space X for U3D perturbation parameter S; PSO

model: inertia weight W = {Ws,Wf ,We}, individual/social

weights c1, c2, swarm size m, maximum iteration number h

Output: optimal parameter set S∗

// each node has ||(N (T ; s⃗i))||∞ ≤ ϵ

1 Xsample ← randomly sample m points from X

2 for each s⃗i ∈ Xsample do

3 Call Algorithm 11: A(f, V,N (T ; s⃗i))

4 Set personal best of each particle Si ← s⃗i

5 Find the leader Sgb

6 Initialize s⃗i
k ← s⃗i, i ∈ [1,m]

7 while k = 1 ≤ h do

8 for i ∈ [1,m] do

9 Update velocity and position per Equation 4.14, 4.15

10 Repeat Line 2-4

11 Update Sgb if leader changes

12 Update inertia weight W

13 return Sgb as S
∗

Algorithm 10: NoiseOpt(f , V)

Table 4.1. U3D parameters setting

U3Dp U3Dg

λx, λy, λt Λ ϕ K σ F

[2, 180] [1, 5] [1, 60] [1, 5] [1, 20] [0.25, 20]

98

Then, we compare PSO with genetic algorithm (GA) [154], simulated annealing

(SA) [152], and Tabu search (TS) [153] on tuning the U3D parameters. For GA, we set

the number of chromosomes to be 20 (same as the number of PSO’s particles) with the

combination of tournament selection with a 50% uniform crossover probability [154]

and mutation rate 0.5%. For SA, we set the initial temperature is 5000, and cooling

factor 0.99. For TS, the tabu list size is set to 4. We implement the four methods for

both U3Dp and U3Dg on the 500 videos, which are repeated 5 times and averaged for

the final results. Table 4.2 illustrates their experimental results. We can observe that

the PSO-based method is efficient, and also slightly outperforms GA, SA and TS on

attack performance, e.g., PSO improves 1.7% over GA and 3.3% over SA for U3Dp.

Besides, the MSE of both U3D perturbations are below 20 (very minor distortion out

of 2552 in the scale).

Table 4.2. PSO vs. GA, SA and TS (learning U3D parameters offline) for U3Dp and
U3Dg (success rate “SR”).

Method
U3Dp U3Dg

Time (s) SR MSE Time (s) SR MSE

PSO 847 88.7% 15.3 789 89.6% 16.0

GA 1,481 87.0% 14.6 1,164 89.4% 17.8

SA 1,976 85.4% 16.9 2,267 87.7% 13.7

TS 1,039 86.5% 17.5 822 88.1% 15.8

4.5 Experiments

4.5.1 Experimental Setup. We introduce our experimental setting, including the

datasets, target models and benchmarks.

Datasets. We use three widely used datasets for video recognition to validate the

99

proposed U3D attack.

• HMDB51 [133] dataset includes 6,766 video clips (30 fps) in 51 different actions,

e.g., fencing, climb and golf.

• UCF101 [155] dataset includes 13,320 video clips (25 fps) in 101 different actions,

e.g., archery, and punch.

• UCF Crime [96] dataset includes 1,900 long surveillance videos (30 fps) collected

from Youtube and Liveleak, in 13 anomalies, e.g., accident, explosion, and

shooting.

The HMDB51 and UCF101 datasets are used for video classification, and the

UCF Crime dataset for anomaly detection.

Target DNN Models. We evaluate the U3D attack on two common DNN models for

video recognition: (1) C3D model [124]; (2) I3D model [96]. We also implement two

video recognition techniques based on both C3D and I3D: (1) video classification [124];

(2) video anomaly detection [96] identifying anomalies by scoring the video segments

in sequence.

Note that we choose C3D and I3D as the main evaluation models to show the

attack performance due to the popularity and practicality in the video recognition

systems (as depicted in Section 4.2.1). To fully evaluate the transferability of the

U3D attack, we choose three more video classification models, including LRCN [127],

DN [126] and TSN [128], and evaluate the U3D attack across five different DNN

models.

Benchmarks. We use the following baseline adversarial perturbations: (1) Gaussian

Noise: ξg ∼ N (0, σ2) and σ=0.01; (2) Uniform Noise: uniformly sampled noise

100

ξu ∼ [−ϵ, ϵ]; (3) Random U3D: applying U3D without calibration by randomly

choosing parameters. For the above three methods, we repeat each experiment 10

times, and return the average value; (4) The state-of-the-art video attacks, C-DUP [111]

(as a white-box universal attack), V-BAD [113] and H-Opt [112] (both as non-universal

black-box attacks).

Since V-BAD [113] and H-Opt [112] are non-universal, they might be incom-

parable with U3D and C-DUP on attacking a specific target (though their success

rates are claimed to be high in such cases). It might also be unfair to compare U3D

and C-DUP with V-BAD and H-Opt on transferability since the latter two are not

designed towards that goal.

4.5.2 Attack Performance. We first evaluate U3Dp and U3Dg generated

with a surrogate C3D model to attack unknown target models on different datasets.

Specifically, we randomly select 500 videos from the HMDB51 dataset (retaining

a similar distribution for classes as the full dataset) as the public video set (V),

and consider the full UCF101 and UCF Crime datasets as the target set. We set

ϵ = 8, T = 16 and report the attack results on the target set. Note that the MSE of all

the U3D perturbations are below 20 (very minor distortion out of 2552 in the scale).

Table 4.3 lists the results for applying U3Dp and U3Dg to attack unknown

models and videos (in different datasets). The U3D perturbations are injected into both

UCF101 (for video classification) and UCF Crime (for anomaly detection) datasets,

which are then inferred by both C3D and I3D. Such black-box attacks are realized

by the transferability and universality of U3D (which will be thoroughly evaluated in

Section 4.5.3). Table 4.3 also includes the attack performance of Gaussian, Uniform,

Random, and C-DUP [111] (see the setting in Section 4.5.1). For both U3D and

benchmarks, we apply the perturbations to full UCF101 and UCF Crime datasets.

101

Table 4.3. U3D vs. benchmarks (success rates; C3D/HMDB51 as surrogate; C3D/I3D
and UCF101/UCF Crime as target).

Noise

Model C3D I3D

UCF101 UCF Crime UCF101 UCF Crime

Gaussian 10.2% 15.3% 9.1% 12.6%

Uniform 5.3% 9.1% 1.7% 2.4%

Rnd. U3D 43.2% 52.6% 40.3% 51.8%

C-DUP [111] 80.2% 83.6% 54.4% 45.8%

U3Dp 82.6% 92.1% 80.4% 87.1%

U3Dg 85.4% 93.4% 82.9% 90.2%

Both U3Dp and U3Dg achieve high success rates on the two DNNs. For C3D,

U3Dp achieves 82.6% on the UCF101 dataset (video classification) and 92.1% on the

UCF Crime (anomaly detection) while U3Dg obtains a slightly higher success rate,

i.e., 85.4% on the UCF101, and 93.4% on the UCF Crime. This can also show that

our U3D perturbations effectively attack to other different DNN models on different

datasets, e.g., HMDB51 and C3D → UCF Crime and I3D.

However, the benchmarks cannot achieve satisfactory attack performance.

Injecting random noise (Gaussian and Uniform) to videos can only give 2.4%-15.3%

success rates in all the experiments. Random U3D (random parameters without

optimization) performs better but still not satisfactory (35.7%-52.6%). C-DUP [111]

returns worse success rates on both C3D and I3D, even in the white-box setting. Since

it is designed for attacking C3D, its performance on I3D is even worse (54.4% on

UCF101 and 45.8% on UCF Crime, low transferability).

102

Finally, both U3Dp and U3Dg can perform very well (90%+) on anomaly

detection regardless of the target models. We observe that anomaly detection is

more vulnerable than video classification under the same perturbation, e.g., U3Dp

(92.1%>82.6%). The possible reason is that such DNN models have an extra computing

model to output anomaly scores, which may make it more sensitive to perturbations.

4.5.3 Transferability and Universality.

Transferability. Transferability refers to the perturbations designed for one classifier

can also attack other classifiers (cross-model) [101]. To study the transferability, we

first define the transfer rate (TR) as the percent of the adversarial examples which

deviates one model fsrg (e.g., a public DNN model as the surrogate model) and also

deviate the target model ftar (black-box). We denote fsrg → ftar as the transferability

of the attack from surrogate model to target model.

To evaluate the transferability, we choose C3D, I3D and other three more

video classification models as surrogate/target models: DN [126], LRCN [127], and

TSN [128], all of which are already fine-tuned on the UCF101 dataset. Then, we

compute U3Dp and U3Dg (ϵ = 8) with the surrogate model (as surrogate) and apply

the U3D perturbations to craft adversarial examples on the UCF101 dataset, which

are fed into the target models. We generate the U3D perturbations with 10% of

the UCF101 dataset (randomly picked for each class), and select all the adversarial

examples (crafted on the 90% of videos for target dataset) which can successfully fool

the surrogate models. Then, we examine the percent of such adversarial examples

that can fool the target model.

Table 4.4 presents the transfer rates of both U3Dp and U3Dg. We can observe

that all the attack can achieve high transfer rates (over 80%). This shows that our

U3D perturbations achieve good transferability across these models. For example,

103

Table 4.4. Transferability: transfer rate (TR) on UCF101.

Noise

fsrg

ftar
C3D I3D DN LRCN TSN

U3Dp

C3D – 93.4% 92.7% 85.0% 87.2%

I3D 89.7% – 96.3% 88.7% 85.0%

DN 84.0% 83.2% – 85.5% 83.4%

LRCN 85.8% 87.2% 92.4% – 86.1%

TSN 85.5% 82.5% 89.3% 87.5% –

U3Dg

C3D – 87.0% 93.2% 86.3% 85.3%

I3D 88.2% – 97.4% 85.2% 86.0%

DN 82.6% 81.4% – 83.7% 85.6%

LRCN 81.2% 83.4% 88.6% – 84.5%

TSN 86.2% 83.6% 90.2% 86.4% –

U3Dp can obtain 92.7% transfer rate for C3D→DN and 92.4% for LRCN→DN. We

repeat the same set of experiments on the HMDB51 (Table 4.5) and UCF Crime

datasets (4.6). High cross-model transferability for U3D can also be observed from

such experiments.

Universality. Universality refers to the perturbations learnt from one dataset can

perturb many different datasets (cross-data) to fool the DNN models [103]. To evaluate

the universality of U3D, we first randomly pick 500 videos as the surrogate video

set (denoted as X) from each of the three datasets, HMDB51, UCF101 and UCF

Crime, respectively (retaining a similar class distribution as the full datasets). Then,

we compute the U3D perturbations (ϵ = 8) on X with the C3D model and evaluate

104

Table 4.5. Transferability: transfer rate (TR) on HMDB51.

Noise

fsrg

ftar
C3D I3D DN LRCN TSN

U3Dp

C3D – 92.0% 89.5% 83.2% 84.6%

I3D 87.6% – 91.2% 82.5% 81.4%

DN 82.3% 81.6% – 84.5% 80.5%

LRCN 85.0% 85.4% 95.3% – 85.6%

TSN 82.5% 85.7% 88.0% 84.2% –

U3Dg

C3D – 86.6% 96.4% 81.4% 83.1%

I3D 92.2% – 96.0% 88.3% 84.5%

DN 82.0% 84.8% – 87.5% 82.3%

LRCN 85.6% 83.4% 88.2% – 82.9%

TSN 84.6% 81.2% 86.1% 84.2% –

the attack success rates on all the three datasets (as the target dataset Y). For the

same dataset case (intra-dataset attack), the target set Y excludes X to evaluate the

universality. All the results are listed in Table 4.7.

We can observe that the U3D achieve 80%+ success rates for all the cases

(X → Y within the same dataset or across different datasets). The diagonal results are

higher than other cases, which shows that the U3D can perform well among the unseen

videos in the same dataset. Moreover, for the same U3D perturbation, e.g., U3Dg,

the success rate of UCF Crime→UCF101 is lower than that of HMDB51→UCF101

(81.6%<85.4%). Similar results are also observed from UCF Crime→HMDB51 and

UCF101→HMDB51 (82.2%<85.0%). Since HMDB51 and UCF101 consist of human

105

Table 4.6. Transferability: transfer rate (TR) on UCF Crime.

Noise

fsrg

ftar
C3D I3D DN LRCN TSN

U3Dp

C3D – 91.5% 94.1% 92.3% 89.0%

I3D 90.7% – 94.5% 90.2% 89.1%

DN 87.2% 87.4% – 88.2% 90.7%

LRCN 92.8% 87.2% 92.4% – 86.1%

TSN 91.7% 90.2% 93.4% 91.7% –

U3Dg

C3D – 87.0% 93.2% 86.3% 85.3%

I3D 91.3% – 93.4% 90.2% 89.0%

DN 89.3% 88.4% – 93.4% 89.5%

LRCN 93.2% 90.8% 91.2% – 90.4%

TSN 89.4% 88.6% 92.4% 89.5% –

action videos while UCF Crime includes surveillance videos for anomaly detection,

U3D perturbations learned on UCF Crime will exhibit less universality to HMDB51

and UCF101. Thus, selecting different surrogate videos can slightly help tune the

attack performance on different target models and videos.

We repeat the same set of experiments for I3D as surrogate (Table 4.8). Note

that C-DUP [111] (as a white-box attack only on C3D) has low transferability (in

Table 4.3), and V-BAD [113] and H-Opt [112] (both as non-universal attacks) have

low transferability.

4.5.4 Hybrid Black-Box Attack with Queries over Target Model. U3D

106

Input: public DNN model f , public video dataset V , current U3D noise

parameters s⃗, sample times I

Output: Output value r of fitness function

1 Initialize r ← 0

2 ξ ← Np

3 for vi ∈ V do

4 t← 0

// Sample I times

5 for i ∈ I do

6 τ ← U [0, T − 1]

7 t← t+D(vi, vi + Trans(ξ, τ); d)

8 r ← r + t
I

9 r ← r
|V |

10 return r

Algorithm 11: Attack Objective A(f, V,N (T ; s⃗))

107

Table 4.7. Universality (success rate (SR); surrogate C3D).

Noise

X

Y
HMDB51 UCF101 UCF Crime

HMDB51 87.3% 82.6% 92.1%

U3Dp UCF101 84.2% 88.4% 91.5%

UCF Crime 80.1% 82.4% 96.0%

HMDB51 88.7% 85.4% 93.4%

U3Dg UCF101 85.0% 86.2% 90.2%

UCF Crime 82.2% 81.6% 95.3%

is designed to universally attack different target models, and it has shown high

transferability. If the attack performance is not very satisfactory for a new target

model (though not found in our extensive experiments), we can extend the U3D to a

hybrid black-box attack [123] by integrating queries over the target model g(·). Note

that this still maintains attack universality on different target models. Thus, given

the surrogate model f(·) (including a small set of public videos) and the target model

g(·) available for queries, we can update the optimization for U3D by integrating the

queries using input videos v1, . . . , vn (perturbed by ξ before querying):

max
ξ

: E
v∼V,τ∼U [0,T−1]

[
∑
d∈M

D(v, v + Trans(ξ, τ); d)]

+ ω · Q(g, v1, . . . , vn, ξ)

s.t. ξ = N (T ; s), ∥ξ∥∞ ≤ ϵ

(4.16)

where the query oracle Q(·) first derives the final classification results of the

108

Table 4.8. Universality (success rate (SR); I3D surrogate).

Noise

X

Y
HMDB51 UCF101 UCF Crime

HMDB51 89.6% 80.4% 87.1%

U3Dp UCF101 83.5% 86.3% 93.4%

UCF Crime 80.1% 82.4% 96.0%

HMDB51 86.3% 82.9% 90.5%

U3Dg UCF101 82.5% 86.7% 91.7%

UCF Crime 80.1% 84.3% 98.5%

perturbed videos {v1 + ξ, . . . vn + ξ} by the target model g(·), and then returns the

success rate for such videos. ω is hyperparameter for weighing the transferability of

the surrogate model and queries (success rate) over the target model. Note that the

adversary only needs to query the final classification (limited information) instead of

the specific probability scores or logits information.

This optimization will search the U3D perturbations which can successfully

fool the target model g(·) by both transferability and queries (hybrid). Similarly, after

revising the fitness function with the new objective (Equation 4.16), we can apply

PSO to compute the optimal U3D parameters.

To evaluate the hybrid attack, we choose the C3D as the surrogate model, and

I3D, DN, LRCN, TSN as target models, respectively. Then, we follow the setting as

the previous experiments on the UCF101 dataset (10% for learning U3D while 90%

for target set) and U3D parameters. For the hybrid attack, we set the size of querying

dataset as 50 (randomly chosen), ϵ = 8 and ω = 10, vary the number of queries as

109

0 1000 2000 3000 4000
Number of Queries

0.5

0.6

0.7

0.8

0.9

1.0

Su
cc

es
s R

at
e

I3D
DN
LRCN
TSN

(a) U3Dp

0 1000 2000 3000 4000
Number of Queries

0.5

0.6

0.7

0.8

0.9

1.0

Su
cc

es
s R

at
e

I3D
DN
LRCN
TSN

(b) U3Dg

Figure 4.5. Hybrid black-box attack performance (surrogate C3D).

{0, 1000, 2000, 3000, 4000} (“0” means the original U3D attack without queries).

Then, we apply PSO to optimize U3D perturbations on Equation 4.16, and report

the success rate for both U3D perturbations against the four target models. Figure

4.5 shows that the success rates of both U3D perturbations slightly increase as the

number of queries increases. The hybrid attack with additional queries to the target

model can improve the transfer-based attack to some extent [123].

4.5.5 Visual Impact and Human-Imperceptibility.

Visual Impact. We arbitrarily select two videos, “shooting” and “fighting” to

demonstrate the visual differences of the adversarial examples. Figure 4.6 presents

a sequence of selected frames in two videos, and we can observe that the videos

perturbed by U3Dp and U3Dg are much more human-imperceptible than C-DUP.

Human-Imperceptibility Study. We also conducted a human-imperceptibility

study (with an IRB exempt) to validate if the perturbed videos could be visually

discerned by humans compared with the original videos. We distributed the videos

(original videos, adversarial examples based on U3Dp, U3Dg and C-DUP) and an

110

(a) U3Dp

(b) U3Dg

(c) C-DUP [111]

Figure 4.6. Some selected frames in videos corresponding to “shooting” and “fighting”:
(a) perturbed by U3Dp, (b) perturbed by U3Dg and (c) perturbed by C-DUP [111].
Both U3Dp and U3Dg show good human-imperceptibility compared with C-DUP.

online survey to 87 anonymous students.

Specifically, we randomly pick 870 videos from the UCF101 and UCF Crime

datasets. To avoid bias on the distribution of adversarial examples, we randomly

choose 435 videos to inject perturbations (218 videos by U3Dp and 217 by U3Dg;

all the adversarial examples are selected from the previous groups of experiments to

successfully fool the video classifiers). The students do not know the distribution of

adversarial examples. Then, 435 pairs of videos (the adversarial examples and their

clean videos) are mixed with another 435 pairs of videos (the remaining 435 clean

videos and their duplicates).

Next, we randomly assign 10 pairs of videos to each student. Each of the 87

students is expected to watch and annotate 10 pairs of videos (“visual difference” or

“no visual difference”). We also ask the participants to identify the region of difference

if they choose “visual difference”. Finally, we collected 740 valid annotations on pairs

of videos (74 students have submitted their results over a 1-week time frame; among

111

the assigned videos to these students, there exist 386 adversarial examples). We

found that 96.4% (372) out of such 386 annotations are “no visual difference”, while

only 3.6% (14 annotations) of them are annotated with “visual difference”. Among

the remaining 354 pairs of original videos and their duplicates, there also exist 7

annotations submitted as “visual difference”.

Meanwhile, we conduct the same group of studies for C-DUP by randomly

picking another 870 different videos to inject perturbations (in order to avoid the

bias on mutually linking the adversarial examples of U3D and C-DUP perturbed on

the same videos).6 As high as 85.4% (304 out of 356 valid adversarial examples of

C-DUP) can be successfully identified by the same group of students. All the above

results have indicated that our U3D perturbations achieve high human-imperceptibility

(significantly better than C-DUP).

4.5.6 Practicality for the U3D Attack. We now discuss the possible attack

vectors, and evaluate the U3D attack on a real system. Prior real-time video attack

scenarios can also be used for U3D (e.g., manipulating the system via a pre-installed

malware in C-DUP [111]). Besides them, we design extra ways for the real-time attack.

Other adversarial attacks on videos (including future attacks) can also use our physical

scenarios to inject real-time perturbations.

First, the network topology of the recent intelligent video surveillance system

(VSS) [130,131], include: (1) camera; (2) communication network; (3) server. Then,

the adversary needs to inject the U3D perturbations in two cases: data-at-rest and

data-in-motion [105]. The data-at-rest locally stores videos in the camera or the

server. The data-in-motion transfers videos across the network or loads them into

6If any visual difference is identified by the student from the C-DUP perturbed
video (or vice-versa), this may give him/her prior knowledge to identify visual difference
from U3D (or vice-versa) since both are perturbed.

112

the volatile memory. Per the potential threats to VSS [131, 132], we consider the

local infiltration to the systems in two scenarios: (1) malware; (2) man-in-the-middle

(MITM) attack. First, malware can be locally installed via a malicious firmware

update over the USB port. Moreover, the surveillance cameras could be sold through

legitimate sales channels with the pre-installed malware [156]. Second, for the MITM

attack, the adversary could access to the local network (e.g., by penetration) which

connects to the camera and server, and behave like a normal user. Here, we take the

MITM attack as an example.

Specifically, we setup a local camera-server network, where one PC works

as the surveillance camera to continuously send video streams to another PC (as a

server) using the real-time streaming protocol (RTSP). Then, we use the third PC

as the adversary running Ettercap (https://www.ettercap-project.org/) with ARP

poisoning to implement the man-in-the-middle attack (sniffing the network traffic).

All three PCs use Ubuntu 18.04 OS, connected on a LAN. According to the recent

survey on the security of IP-based video surveillance systems [132,157], a large number

of unencrypted cameras (4.6 millions) are exposed to the network, e.g., using HTTP

instead of HTTPS. Although the percentage of such unencrypted cameras is not

disclosed, the unencrypted RTSP has been a major security vulnerability in video

surveillance [132,157]. Thus, in our attack setting, we assume that the camera network

is open with unencrypted RTSP. By exploiting the vulnerabilities, the adversary will

target the camera-server communication without decryption and temporarily intercept

the communication session by injecting the TEARDOWN request to the server. When

the server tries to send a new request for the new communication session with the

camera, the adversary will capture it, modify the delegated client port and forward

the request to the camera. Finally, the adversary can receive video streams from the

camera in real time.

113

Note that we utilize the FFmpeg compiled with the video encoder libx264 to

execute the codec (decode and encode process) on the video from RTSP streams.

Since our attack is performed through unencrypted video streams, there is no extra

cost for decrypting video packets. To evaluate the computational overheads for the

codec on the video streams, we set the following encoding parameters: (1) PRESET

(encoding speed): “medium” by default; (2) bit rate: same as the streaming video

bit rate (∼ 350kbps) [158]. The average cost for the codec on the video is ∼ 0.3 < 1

second, which will not affect the streaming video quality. It can also be accelerated

by hardware, e.g., GPU. Overall, we have experimentally shown that the delay of our

U3D attack (including both codec and injection) are negligible. Finally, the adversary

can forward the perturbed video streams to the server for misclassifications.

Table 4.9. Amortized runtime (each frame) for attacking the streaming video on
UCF101 and UCF Crime (in Seconds).

Video Name Codec Inject Runtime Video Name Codec Inject Runtime

Bowling 0.010 0.004 0.014 Arson 0.010 0.004 0.014

BoxingPunchingBag 0.012 0.005 0.017 Assault 0.010 0.005 0.015

CliffDiving 0.010 0.005 0.015 Explosion 0.009 0.007 0.016

CuttingInKitchen 0.009 0.005 0.014 Fighting 0.009 0.006 0.015

HorseRace 0.010 0.004 0.014 Shooting 0.010 0.004 0.014

Evaluation. We randomly pick 10 videos (5 videos from each of UCF101 and UCF

Crime) to evaluate the attack against the video classification and anomaly detection.

For each video, we repeat 10 times while injecting 10 different U3D perturbations

(pre-generated with the HMDB51 dataset and C3D) in the video streams. The attack

success rate for classification is 88% (44/50) and for anomaly detection is 98% (49/50).

Table 4.9 presents the amortized online time for processing each frame. All the

runtimes are less than 1/30 (the frame rate is between 24fps and 30fps in experimental

videos). Similar results on UCF Crime are also given in the table. Thus, U3D can

114

efficiently attack streaming videos with negligible latency.

0 500 1000 1500
Frame (t)

0.0

0.2

0.4

0.6

0.8

1.0
An

om
al

y
Sc

or
e

Original Video
Perturbed Video

(a) Road Accident (U3Dp)

0 500 1000 1500
Frame (t)

0.0

0.2

0.4

0.6

0.8

1.0

An
om

al
y

Sc
or

e

Original Video
Perturbed Video

(b) Explosion (U3Dg)

Figure 4.7. Real-time attack on anomaly detection

Moreover, Figure 4.7 presents the real-time anomaly scores of two example

videos (i.e., “Road Accident” and “Explosion”), where each streaming video (sent from

the camera to the server) is perturbed by a U3D perturbation in real-time (w.l.o.g.,

U3Dp for “Road Accident” and U3Dp for “Explosion”). In Figure 4.7(a) (“Road

Accident”), we can observe that there are three wave peaks in the original video, e.g.,

around frame 750, which will trigger the anomaly alarm (reporting “Road Accidents”

if the score is greater than a pre-set threshold). While our U3D attack perturbs the

streaming video, the anomaly scores of the perturbed video are reduced to almost

zero in all the frames. The “Explosion” example (Figure 4.7(b)) also shows similar

results. This illustrates that our U3D can perfectly compromise the video anomaly

detection systems.

Finally, to validate the boundary effect-free property of the U3D attack on

streaming videos, we conduct another group of experiments on the UCF101 and UCF

Crime datasets. Note that the lengths of videos are at least 15 seconds. Then, for each

input video in two datasets, we insert the U3D perturbation at 10 different times (from

115

Table 4.10. Success rates of U3D perturbations (boundary effect-free), injected at 10
different times for each video.

Noise

Model C3D I3D

UCF101 UCF Crime UCF101 UCF Crime

U3Dp 81.2% 90.3% 80.2% 85.3%

U3Dg 84.5% 93.0% 82.6% 89.4%

0 to 5s with a step of 0.5s), and the classification and anomaly detection will start from

the first perturbed frame to the end of the video. Table 4.10 summarizes the results

for success rates in two applications. We can observe that our U3D perturbations

can still achieve high success rates while the misalignment may occur, e.g., U3Dp still

achieves 81.2% on UCF101 against C3D, and U3Dg achieves 93.0% on UCF Crime

against C3D. This shows that U3D can mitigate the boundary effect well.

4.6 Evaluation against Defense Schemes

To our best knowledge, there are very few defense schemes against the adversar-

ial attacks on videos (mostly on images). We comprehensively evaluate the performance

of U3D against three major categories of state-of-the-art defense schemes, which are

adapted towards video/U3D defenses. They include: (1) adversarial training [118,119];

(2) adversarial example detection [114,120]; (3) certified robustness [121,122].

Attack and Defense Setting. We use the U3Dp and U3Dg perturbations generated

in Section 4.5.2 (surrogate C3D and HMDB51 dataset) to craft adversarial examples

on a dataset (e.g., UCF101 or UCF Crime). The adversarial examples will be used to

attack the target model (C3D or I3D), which will be adversarially trained, integrated

into the detection schemes, or certified with randomization. In all the tables in this

subsection, “Model” refers to the target model, and “Dataset” refers to the dataset

116

used to craft adversarial examples.

Adversarial Training. Adversarial training [118,119,159,160] refers to the model

training by adding adversarial examples into the training dataset. It has been

empirically validated to be effective on improving the robustness against adversarial

examples and maintaining accuracy on clean data.

First, due to the universality of U3D, we evaluate U3D attack on a universal

adversarial training (denoted as “UAT”) [119] which defends against universal per-

turbations. Specifically, such scheme adopts PGD-based adversarial training [118] to

formulate a min-max optimization problem as below:

min
θ

max
ξ

:
1

|X|
∑

(xi,yi)∈X

L(θ;xi + ξ, yi) s.t. ||ξ||∞ ≤ ϵ (4.17)

where θ denotes the model parameters, X = {(xi, yi), i ∈ [1, |X|]} is the

training sample set, L(·) is the loss function, and the ℓp-norm of universal perturbation

ξ is bounded by ϵ. Different from the conventional PGD-based adversarial training

(computing the perturbation for each instance), the inner optimization problem

seeks a universal (more precisely, batch X-universal) perturbation ξ to maximize

the adversarial loss w.r.t. the sample set X. It has been shown to be effective

against universal perturbations compared to PGD-based adversarial training [118].

In addition, it is more efficient to compute one universal perturbation across all the

training iterations, i.e., only updating perturbation ξ once for each step [119].

Second, besides “UAT”, we tailor the universal adversarial training towards

U3D (denoted as “U3D-AT”), and evaluate the U3D under a stronger defense setting

(see the white-box defense of G3 in Section 4.3.1). Specifically, the defender knows the

U3D function N (·) but does not know the specific values of the U3D parameters s.

117

Recall that the U3D perturbation is computed by optimizing Equation 4.13, which is

formulated as a attack fitness function A(f, V, s). Then, we can also adapt the UAT

framework by replacing the inner optimization objective with the U3D function as

A(f,X, s):

min
θ

max
s

: A(f,X, s) s.t. ξ = N (T ; s), ||ξ||∞ ≤ ϵ (4.18)

where the norm-bounded U3D perturbation ξ can be computed by the U3D

function with the parameters s. Similar to UAT, we can iteratively update the best

U3D perturbation among a batch of data (X) in the inner loop via NoiseOpt, which

adapts PSO to find the optimal parameters.

For the experiments, we evaluate the defense performance of standard PGD-

based adversarial training (denoted as “Normal”), universal adversarial training

(“UAT”) and our U3D-adaptive AT (“U3D-AT”) against our U3D perturbations,

respectively. We split the datasets (UCF101 and UCF Crime) into the training dataset

(80%) and the test dataset (20%). We set the perturbation bound ϵ = 8. For both

UAT and U3D-AT, we set the batch size as 200. For UAT, we utilize FGSM to

update ξ, and Momentum SGD optimizer to update model parameters as the original

setting [119]. For the adversarially trained models, we evaluate Clean ACR – the

predication accuracy on the clean data, besides the attack success rate (SR) for

misclassification. Note that we also report the accuracy and SR of the normal models.

Table 4.11 (left) summarizes the results of the adversarial training against U3D

on the UCF101 (see similar results on UCF Crime on the right.). The accuracy of

both UAT and U3D-AT on the clean data declines since the training has included

adversarial examples. Nevertheless, the success rates of both U3Dp and U3Dg have

been reduced against both UAT and U3D-AT. The U3D-AT performs better than

118

the UAT, e.g., the attack SR of U3Dp is 42.7%<67.4% on the C3D. This is because

U3D-AT directly optimizes the defense on U3D (with the attack fitness function),

which thus makes the model more robust against U3D. However, such U3D-AT is

more like “white-box” defense in which the defender (model owner) already knows the

adversary’s strategy (e.g., U3D format and attack function). In practice, the defender

usually cannot readily obtain such information.

Table 4.11. Adversarial training on UCF101

Model Defense Clean ACR U3Dp (SR) U3Dg (SR)

C3D

Normal 86.2% 83.7% 84.2%

UAT 78.5% 67.4% 65.5%

U3D-AT 77.2% 42.7% 45.3%

I3D

Normal 88.7% 82.1% 82.6%

UAT 80.4% 70.2% 69.5%

U3D-AT 78.6% 50.3% 47.4%

Adversarial Examples Detection. Most detection schemes [114, 120, 161–163]

locally train a detector or utilize feature characteristics in adversarial examples to

determine if the input is perturbed or not. For instance, a detector can be trained

on both clean data and adversarial examples via adversarial training [120]. Although

detection schemes have difficulties on mitigating adversarial attacks (e.g., Magnet [161]

was broken by [141], and some recent defenses were broken by adaptive attacks [139]),

we still evaluate our U3D against detection schemes (including that adapted to U3D).

Note that the U3D attack can be both online and offline. Then, we evaluate both

of them against the detection schemes (assuming that the offline detection can be

executed with arbitrary runtime).

119

Table 4.12. Adversarial training on the UCF Crime

Model Defense Clean ACR U3Dp (SR) U3Dg (SR)

C3D

Normal 92.5% 91.6% 90.7%

UAT 84.5% 74.7% 75.3%

U3D-AT 82.4% 62.7% 65.3%

I3D

Normal 95.3% 88.4% 91.2%

UAT 89.4% 76.2% 80.5%

U3D-AT 86.2% 58.6% 59.5%

First, for the online detection, we choose AdvIT [114] which is effective against

the existing adversarial attacks on real-time video recognition. It finds the inconsistency

among the temporally close frames with the optimal flow information, assuming that

perturbations can destroy the frame consistency to some extent. Specifically, given

one target frame (to be detected), AdvIT first estimates the optimal flow between the

target frame and previous k frames, and then reconstructs pseudo frames by applying

the optical flow to the beginning frame. Finally, it would compute the inconsistency

score c between the target frame and pseudo frames, where high inconsistency score

indicates that the target frame is adversarial. To defend against the adaptive attacks,

AdvIT applies Gaussian noise to fuzz the optical flow for generating the pseudo frames.

In the experiments, we randomly select 200 clean videos from the UCF101 and

UCF Crime datasets (100 each), and apply both U3Dp and U3Dg perturbations to

craft adversarial examples. We set the perturbation bound ϵ = 8. For detection, we

set k = 3 (which only slightly affects the detection rate) and utilize FlowNet [164] as

the optical flow estimator in AdvIT. Then, we randomly select 5 frames in each video

120

as the target frames, and average the inconsistency scores (reporting detection when

≥ 1) to derive the detection results.

Table 4.13 summarizes the detection accuracy (DR) and false positive rate

(FPR) of AdvIT. It shows that U3D can bypass the detection of the state-of-the-art

detection scheme, even though AdvIT achieves low false positive rates. For instance,

AdvIT only obtains 12% accuracy to detect U3Dp-based adversarial examples for the

C3D. The results show that U3D is immune to the temporal consistency detection

by AdvIT, since the U3D perturbations are constructed on continuous 3-dimensional

noise, which can still retain the consistency in temporal space.

Table 4.13. Detection and false positive rates of AdvIT [114]

Model Dataset
U3Dp U3Dg

DR FPR DR FPR

C3D
UCF101 12% 2% 18% 2%

UCF Crime 12% 5% 19% 3%

I3D
UCF101 10% 3% 17% 3%

UCF Crime 12% 5% 22% 3%

Furthermore, we have evaluated the Area Under Curve (AUC) values of the

Receiver Operation Characteristic Curve (ROC) of AdvIT for U3D perturbations

and other three benchmarks: C-DUP [111], V-BAD [113] and H-Opt [112]. The

AUC metric represents the probability that the detector assigns a higher score to

a random positive sample (adversarial example) than to a random negative sample

(clean data) [114]. It can better measure the detection performance than the DR/FPR.

Table 4.14 summarizes the results. From the table, we can observe that the AUC

values of U3D are close to random guess, e.g., 54.2% (U3Dp) and 56.7% (U3Dg) on

121

Table 4.14. Detection AUC of AdvIT [114] against U3D, C-DUP, V-BAD, and H-Opt.
C3D:1st/3rd row. I3D:2nd/4th row

Dataset U3Dp U3Dg C-DUP V-BAD H-Opt

UCF101
54.2% 56.7% 97.2% 98.4% 99.2%

56.4% 55.3% 98.7% 97.3% 98.6%

UCF Crime
61.2% 64.8% 97.6% 99.5% 98.3%

55.6% 58.1% 97.4% 99.7% 99.8%

C3D and UCF101 while all the benchmarks can be almost fully detected by AdvIT

(all the AUC values are very close to 1). This occurs since the temporal consistency

cannot hold in the adversarial examples by C-DUP, V-BAD and H-Opt (perturbations

are generated specific to the frames as frame-by-frame perturbations).

Second, for the offline detection, we evaluate the U3D against another recent

work [120] based on the adversarial training [118]. If the universal adversarial training

(UAT) can defend against U3D to some extent, we can also extend it to train a universal

perturbation detector against U3D. Specifically, the asymmetrical adversarial training

(AAT) [120] trains K detectors (for a K-class classification model) to detect adversarial

examples. Given an input x, each detector hk, k ∈ [1, K] will output a logit score

corresponding to the class label, which can determine if data is perturbed or not (see

details in [120]). To defend against the U3D, we revise the K detectors hk, k ∈ [1, K]

with the UAT by changing the training objective as below (denoted as “U3D-AAT”):

min
θ

: [E
x∼D′

k

max
s
L(hk(x+ ξ), 1) + E

x∼Dk

L(hk(x), 0)]

s.t. ξ = N (T ; s), ||ξ||∞ ≤ ϵ (4.19)

122

The objective includes two parts: (1) the maximum loss of adversarial examples

(by U3D perturbation ξ) on the out-of-class data samples D′
k; (2) the loss of intra-class

natural data samples Dk. L(·) is a loss function, e.g., binary cross-entropy loss. For

the inner optimization of the first part, we adopt similar procedures as U3D-AT to

update the U3D perturbations (as depicted earlier).

Table 4.15. Detection and false positive rates of U3D-AAT.

Model Dataset
U3Dp U3Dg

DR FPR DR FPR

C3D
UCF101 56.2% 6.3% 53.4% 5.9%

HMDB51 44.5% 8.2% 47.4% 7.1%

I3D
UCF101 55.4% 4.2% 56.5% 5.1%

HMDB51 52.6% 5.7% 54.3% 5.9%

To evaluate the performance of the detectors, we choose the action classification

on the UCF101 and HMDB51 as K-Class problem (K = 101 and 51). Specifically,

we split the training/testing datasets by 80%/20% for each category. We set the

perturbation bound ϵ = 8, and apply the two U3D perturbations to craft the adversarial

examples, which are mixed up with the clean videos for detection (for instance, in

UCF101 dataset, there are 2664 clean videos, 2664 videos perturbed by U3Dp, and 2664

videos perturbed by U3Dg). We adopt the integrated classifier which computes the

estimated class label c = f(x) with the original classifier f and computes a logit vector

hc(x) using the corresponding detector hc [120]. We report the detection accuracy (DR)

and false positive rate (FPR). The results in Table 4.15 have shown that such universal

adversarial detector can detect the U3D perturbations to some extent: the universal

AAT detector can achieve about 50% detection rate while maintaining a low FPR

123

(less than 7%). Such FPR is reasonable considering there could still exist overlapped

adversarial subspaces, i.e., U3D-AAT may not be trained to be perfect to learn U3D

perturbations and thus separate the perturbed video and clean ones. However, training

such AAT detectors should know the U3D attack (white-box defense), and it is only

limited to defend against offline attacks due to the computational costs.

Certified Robustness. Recently, certified schemes [121, 122, 165–167] have been

proposed to defend against norm-bounded adversarial perturbations with theoretical

guarantees. We evaluate the U3D attack against two representative certified schemes:

PixelDP [121] and randomized smoothing [122].

First, PixelDP [121] adopts the Gaussian mechanism of differential privacy to

slightly randomize the image pixels. After injecting Gaussian noise, the small change

of image pixels (adversarial perturbation) will not affect the classification results with

some probabilistic bound (thus provide robustness guarantee for DNN models). It

will be extended from protecting image DNN models to video DNN models.

To evaluate the U3D attack against PixelDP, we modify the video DNN models

by placing the noise layer in the first convolutional layer under the same Gaussian

mechanism setting [121] w.r.t. an ℓ2 attack bound L = 0.1 (such setting ensures a high

accuracy in [121]). We split training/test as 80%/20% for retraining the model. Note

that PixelDP admits that the certified effectiveness against ℓ∞ attacks is substantially

weaker via empirical evaluations (which conforms to the performance of other certified

schemes such as randomized smoothing). Then, we generate U3D perturbations

bounded by ℓ2 norm value of 0.5 (which indeed generates very minor perturbations in

case of very high video dimensions).

We report the classification accuracy of PixelDP on clean videos, and the

success rates of the U3D attack in Table 4.16. The accuracy of PixelDP drastically

124

Table 4.16. Accuracy (ACR) and success rate (SR) of PixelDP [121].

Model Dataset
Clean U3Dp U3Dg

ACR (SR) (SR)

C3D
UCF101 63.2% 83.4% 85.3%

UCF Crime 65.9% 86.2% 89.7%

I3D
UCF101 65.8% 82.3% 79.4%

UCF Crime 67.4% 84.7% 85.2%

declines after injecting Gaussian noises (vs. the baseline models), e.g., 86.2%→63.2%

on C3D. Meanwhile, the U3D attack can still achieve high success rates in all the cases.

This shows that PixelDP cannot defend against U3D since PixelDP only ensures a

weak bound with the Gaussian mechanism of differential privacy.

Second, we also evaluate the certified robustness via randomized smoothing [122].

It provides a tight guarantee (based on the Neyman-Pearson Lemma) for any random

classifier by smoothing inputs with an additive isotropic Gaussian noise. However, it

only certifies ℓ2 radius of the perturbation bound. The certified schemes via smoothing

against ℓ∞ have been shown to be ineffective as the input dimensionality d increases.

The certified radius is bounded by O(1√
d
) as p > 2 [165,166].

To evaluate our U3D attack against such certified scheme, we first generate

the optimal U3D perturbations ξ by changing perturbation bound ℓ∞ in NoiseOpt

to ℓ2.
7 Specifically, we evaluate the accuracy of the smoothing classifier on the

perturbed videos against U3D, which is the percentage of the perturbed videos to be

7Since randomized smoothing cannot certify defense against ℓ∞ bounded attack
for high dimensional inputs (e.g., videos) [165,166], the U3D perturbations using ℓ2
bound instead of ℓ∞ are still effective against such scheme.

125

correctly classified (we also evaluate the accuracy on the clean videos as benchmarks).

Furthermore, we also derive certificated radius R for the videos, which indicates that

the classification results can be certified against any perturbation with ℓ2-norm no

greater than R (see [121]).

Next, we set the number of Monte Carlo samples as n = 100/1000 and failure

rate α = 0.001. The failure rate indicates that the robust classifier can have 1-α

confidence to return the classification result. We set the Gaussian variance σ = 0.25

(same as [121]), and the radius bound for U3D perturbations as ϵ = 0.5 (which

generates minor perturbations in case of high video dimensions). We report the

accuracy and average certified radius in Table 4.17 (see similar results in Table 4.18).

The results show that the randomized smoothing cannot defend against the U3D

attack under ℓ2-norm perturbations (can only certify very small radius), and the

robust classifier only achieves less than 70% accuracy on the clean video samples.

Table 4.17. Accuracy and radius of Randomized Smoothing [122] on UCF101

Model n
Clean U3Dp U3Dg

ACR ACR Radius ACR Radius

C3D
100 67.4% 14.5% 0.23 15.2% 0.19

1000 68.2% 16.2% 0.24 18.4% 0.25

I3D
100 71.5% 21.7% 0.32 19.8% 0.28

1000 72.2% 25.2% 0.37 21.2% 0.26

4.7 Mitigation of U3D Perturbations

The experiments show that the adversarial training (AT) is still the state-of-

the-art on improving the model robustness regardless of overheads. The universal

126

Table 4.18. Accuracy and radius of Randomized Smoothing [122] on UCF101

Model n
Clean U3Dp U3Dg

ACR ACR Radius ACR Radius

C3D
100 70.6% 26.3% 0.26 25.1% 0.22

1000 71.2% 30.2% 0.21 32.4% 0.23

I3D
100 74.6% 28.3% 0.23 25.6% 0.20

1000 75.1% 29.2% 0.25 26.4% 0.18

AT and AT adapted to U3D (U3D-AT) have shown some effectiveness on reducing

the attack success rates (though the accuracy on clean videos has been reduced). To

further improve the performance of AT against U3D, we can enhance the search in a

larger U3D perturbation space. Also, we can integrate the adaptive inference method,

e.g., applying stochastic interpolation to reduce the effect of U3D [168], and certified

robustness [122].

For detection methods, the properties of the procedural noise (e.g., low fre-

quency texture structure) can be utilized. For instance, since the background scenes

in most surveillance videos captured by static cameras do not change, the defender

can extract the static frame of the background and compare it with the perturbed

video frame(s) to check the possible perturbation. An alternative way is to check

the moving objects or humans in the videos. Since the U3D perturbations applied

to the same object in different frames are likely to be different due to the changed

coordinates, the deviations between the perturbed object in different frames might be

identified. This needs other object detection/tracking algorithms, which may only be

suitable for offline analysis due to high overheads.

127

Furthermore, although certified robustness cannot defend against the U3D, it

is promising since it provides theoretical guarantee against norm-bound perturbations.

One potential method to improve is the integration of randomized smoothing with

UAT, which could potentially make the trained model robust against more unknown

perturbations and thus improve the robust accuracy. However, this also poses chal-

lenges on expensive training (not model-agnostic either). We should also address the

high dimensionality of videos since the certified guarantee can be jeopardized drasti-

cally on high dimensional data under ℓ∞ bound. Thus, we can execute transformation

to reduce the dimension of input data (e.g., by autoencoder) while certifying the

robustness after transformation. We will explore these in the future.

Last but not least, we can also mitigate the online U3D attacks by enhancing

the security of video recognition systems, e.g., upgrade to encrypted communication

channels or add watermarking to the video streams (to detect injections).

4.8 Related Work

Security in machine learning, especially the vulnerabilities of AI systems to

the adversarial inputs, has been intensively studied in both security and machine

learning communities. Since adversarial examples were introduced [101,159,169], there

have been numerous works on attacking image classifiers. For instance, FGSM [159],

PGD [118], UAP [103] and many others [102, 137, 170], work well in the white-box

setting. For black-box attacks, researchers have proposed two main types of methods:

transfer-based [115–117] and query-based attacks [134–136,171]. Recently, a hybrid

attack [123] combines both of them to improve the attack performance. Moreover,

adversarial attacks emerge in voice recognition [107,108], malware classification [172],

text understanding [106], etc.

Recent research has extended adversarial attacks from attacking DNNs on 2-D

128

images to 3-D videos [110–113]. Wei et al. [112] proposed a heuristic algorithm based

on the query-based optimization attack [171] to search the saliency region in the video

frames for perturbation. V-BAD [113] utilizes natural evaluation strategy (NES) [136]

to query the target model for estimating gradient, and then craft adversarial examples

via PGD. Both methods compute the perturbation for each frame, which requires

heavy computational overheads. They cannot attack real-time videos (due to lack of

universality either). C-DUP [111] applies GAN to generate universal perturbations

offline and attack real-time video classification. However, it is a white-box attack,

which is also limited to only the C3D model. More importantly, due to lack of

consistency in the perturbations across frames, all these three attacks can be directly

mitigated by AdvIT [114] with high accuracy.

To defend the model against adversarial attacks, a wide range of defense

schemes [114,118–120,122,142] have been proposed, which aim to either improve the

robustness of model or detect adversarial examples. To our best knowledge, existing

defense schemes (e.g., [118, 121]) mainly work on images, and have not empirically

studied videos. Instead, we have thoroughly evaluated our U3D attack by redesigning

current defense schemes in Section 4.6, which show some effectiveness against the

U3D attack on videos. We anticipate that our U3D can motivate to build more robust

defense schemes for DNN-based video recognition.

129

CHAPTER 5

STEALTHY POISONING ATTACK ON VIDEO CLASSIFICATION

5.1 Introduction

Deep neural networks (DNNs) have been extensively studied in different do-

mains, especially video recognition, such as self-driving [142], action recognition [124]

and anomaly detection [96]. However, DNNs have been proven to be vulnerable to

adversarial attacks. Evasion attacks [169] were first proposed to craft adversarial

examples to deviate the learning models [104,105,137,159,173,174]. 8

Different from the aforementioned evasion attacks during inference phase, data

poisoning attacks [176–181] target the training phase of machine learning models,

where the adversaries aim to inject poisoned data instances into the training dataset

and thus degrade the performance of the model trained with such poisoned dataset.

For example, a classic form of data poisoning attacks [177,180] aims to enforce the

trained model to misclassify a particular set of inputs. Recently, another form of

poisoning attacks [176, 181–184] can pose a more sophisticated threat to the DNN

models, i.e., the attacker can inject the poisoned data generated with a small trigger

pattern and then set up a link between the trigger with a target label (installing

backdoor). Thus, the trained DNN model on the poisoned data will consistently

misclassify the data involving the trigger to the target label while still making correct

classification on the clean data. For example, a sticker on the road sign can effectively

change the classification result from “stop sign” to “speed limit” [182]. However, the

sticker can be easily detected since it is highly human-perceptible. Turner et al. [181]

proposes a clean-label poisoning attack with Generative Adversarial Network (GAN)

without changing the label of poisoned data, which improves the stealthiness of the

8This work has been published on IEEE TDSC [175].

130

attack. That is, such clean-label poisoning attacks will not degrade the test accuracy

given the normal data, which can be harder to be detected by evaluating the overall

performance of the trained model on a clean holdout test dataset.

Figure 5.1. A poisoned video example “Apply EyeMakeup” with the poisoning trigger
(the squares of pixels leftside): recent work [184] (top) vs. ours (bottom). Our 3D
poisoning trigger is more human-imperceptible as nature-like textures compared
to [184]’s trigger of highly-deviated pixels.

While most existing data poisoning attacks focus on images [181–183], there

are very limited works on DNN-based video models. It is worth noting that Zhao

et al. [184] first explores the poisoning attack on the video models by extending

a conventional image attack [181] to achieve high performance, which still has the

major flaws on poisoning video models as following: (i) the patched frame-by-frame

poisoning triggers [184] could jeopardize the temporal consistency in videos such

that the poisoning attack might be easily detected, which can degrade the attack

stealthiness and thus cause attack failure in the testing. We have experimentally shown

such poisoned instances with trigger can be accurately detected by the state-of-the-art

detection scheme on temporal consistency, AdvIT [114]; (ii) most poisoning attacks

rely on feature collision [183, 184] with input-specific data samples by one-to-one

mapping (similar to the targeted evasion attack [137]), which could lack generalization

to the unseen data even if injecting multiple poisoned data [184]; (iii) under the

black-box setting, poisoning attacks may not work well by attacking the substitute

131

Table 5.1. Comparison of our work and existing clean-label poisoning attacks.

Turner et al. Zhu et al. Hidden Zhao et. al
Ours

[181] [180] [183] [184]

Trigger Adv. Perturbation - Rand. Pixels Deviated Pixels 3D Procedural

Backdoor ✓ ✗ ✓ ✓ ✓

Video Dom. ✗ ✗ ✗ ✓ ✓

Stealthiness ⋆⋆ ⋆ ⋆⋆ ⋆ ⋆ ⋆ ⋆

Attack Effec. ⋆ ⋆⋆ ⋆⋆ ⋆⋆ ⋆ ⋆ ⋆

model since the target model can have very different classification boundaries (low

transferability). These could greatly degrade the attack performance.

To address such limitations, we propose a novel stealthy and effective poisoning

attack framework against the video recognition DNN models. Specifically, we first

design a 3-dimensional (3D) poisoning trigger with temporal consistency based on a

computer graphic primitive for stealthiness, which obtains good human-imperceptibility

as natural-like textures. Figure 5.1 demonstrates an example of our 3D poisoning

trigger compared with the state-of-the-art [184] on poisoning videos. Second, we craft

the poisoned videos with the integration of an ensemble attack oracle (as the attack

optimization objective), which formulates a convex polytope to cover the targeted

videos in feature representation space (to provide more attack generalization and

flexibility). Third, our proposed attack can craft more transferable poisoned videos

by explicitly optimizing the attack in the intermediate layer feature representation

of a video DNN model, which works in the black-box setting. Therefore, our main

contributions are summarized as below:

• To our best knowledge, we are the first to reveal the limitations of state-of-the-art

video poisoning attack in both stealthiness and attack performance.

132

• We design novel 3D poisoning triggers with a classic computer graphic primitive

to ensure the attack stealthiness, which can be easily generated (by a few

parameters) and human-imperceptible (nature-like patterns or textures, see

Figure 5.1).

• Based on the 3D poisoning trigger, we propose a general attack framework, which

can efficiently craft poisoned videos by formulating an ensemble attack oracle as

objective. We further optimize the attack in aspect of attack generalizability

and transferability.

• We conduct extensive experiments to validate the attack effectiveness and

stealthiness with the benchmark of the previous attack methods. Besides, we

have experimentally shown that the proposed attack can bypass various state-

of-the-art defense schemes. We also show that our 3D poisoning attack can be

readily downgraded to image domain.

5.2 Background

In this section, we first review the related literature of poisoning attack, which

also includes the existing defense mechanisms. We also briefly present the taxonomy

for DNN-based video recognition models.

5.2.1 Poisoning Attacks. Poisoning attack injects poisoned instances (generated

with some specific triggers) into the training dataset [177,180–184], which can install

the particular trigger as backdoor into the DNN. Thus, at the inference phase, the

trained DNN model will misclassify the test instances with the presence of such trigger

pattern. There are mainly two types of poisoning attacks: (i) poison-label attack

can change both the training instances and their corresponding labels; (ii) clean-label

attack changes the training instances without changing the labels. Poison-label attack

can be mitigated by data filter since the poisoned data (mislabeled data) visually look

133

different from the clean data but belonging to the same label. For example, Gu et

al. [182] first proposes the poisoning attack on the deep learning application, BadNets,

which injects patterns (e.g., stickers) into the poisoned data and also changes the

corresponding label to the target label (as the poison-label attack). However, the

patched triggers (e.g., stickers) can be easily detected via filtering or humans.

To improve the stealthiness of poisoning attack, Turner et al. [181] proposes

clean-label attacks without changing the poisoned labels, by utilizing GAN to craft

the poisoned instances for feature collision [177]. Saha et al. [183] presents a universal

optimization method to generate multiple poisoned instances for one specific source

instance, which could achieve relatively high success rates but still lack generalization.

Zhu et al. [180] studies the transferability of poisoning attack and generates more

transferable poisoned data based on convex polytope. It is limited to attacking the

images without the backdoor trigger. Besides, such attack cannot be directly applied

to videos since it would be computationally impractical to directly craft the poisoned

videos due to the two-fold optimization with additional constraints. Zhao et al. [184]

first studies the poisoning attack in the video domain, which aims to jointly craft

universal triggers and poisoned videos with adversarial perturbations. Although this

method has shown to be effective, it has some major flaws, e.g., temporal inconsistency

aroused by the trigger, and low transferability as depicted before.

To address the above limitations, we propose a novel attack scheme for attacking

video recognition models. Table 5.1 summarizes the main difference between our

proposed attack and the state-of-the-art attacks. Our attack outperforms them on

both stealthiness and attack effectiveness while attacking video DNN models (see the

design goal in Section 5.4 and experimental results in Section 5.6).

5.2.2 Defenses against Poisoning Attacks. There have been several works

which defend against the data poisoning attacks. For instance, Steinhardt et al. [185]

134

proposed a certified defense scheme by constructing approximate upper bounds on

the loss across the poisoning attacks. Tran et al. [186] proposed a spectral signature

detection method for detecting poisoned instances in the training dataset. They

observed that the poisoned data could be different from the clean data in the latent

DNN space, which can be used for removing the poisoned data as outliers from the

training data. Liu et al. [187] proposed a fine-pruning method to prune the abnormal

units to prevent the poisoning attack. Another approach is the neural network

cleanse [188], which checks if the trained model is poisoned via reverse engineering

the poisoning triggers with the gradient information. Then, neural cleanse uses an

input filter to filter the poisoned data using a simple technique called median absolute

deviation. We have experimentally evaluated the resistance of our proposed attack

against such defense schemes. The experimental results show that our attack can

bypass these defense schemes.

5.2.3 DNN-based Video Recognition. Well-designed DNN models, e.g., C3D

[124], I3D [129], TSM [189] and X3D [190] have been widely adopted for efficient and

accurate video recognition, such as action classification [191] and anomaly detection [96]

in surveillance systems. Starting from the C3D model, the 3D convolutional networks

on learning spatio-temporal features have significantly improved the performance of

video recognition. Moreover, I3D improves C3D via inflating the 2D convolution filters

(in conventional image networks) into the 3D convolution. We will evaluate our attack

on such two most representative video DNN models on two large-scale video datasets,

UCF101 [192] and HMDB51 [133] for video classification (see details in Section 5.6.1).

5.3 Attack Preliminaries

In this section, we first introduce the threat model, including the attack scenario,

the adversary’s knowledge/capability. We then formulate 3D poisoning attacks with

video models.

135

5.3.1 Threat Model. We consider the clean-label poisoning attack [181,183,184]

in the video domain. That is, the attacker will generate the poisoned videos, which

visually look as the original clean data (thus keeping the clean label to bypass the

detection of the data filtering/humans). It should be noted the attacker cannot control

the labeling process (different from the poison-label setting). To improve the attack

performance, we inject a set of poisoned videos [183,184] (still a very small portion

of training dataset, e.g., 0.5%). Besides, since the generation of the poisoned video

is offline, we do not consider the extra computational costs of generating poisoning

videos (as pre-attack phase).

For the victim’s model, we consider the transfer learning setting [180, 184, 193],

i.e., given a pre-trained DNN models as feature extractor (yet kept frozen), we can

finetune a linear classifier based on to the specific applications/datasets. Such transfer

learning-based approach have been shown to be practical and effective considering the

relatively small computation costs in various domains. For example, we can utilize a

pre-trained I3D model on kinetics-400 dataset to extract the video features and train

(fine-tune) a SVM classifier on UCF101 dataset for action classification [129].

Attacker’s Knowledge. We consider both white-box and black-box setting. For

white-box setting, the attacker only knows the victim’s model architecture (white-

box) [183]. For the black-box, the attacker will not have access to model’s architecture

and parameters as the black-box evasion attacks [173]. Then, the attacker can

utilize a substitute model to craft poisoned videos to attack the victim’s model (via

transferability). In both white-box and black-box setting, we assume that the attacker

knows the training dataset to train victim’s model (thus can generate poisoned data).

Attacker’s Capability. As depicted above, we assume that the attacker can success-

fully inject a small number of well-crafted poisoned data into the victim’s training

136

dataset, which follows the setting of previous works [181,183]. This is reasonable since

the victim could obtain the training dataset by crawling from the online resources

with web crawler. That is, the attacker only needs to put the generated poisoned data

on the internet as public resources, which could be very likely collected by the victim.

The attacker cannot control the training process of victim’s model.

5.3.2 Attack Formulation. Denote the target video by vtar, and the source video

by vsrc. Given a poisoning trigger Pn and a binary mask M (the location of patch is 1

while non-patched locations are 0), the attacker can generate a patched source video

v′src by patching the poisoning trigger Pn to the source video vsrc:

v′src = vsrc ⊙ (1−M) + Pn ⊙M (5.1)

where ⊙ denotes the Hadamard multiplication. We assume that the patch

location on all the frames in one video are fixed, and can also be changed by modifying

the binary mask M . It should be noted that we have verified the location of trigger

will not arouse the attack results significantly. We can always adjust the patch location

accordingly to obtain more visual imperceptibility (e.g., in the background).

To enable a successful poisoning attack, we will generate a poisoned video vpoi

which visually looks like the target video vtar such that it can be labeled with the

target label. Meanwhile, the poisoned video vpoi should be similar to the patched

source video v′src in the feature representation of a DNN model (to cause feature

collision) [181,183]. Thus, a video instance (belonging to the source class) patched

with the trigger can be misclassified into the target class. Formally, the attacker can

craft the poisoned video as the following objective function:

vpoi = argmin
v
||F(v)−F(v′src)||22 + λD(v, vtar) (5.2)

137

where F(·) outputs the video features extracted by a DNN model as feature

extractor (e.g., in C3D model [124], the output of the fc7 layer is a 4096-dimensional

feature vector). D(·) is a distance function (e.g., ∞-norm distance) to quantify the

distance between vpoi and vtar (the maximum pixel change). The attack optimization

consists of two terms:

1. The first term makes the feature representation of the poisoned video F(v) close

to the patched source video F(v′src).

2. The second term ensures that vpoi looks like the target video vtar, which is upper

bounded by ϵ.

We utilize the hyperparameter λ > 0 to weigh the two terms in the optimization.

Conventionally, given one specific pair of source and target videos, the attacker can

generate the poisoned video by solving Eq. 5.2 using the projected gradient descent

(PGD) algorithm [174]. Also, multiple poisoned videos will be crafted to increase the

success rate [183,184].

5.4 Attack Design Goals & Insights

In this section, we will illustrate the major limitations of current poisoning

attacks and then briefly introduce our design idea to address such limitations, re-

spectively. Our attack design aims to improve from the following two aspects: 1)

stealthiness; 2) attack performance.

G1: Stealthiness. In general, the stealthiness issues of poisoning attack with trigger

mainly consist two aspects: 1) the poisoned videos to be injected into the training set

(training phase); 2) the patched video with poisoning trigger at the inference phase.

Recall that current state-of-the-art poisoning attacks are in clean-label setting, i.e.,

keeping the original labels of poisoned instances [181,183]. This can be achieved by

138

bounding D(vpoi, vtar) (in Eq. 5.2). However, such clean-label setting can only solve

the former stealthiness issue with poisoned videos, which aims to bypass the data

filtering or humans. In other words, the latter stealthiness issue of patched videos in

the inference phase still exists, especially in video domain [184].

Source Instance

Target Instance

Patched Source Instance

Poisoned Instance

Feature Collision Mapping Ensemble Attack Oracle

One-to-One Convex Polytope

Figure 5.2. Feature Collision Mapping vs. Ensemble Attack Oracle

More specifically, the generated poisoning triggers usually consist of irregular

pixels in the RGB space, which could improve attack effectiveness to some extent,

however, may also result in temporal inconsistency across different video frames, which

can be accurately detected by the state-of-the-art detection scheme, e.g., AdvIT [114]

based on video consistency. Besides, as shown in Figure 5.1, the highly-deviated pixels

in the triggers could be also discerned by humans. Both of these could directly cause

the failure of the poisoning attack during the inference phase.

To address this, we construct a novel 3D poisoning trigger based on a computer

graphic primitive Procedural Noise [144, 194], which obtains no noticeable directional

artifacts and thus potentially fit for stealthiness of the poisoning attack (detailed

in Section 5.5.1). We have experimentally shown that our 3D poisoning trigger can

bypass the detection scheme, e.g., AdvIT while comparing with the state-of-the-art

attacks [183,184]. Also, we validate that our poisoning attack obtains good human

imperceptibility by both quantitative measurement and human survey.

G2: High Attack Performance. As depicted earlier, we need to improve poisoning

attack on both generalization and transferability. On the one hand, conventional

139

poisoning attacks rely on the feature collision with the specific source/target instances

(one-to-one mapping) [183,184], where minimizing the distance in the feature space

could cause source instances to be trapped into the boundary belonging to target label

(successful attack). However, such one-to-one mapping for feature collision can be

restrictive like the targeted evasion attack [137], which could be still hard to attack

unseen data instances even they usually inject multiple poisoned instances (lacking

generalization). On the other hand, sometimes the attacker may not know the victim’s

model (in black-box setting), then the feature collision attack may not work on the

substitute model since the models can be very different, e.g., feature extractor. That is,

for feature collision mapping, the small distance for one pair of source/target instances

on one model’s feature extractor may change to larger in case of another model (low

transferability).

Instead, we define an attack primitive, namely, Ensemble Attack Oracle (Defi-

nition 5) with an ensemble of a set of crafted poisoned videos, which aims to construct

some adversarial subspaces as convex polytope [195, 196] in feature space to entrap

the source video (for a successful attack) [167, 180, 197]. Different from one-to-one

mapping in feature collision (some isolated adversarial points), we can formulate a

convex polytope with a set of poisoned videos, which can tolerate more generalization

errors and also loose the generation of the poisoned videos. Therefore, such adversarial

subspaces by ensemble attack oracle can lead to more transferable attack [180,196].

Figure 5.2 demonstrates the comparison of our ensemble attack oracle with feature

collision.

Furthermore, we improve the ensemble attack optimization with two empirical

yet effective calibrations. We first leverage Empirical Risk Minimization (ERM) to

obtain more generalization. Then for the transferability, we utilize the intermediate

layer’s features instead of the final output feature of the video model as the feature

140

representation, since the explicit attacks on the intermediate layers have been shown

to be more transferable [138, 198]. We have experimentally validated the attack

effectiveness of our attack.

5.5 Attack Framework Design

In this section, we elaborate the attack design for G1 and G2 (Section 5.4),

respectively. We overview the main steps of the proposed attack framework (shown in

Figure 5.3). There are four main steps: 1. the attacker crafts 3D poisoning trigger

(for stealthiness); 2. with the optimization of both generalization and transferability,

the attacker formulates an ensemble attack oracle to generate a set of poisoned videos

(for attack effectiveness); 3. after the attacker injects the poisoned data to the training

dataset, the victim will train the DNN model with the poisoned dataset; 4. during the

test phase, the attacker can patch the 3D trigger on the test video (to activate the

poisoning attack), which can be misclassified to the target label, e.g., “BrushTeeth”

to “EyeMakeup”.

Source video

𝑣𝑠𝑟𝑐

Target video set

𝑣𝑡𝑎𝑟 ∈ 𝑉tar

1. Craft 3D poisoning trigger

(G1: Stealthiness)

Trigger 𝒫

Patched video

𝑣𝑠𝑟𝑐
′

2. Poisoned Video Generation

(G2: Attack Effectiveness)

3. Training Phase

(with poisoned data)

…

3
D

 C
o
n
v

P
o
o
l

F
C…

S
o
ft

M
ax

a

4. Inference/Test Phase

(attack with poisoning trigger)

Trigger 𝒫

Attacker

Ensemble

Attack Oracle

Transferability

Generalization

3
D

 C
o
n
v

P
o
o
l

F
C…

S
o
ft

M
ax

a

❌

BrushTeeth

EyeMakeup

EyeMakeup

❌

(Activate attack with trigger)

Figure 5.3. Overview of 3D poisoning attack framework

5.5.1 3D Poisoning Trigger Generation. Procedural noise [144,194] refers to the

algorithmically generated visual patterns by some predefined functions, which have

been widely used in film production and video games to enrich the visual details, e.g.,

texture and shading. It is inherently continuous and parameterized to compute [144].

141

Also, the noise has no noticeable directional artifacts. All these attributes enable the

procedural noise (as computer graphic primitive) to be potentially fit for generating

human-imperceptible poisoning trigger (stealthiness).

To craft the 3D poisoning trigger, we utilize one common type of procedural

noise, i.e., Perlin noise [194] due to its ease of generation and popularity. Perlin noise

was first proposed by Perlin as an image modeling primitive to produce the natural-like

textures. As a lattice gradient noise, the noise value is determined by computing a

set of 12 pseudorandom gradient vectors at the midpoints of 12 edges of a lattice

cube, and then utilizing a quintic polynomial equation, e.g., q(t) = 6t5 − 15t4 + 10t3

to interpolate the pre-defined vectors [194]. It can be computed efficiently with a

few parameters. Thus, the Perlin noise can be readily extended to construct the 3D

poisoning trigger.

More formally, we denote every pixel of 3D poisoning trigger by its 3D coordi-

nates (x, y, t), where (x, y), x, y ∈ [0, d− 1] are the coordinates in frame t (the trigger

is a square of d× d). Denote the Perlin noise value of each pixel (x, y, t) by s(x, y, t).

To enrich the visual details (e.g., natural-looking texture for stealthiness), we can

aggregate a set of octaves (the number of octaves denoted as Λ). Besides, we define

two new parameters of wavelength λs and λt to determine the attribute of octaves

along the spatial (location) and temporal (frame), respectively. Then the noise value

at 3D coordinates (x, y, t) can be updated as:

P(x, y, t) =
Λ∑

ℓ=0

s(x · 2
ℓ

λs
, y · 2

ℓ

λs
, t · 2

ℓ

λt
) (5.3)

To further improve the stealthiness by enabling various visual perturbations

with different color spaces in the video, we extend Eq. 5.3 with a color mapping

function [147]. Then, the noise value of (x, y, t) for the 3D poisoning trigger can be

142

generated as:

Pn(x, y, t) = K ∗ cmap(P(x, y, t), ϕ) (5.4)

where cmap(b, ϕ) = sin(b · 2πϕ) is a sine color map function, which bounds the noise

with the circular property. K is the upper bound of the 3D trigger (in ℓ∞-norm).

With such function, our attack can craft the poisoning trigger for patching

the video on-the-fly (video-agnostic), i.e., we can manipulate the visual texture of

the trigger pattern by adjusting the function parameters. For instance, we can

first determine the location of the poisoning trigger, e.g., bottom right with trigger

size d = 30. Since the video classification usually analyzes each video clip with 16

consecutive video frames, we can compute 3D poisoning trigger referring to Eq. 5.4,

t ∈ [0, 15]. Also, we can control the style of trigger pattern by adjusting the parameter

of the color map function. Once we obtain the poisoning trigger, we can craft the

poisoned videos as depicted below. We have experimentally validated that our 3D

poisoning trigger ensures good stealthiness and human-imperceptibility with both

quantitative and human survey study (Section 5.6.4).

5.5.2 Poisoned Video Generation. Following G2, we construct an Ensemble

Attack Oracle [167,180,197] to improve attack effectiveness as the following.

Definition 5 (Ensemble Attack Oracle). Given a patched source video v′src and a set

of N poisoned videos to be crafted Vpoi = {vipoi, i ∈ [1, N]}, then an ensemble attack

oracle, denoted as A(Vpoi, v′src,F(·)), is to compute the feature representation distance

between the linear combination of the poisoned videos set Vpoi and v
′
src:

A(Vpoi, v′src,F(·)) = ||
N∑
i

wiF(vipoi)−F(v′src)||22

s.t.
N∑
i

wi = 1, wi > 0, vipoi ∈ Vpoi

143

Input: Target video set Vtar, Source video set Vsrc, Feature Layer function

Fk(·), k ∈ [1, L], 3D poisoning trigger Pn

Output: N poisoned videos Vpoi = {vipoi, i ∈ [1, N]}

1 Initialize N target videos vitar ∈ Vtar to be poisoned

Vpoi = {vipoi ← vitar, i ∈ [1, N]}

2 Initialize wi ← 1
N
, i ∈ [1, N]

3 while not converged do

4 Randomly sample vsrc ←s Vsrc

5 v′src = vsrc ⊙ (1−M) + Pn ⊙M

// Given Vpoi, update wi

6 for k → 1 to L do

7 C ← [Fk(v
1
poi),Fk(v

2
poi), · · · ,Fk(v

N
poi)]

8 τ ← 1
||C⊤C||2

9 update wi ← wi − τC⊤(Cwi −Fk(v
′
src))

// Given wi, update Vpoi

10 for i→ 1 to N do

11 Graident step on vipoi

12 Clip vipoi to be bounded via ||vipoi − vitar||∞ ≤ ϵ

13 return N poisoned videos

Algorithm 12: Poisoned Video Generation

144

With the ensemble attack oracle, we build a relaxed connection from the

poisoned videos to patched source video in the feature space. That is, the convex

polytope space constructed by a set of poisoned videos can obtain more generalization

than the one-to-one mapping for feature collision [183, 184]. Take Figure 5.2 as an

example, for feature collision-based attack, we craft the poisoned video one by one

to approach the source videos at the boundary, which could change the classification

boundary and thus cause misclassifcation. We can observe that there are four poisoning

videos approaching the patched source video on the lefthand side. In general, we

can inject more poisoned videos to arouse more change of the boundary (and thus

increase the attack success rate). On the righthand side, the four poisoned videos

would formalize a convex polytope space with the ensemble attack oracle, where the

source videos can be easier to be entrapped for more attack effectiveness.

More formally, we have the following proposition to show attack correctness of

such attack oracle:

Proposition 1. If A(Vpoi, v′src) = 0 holds, and given ∀vipoi ∈ Vpoi to be labeled with

the target class c and successfully injected into the training set, then v′src will be

misclassified into the target class c by victim’s model (as successful attack).

Proof. We denote the video linear classifier (after feature extractor F(·)) as g(·). Since

all the poisoned videos are labeled to class c, then ∀vipoi ∈ Vpoi, we have

Pr[g(F(vipoi)) = c] > Pr[g(F(vipoi)) = c′] (5.5)

where c′ ̸= c is other labels. Given A(Vpoi, v′src) = 0, i.e.,

F(v′src) =
N∑
i

wiF(vipoi) (5.6)

145

we thus get:

Pr[g(F(v′src)) = c] =Pr[g(
N∑
i

wiF(vipoi)) = c]

=
N∑
i

wiPr[g(F(vipoi)) = c] >
N∑
i

wiPr[g(F(vipoi)) = c′]

=Pr[g(F(v′src)) = c′]

(5.7)

According to Proposition 1, we can craft a set of poisoned videos to enable

source videos to be entrapped in the convex polytope in feature space. Note that such

ensemble oracle can also provide more transferable attack due to the larger adversarial

subspaces (convex polytope). Then we reformulate the attack optimization function

by minimizing A (enable the source video to be covered by convex polytope):

min
Vpoi

A(Vpoi, v′src,F(·))

s.t. ∀vipoi ∈ Vpoi, D(vipoi, vtar) ≤ ϵ

(5.8)

Moreover, we can further improve our poisoning attack with the following

calibration:

(i) Attack Generalization. A simple approach to improve the attack generalization

is to attack a set of sampled data instances (aka. universal attack [103]). Thus, to

further improve the attack generalization on unseen source videos (not in the training

set), we update Eq. 5.8 with the expectation on a pre-selected patched source video

set V ′
src by normalizing the distance (to avoid bias).

146

min
Vpoi

E
v′src∼V ′

src

A(Vpoi, v′src,F(·))
||F(v′src)||22

s.t. ∀i ∈ N,D(vipoi, vtar) ≤ ϵ

(5.9)

(ii) Transferability in Intermediate Layers. As depicted before, we utilize the

feature representations of intermediate layers to improve attack transferability. Then,

we update Eq. 5.9 with all the feature representations of the intermediate layers across

the entire model as below:

min
Vpoi

E
v′src∼V ′

src

L∑
k=1

[
A(Vpoi, v′src,Fk)

||Fk(v′src)||22
]

s.t. ∀i ∈ N,D(vipoi, vtar) ≤ ϵ

(5.10)

where L is the total number of layers and Fk, k ∈ [1, L] is the k-th layer function

to output feature representations.

Since the above objective function (Eq. 5.10) includes one ensemble attack

oracle (the linear combination of the poisoned videos’ features), we utilize an efficient

optimization method to iteratively update both linear coefficientsW = {wi}, i ∈ [1, N]

and poisoned videos Vpoi = {vipoi}, i ∈ [1, N].

Specifically, we will fix one as the constraint while optimizing the other one.

Given the set of poisoned videos Vpoi, we use forward-backward splitting [199] (which

is more efficient than back-propagation with neural model) to compute the optimal

coefficients W = {wi}, i ∈ [1, N]; then fixing coefficients W , we update the poisoned

videos for one gradient step (due to computational efficiency). Note that we choose

Adam optimizer [200] to update the poisoned videos since it converges more reliably.

To find the optimal poisoned videos and coefficients, we will repeat the two sub-steps

until convergence. Algorithm 12 depicts the details.

147

5.6 Experiments

In this section, we evaluate our 3D poisoning attack on different video datasets

and DNN models with various baselines. We first introduce the experimental setup,

including the datasets, models, baselines and the attack methodology. Then, we

demonstrate the experimental results in aspects of attack performance and stealthiness

(corresponding to our design goal G1/G2). Besides, we conduct the extensive ablation

studies to study the effect of 3D poisoning trigger on the whole attack. We also

experimentally shows that the proposed attack can resist defense schemes. Finally, we

demonstrate that our 3D poisoning attack can be extended to the image domain (2D).

5.6.1 Experimental Setup. We evaluate the attack on two commonly used real

datasets for video recognition:

• The UCF101 [192] dataset has 13,320 video clips in 101 different action categories,

e.g., archery, fencing, and punch.

• The HMDB51 [133] dataset contains 6,766 video clips which are categorized into

51 different actions, e.g., fencing, hit, gun shooting, and sword exercises.

For each dataset, we choose 80% of each category as the training dataset, from

which we choose the target category to generate poisoned videos. Then, the remaining

20% videos are used for the test dataset. Note that we keep the test videos clean

to evaluate model accuracy under different model setting (poisoned or clean). For

stealthiness, a successful poisoning attack is also expected to maintain the original

model accuracy (inference) after training on clean/poisoned training dataset, besides

obtaining human-imperceptible perturbations.

Target Models. We mainly evaluate our attack on two state-of-the-art DNNs for

video recognition, C3D [124] and I3D [129]. For both C3D and I3D, we first train

148

the models on kinetic-400 dataset [201] as pre-trained models (working as feature

extractor). Then we jointly fine-tune the last layer of models and a SVM classifier on

UCF101 and HMDB51 datasets for video classification, respectively. Note that our

target models only consider the RGB inputs (modifying the RGB values at the pixel

level).

Baselines. Recall that there are very few works on the poisoning attack in the

video domain, we utilize the most recent clean-label video attack [184] (denoted as

“Baseline1”). We also extend a recent state-of-the-art image poisoning attack [183] to

the video domain as the baseline (denoted as “Baseline2”). In addition, we downgrade

our proposed 3D poisoning attack to 2D image and compare with Baseline2 [183]. The

experimental results (Section 5.6.6) show that our attack can also effectively attack in

image domain.

Attack Methodology. For both UCF101 [192] and HMDB51 dataset [133], we split

the dataset into 80% training set and 20% test dataset (remain intact to evaluate

the model accuracy). Take the first group of experiments (attack effectiveness) as

an example, we randomly choose 50 pairs of source and target categories from the

UCF101 dataset. For every source/target pair, we randomly select 20% videos of

source category as the source video set Vsrc, to which we aim to attack, i.e., the source

video patched with the 3D trigger during the test phase will be misclassified into the

target class. We also randomly select 20% (as poisoning percentage, ∼ 0.2% out of

the entire training set) videos from target category as target video set Vtar. Then,

we generate the poisoned videos following Algorithm 1 (unless explicitly specified,

the parameters will keep the same). The poisoning trigger size is 30× 30 out of the

320 × 240 video frame. we set the upper bound ϵ is 8. We use Adam [200] with a

relatively large learning rate of 0.05, and perform at most 3000 iterations on crafting

poisoned videos for each experiment.

149

5.6.2 Attack Performance. To fully evaluate attack performance of the poisoning

attack, our evaluation include the following three aspects:

1. The impact on model performance with clean data.

2. The effectiveness (attack success rate) with various models/datasets/attack

parameters.

3. The comparison with baselines on attack success rate/transferability.

1) Impact on model performance. As depicted above, the poisoning attack should

not impact the normal performance of victim’s model (with poisoned training data)

too much to keep stealthy. We evaluate the accuracy of the retrained model training

with poisoned video dataset and normal training model with the clean dataset. we

report both accuracy on the clean test dataset (excluded from the training videos),

with UCF101 and HMDB51 dataset, respectively.

Table 5.2. Test accuracy of the clean and poisoned models.

Dataset

Model C3D I3D

Clean Poisoned Clean Poisoned

UCF101 82.7% 81.5% 87.5% 86.3%

HMDB51 52.3% 51.1% 63.7% 62.4%

Table 5.2 summarizes the results for both C3D and I3D. We can observe that

the poisoned video can maintain almost same accuracy compared with the original

model, which shows that our 3D poisoning attack will not arouse too much change

(slight drop) on the model prediction (only fool the model while presenting with

poisoning trigger).

2) Attack effectiveness. We first evaluate the attack performance for specific pairs

of source and target video categories with the fixed poisoning trigger size and poisoning

150

Table 5.3. Attack performance against the C3D and I3D models. ϵ = 8 and poisoning
percentage: 20%.

Src./ Brush/ Biking/ ClifDive/ Fencing/ Hammer/ LongJump/ Knitting/ Punch/ Skiing/

Tar. EyeMake HairCut Rowing JumpJack Archery Skiing Punch Typing Tachi

C3D 90.7% 86.2% 89.2% 89.9% 96.1% 93.4% 87.0% 94.7% 96.2%

I3D 89.1% 88.3% 93.1% 92.5% 88.3% 86.7% 93.1% 88.5% 92.0%

Table 5.4. Attack performance of our attack vs. the baseline attacks [184] and [183],
denoted as “Baseline1” and “Baseline2”. Target category: “Apply EyeMakeup”.
ϵ = 8 and poisoning percentage: 30%.

Model/
Method

Brush
Biking

CleanAnd Frisbee Horse Long Playing
Punch Skiing Taichi

Dataset Teeth Jerk Catch Race Jump Dhol

I3D/

UCF101

Baseline1 71.0% 76.2% 87.5% 88.0% 70.2% 74.9% 91.3% 82.5% 81.7% 86.0%

Baseline2 80.5% 83.0% 86.2% 85.0% 76.2% 78.5% 84.2% 86.0% 87.4% 88.0%

Ours 95.0% 90.4% 93.6% 91.7% 89.5% 94.0% 92.3% 96.5% 94.4% 93.8%

5 10 15 20 25 30
Poisoning Percentage (%)

0

20

40

60

80

100

At
ta

ck
 S

uc
ce

ss
 R

at
e

(%
)

UCF101 with C3D
UCF101 with I3D
HMDB51 with C3D
HMDB51 with I3D

(a)

4 8 12 160

20

40

60

80

100

At
ta

ck
 S

uc
ce

ss
 R

at
e

(%
)

UCF101 with C3D
UCF101 with I3D
HMDB51 with C3D
HMDB51 with I3D

(b)

Figure 5.4. Attack success rate vs. poisoning percentage (a) and perturbation bound
ϵ (b) on the UCF101 and HMDB51.

percentage. The poisoning trigger size is 20× 20 out of the 320× 240 video frame.

We set trigger’s magnitude K = 10. We randomly select 20% videos from the source

category as the source video set Vsrc. We also randomly select 20% (as poisoning

151

percentage, ∼ 0.2% out of the entire training set) videos from target category as target

video set Vtar. The upper bound ϵ = 8. Table 5.3 summarizes the results of our 3D

poisoning attack applied to 9 randomly selected pairs of source/target video categories

in the UCF101 dataset against the C3D/I3D models. We can observe that our attack

achieves high success rates on both C3D and I3D models, even with a small poisoning

percentage, which shows both effectiveness and efficiency of our attack (note that

small poisoning percentage reflects high efficiency).

We also evaluate the attack performance with the varying poisoning percentage

and perturbation bound. As shown in Figure 5.4(a), the attack success rate also

increases as the poisoning percentage grows. Our poisoning attack still achieves high

success rates (>80%) even though the poisoning percentage is only 15%. This is

consistent with the former results. From Figure 5.4(b), we observe that the attack rate

at first increases and then does not change as perturbation bound increases from 8 to

16. This is because the craft poisoned video will be easier with a high perturbation

bound. Note the perturbations with poisoned video are still small (8 out of 255).

3) Comparison with Baselines. Table 5.4 demonstrates the results of our 3D

poisoning attack applied to the UCF101 dataset (against the I3D model) comparing

with the two baselines [183, 184], denoted as “Baseline1” and “Baseline2”. We set

“Apply EyeMakeup” as the target category, and the source categories (e.g., “biking”)

as [184]. The trigger size is 20× 20 and the poisoning percentage is 30%.

As shown in Table 5.4, our attack achieves high success rates (>89%). For

example, our attack can achieve 95.0% success rate on the source category of “Brush

Teeth” and 90.4% on the “Biking” while Baseline1 only achieves 71.0%(<95.0%) and

76.2%(<90.4%) on such two categories, respectively (the third and forth columns).

Moreover, comparing the remaining results, we can observe that our 3D poisoning

attack can perform much better than both baselines. Such results are reasonable since

152

our attack obtains good attack generalization for crafting poisoned videos.

Attack Transferability. For poisoning attack, we refer to the tranferability of

poisoned data to be applied to another model. Then we evaluate the transferability

of our attack compared with baselines (the same notations as above). Specifically,

we choose one model (e.g., C3D) as substitute to generate poisoned videos, and we

evaluate attack success rate on another model (e.g., I3D) trained with the poisoned

videos, and vice versa. Figure 5.5 summarizes the overall results. The results show

that our poisoning attack obtains high transferability across different models while the

baselines lack such transferability (no more than 12% success rate). For example, our

attack can achieve 50.5% success rate while Baseline1 only 8.6% on UCF101 dataset.

Such results are reasonable. Considering the conventional poisoning attacks focus

on the feature collision [183,184] with fixed feature extractor function, the poisoning

attack only obtain less transferability (the feature extractor of different models can be

different, i.e., one successful crafted poisoned video for one feature extractor may not

work for another). On the contrary, our attack can craft the poisoned videos (ensured

by Eq. 5.10) which obtain good generalization and transferability. This also conforms

with the previous results.

C3D->I3D I3D->C3D
UCF101

0

20

40

60

At
ta

ck
 S

uc
ce

ss
 R

at
e

(%
)

C3D->I3D I3D->C3D
HMDB51

0

20

40

60 Baseline1
Baseline2
Ours

Figure 5.5. Attack transferability of our attack vs. baselines.

153

Computational Overheads. Table 5.5 demonstrates the average running time for

crafting 10 poisoned videos for 8 randomly selected pairs of source/target category in

the UCF101 dataset. From the table, we can see that the average running time for

one videos is around 1 minute at most. Considering our poisoning attack only injects

very small number of poisoned videos, the computation overhead for crafting poisoned

video is tolerable.

Table 5.5. Average runtime for crafting poisoned videos (sec).

Biking/ CliffDiving/ Fencing/ Hammering/ LongJump/ Knitting/ Punch/ Skiing/

HairCut Rowin JumpingJack Archery SKiing Punch Typing Tachi

35 39 28 62 47 35 40 32

5.6.3 Attack Stealthiness. Recall that we reveal stealthiness issue of current

poisoning attacks at inference phase can be caused by the highly-deviated poisoning

trigger. That is, the videos patched with poisoned trigger can be easily identified by

human (visual impact) or detection schemes. Thus we evaluate the stealthiness of

our attack on the following aspects. For visual impact, we conduct both quantitative

and human study. We adopt the state-of-the-art detection scheme for detecting the

poisoning trigger.

1. Quantitative perceptual metric, i.e., SSIM [202].

2. Human-imperceptibility survey study.

3. Video poisoning detection, i.e., AdvIT [114].

1) SSIM. Structural Similarity (SSIM) is a perceptual metric to quantify the visibility

of errors between a distorted image and the original image based on the degradation

of structural information [202]. The range of SSIM is (0, 1]. A higher SSIM value

indicates a better quality of the distorted image. Then we can utilize SSIM to quantify

154

the visual impact of poisoning trigger. We choose the average SSIM for all the frames

of one video as the SSIM of the video. Recall that our poisoning trigger is upper

bounded by K (Equation 4.3). We set K as {5, 8, 10, 12}. Next, we randomly choose

100 poisoned video with one 3D trigger from each category, and average the SSIM as

the final result.

Table 5.6. Average SSIM of 100 poisoned videos with varying K.

K 5 8 10 12

SSIM 0.997 0.994 0.986 0.984

In Table 5.6, the SSIM of the videos is very close to 1, which shows that the 3D

poisoning trigger rarely affects the visual information. Thus, the attacker can simply

adjust the parameters of the poisoning trigger function (e.g., K) with no significant

visual changes in the poisoning attack. Note we also conduct extensive ablation study

of 3D poisoning trigger in Section 5.6.4.

2) Human study. We conducted a human survey study to evaluate whether our

poisoning attack could cause visual effect to humans (with the IRB exempt approval).

For the setup of study, we first generate the videos (including original videos,

patched videos with trigger) by our attack. Specifically, we randomly pick 500 videos

from the UCF101 and HMDB51 datasets. To avoid bias on the distribution of data

samples, we first randomly choose 250 videos to generate 250 pairs of videos (the

poisoned videos and original clean videos), and the remaining for 250 pairs of clean

videos and their duplicates. Then we distribute an online survey to 50 anonymous

students (not record any personal information, e.g., major, age or gender), which ask

each participant to annotate 10 pairs of videos as (“visual difference” or “no visual

difference”). Finally, we received 490 valid annotations of video pairs (49 students

have submitted their results), including 244 poisoned pairs. Figure 5.6 demonstrates

155

the results (left-side). We found that 97.5% (238) out of such 244 poisoned videos

are annotated as “no visual difference”, while only 2.5% are identified (as “visual

difference”). There also exist 8 annotations identified as “visual difference” in the

remaining 246 pairs of original videos and their duplicates.

Clean Poison
Ours

0

20

40

60

80

100

Pr
op

or
tio

n
(%

)

Clean Poison
Baseline

0

20

40

60

80

100
No Difference
Visual Difference

Figure 5.6. Results of human survey on our attack vs. baseline [184].

We also repeat the same group of study for baseline attack [184] but selecting

different videos from the dataset, which aims to avoid the connection with the previous

study for our attack. That is, the previous annotation of our attack will enable

the participants to have prior knowledge and then make biased annotation on the

same pair of videos for baseline attack (vice versa). From Figure 5.6, we observe

that 63.8% (157 out of 246 valid poisoned videos) are identified by the same group

of participants. All the above results have indicated that our attack achieve high

human-imperceptibility (significantly better than the baseline [184]).

Figure 5.10 gives two example pairs of source and target videos in categories

“PlayingDhol” and “Apply EyeMakeup”. Due to strictly bound perturbations, the

poisoned target video is visually similar to the target video. The patched source video

with 3D poisoning trigger is also very similar to the clean source video.

3) Poisoning detection. Recall that we observe the poisoning triggers can directly

156

cause the stealthiness issue by temporal video frame. We adopt a state-of-the-art

detection scheme AdvIT [114] to detect the video patched with poisoning trigger

(thus validate the limitation of previous attack [184]). AdvIT is originally designed

to identify adversarial perturbation in the videos. Based on the assumption that

perturbations can destroy the video frame consistency, AdvIT can find the temporal

inconsistency among video frames by the optical flow information.

We identify the poisoning triggers of highly-deviated pixels [184] could be

potentially destroy temporal inconsistency of video frames as adversarial perturbations.

Then we adopt AdvIT to detect the poisoning trigger in the videos. Specifically,

AdvIT first utilizes a DNN-based optical flow estimator, i.e., FlowNet [203], which

can compute the optical flow information of suspicious video (usually a few video

frames since the poisoning trigger is patched on the whole video). Then such optical

flow information can be used to reconstruct some pseudo frames. We can output a

inconsistency score between the suspicious video frames and pseudo video frames.

Since the perturbations/triggers usually consists of deviated pixels, the optical flow

information along with video frame will be destroyed. That is, the higher inconsistency

score, the higher possibility poisoning trigger’s existence. Note that the trigger is

usually fixed, e.g., bottom right. We can always separate the video with different

regions for more precise detection.

Table 5.7. SSIM and Detection AUC of AdvIT.

Trigger

Dataset UCF101 HMDB51

SSIM AUC SSIM AUC

Baseline1 0.804 98.5% 0.822 99.3%

Baseline2 0.841 99.2% 0.865 98.4%

Ours 0.956 61.3% 0.973 58.6%

In the experiments, we choose other two types of poisoning trigger from the

157

baselines: i) randomly generated static trigger [183]; ii) universal adversarial trigger

from video poisoning attack [184] for comparison. We fix the trigger size as 20×20 and

patch location is bottom right (as fixed in [184]). we randomly select 400 clean videos

from the UCF101 and HMDB51 (200 each dataset), and apply both our 3D poisoning

trigger and two baselines’ trigger to generate patched videos. We set the upper bound

of poisoning trigger to be K = 8. We report the Area Under Curve (AUC) values of

AdvIT for detecting trigger and the average SSIM values of the corresponding videos

for detection in Table 5.7 .

From the table, we can observe that the SSIM of our poisoned videos is close

to 1, which shows that our 3D poisoning trigger rarely affects the visual information.

Besides, the AUC values of ours are close to random guess (e.g., 61.3% for UCF101

dataset) while all other two baselines can be almost fully detected by AdvIT (the

AUC values are close to 1). This is reasonable since the temporal consistency could

be destroyed with the baseline’s (highly deviated pixels).

5.6.4 Understandings of 3D Poisoning Trigger. We also perform ablation

studies with 3D poisoning trigger in aspects of the stealthiness and attack performance

with various trigger size, upper bound and patched location. Specifically, for every

experiment, we will vary one parameter independently while fixing others and report

the corresponding results. Figure 5.7 first visualizes the 3D poisoning trigger patched

on 16 consecutive frames of the video.

Table 5.8 shows the attack performance of various trigger parameters on

UCF101. We observe that both upper bound K and trigger location do not influence

our attack performance much. Then we can adjust the trigger location to match with

the background/objects (to improve stealthiness). Moreover, we see that the increase

of trigger size can slightly improve the attack performance (as a larger trigger patch

can help construct adversarial subspaces and attack easier to some extent), which also

158

degrades stealthiness.

Table 5.8. Attack performance vs. varying trigger parameters.

Trigger Size K

10 20 30 8 10 12

82.3% 82.7% 83.0% 82.7% 82.7% 82.6%

To evaluate the effect of patched trigger location on the attack performance,

we choose 5 different locations, i.e., top/bottom + left/right and center on the video

frames. We perform the same attack evaluation as previous experiments and report

attack success rate. Trigger size is 20. Poisoning percentage is 20% and upper bound

is 8. Table 5.9 shows that trigger location cannot impact the attack performance

too much. This is reasonable since the poisoning trigger will not directly be used

for crafting poisoned videos to cause feature collision (as a backdoor in the victim’s

model). Besides the temporal consistency, we can further utilize the natural-like

texture of our proposed trigger to increase the stealthiness, i.e., match the trigger with

the background or the objects. The SSIM values of our poisoned videos also validate

this point.

Table 5.9. Attack rate (AR) vs. varying trigger locations.

Location
Top

Left

Top

Right

Bottom

Left

Bottom

Right
Center

AR 82.6% 83.1% 83.0% 82.7% 82.9%

5.6.5 Resistance of Attack against Defenses. Besides adopting video

detection scheme (Section 5.6.3), we also conduct extensive experiments to evaluate

the resistance of our attack by adopting several state-of-the-art defense schemes: i)

Fine-Pruning [187]; ii) Neural Cleanse [188]; iii) Spectral Signature [186], respectively.

Additionally, we also design an adaptive defense scheme to fully evaluate the proposed

poisoning attack.

159

Figure 5.7. One example visualization of 3D poisoning trigger (the first 12 consecutive
frames). Trigger size: 30× 30.

Fine Pruning. We evaluate the resistance of all three attacks against the state-of-

the-art Fine-Pruning [187]. We set the poisoning percentage to be 30%. The trigger

size is 20 and upper bound is 8. We train C3D with the poisoned UCF101 dataset

compared with other two baselines. For pruning, we prune the last convolutional layer

of C3D model (i.e., Conv5b 512) to evaluate the corresponding accuracy and attack

success rate. As shown in Figure 5.8(a), the attack success rates of both baselines

drop drastically when 30% neuron are removed, e.g., Baseline1 from 84.2% to 30.4%.

While our poisoning attack can still maintain 80% attack rate, which shows that our

attack is more resistant to the neural pruning.

Neural Cleanse. Neural Cleanse [188] can detect whether a trained model is poisoned

or not, where it assumes the training instance would require minor modifications by

the attacker. The tested model by Neural Cleanse will output an anomaly index

(score) and a score higher than 2 indicates the poisoned model with backdoor trigger.

We set the poisoning percentage to be 30%. The trigger size is 20 and upper bound is

8. We train both C3D and I3D model with the UCF101 dataset, respectively. Then

we apply Neural Cleanse to detect both C3D and I3D model trained with the UCF101

dataset (by our attack). From Figure 5.8(b), we can observe that Neural Cleanse fails

to detect the poisoned model for both cases, i.e., anomaly index <2 (>2 indicates

160

detected poisoned model) [188].

0.0 0.1 0.2 0.3 0.4 0.5
Fraction of Pruned Neuron

0

20

40

60

80

100
Su

cc
es

s R
at

e/
Ac

cu
ra

cy
 (%

)

Ours-Attack Rate
Baseline1-Attack Rate
Baseline2-Attack Rate
Ours-Accuracy
Baseline1-Accuracy
Baseline2-Accuracy

C3D I3D
Model

0

1

2

3

An
om

al
y

In
de

x

Poisoned
Clean

Figure 5.8. Attack results against defenses. Left: Fine-pruning [187]. Right: Neural
Cleanse [188]

Spectral Signature. We also apply one state-of-the-art detection scheme Spectral

Signature [186], to detect the poisoned data in the training dataset, of which the

intuition is that the poisoned data can be outliers in some latent spaces (thus can be

removed). It uses statistical methods, e.g., SVD to detect the posioned samples as

outliers. For experimental setup, we evaluate this scheme with the C3D model on the

UCF101 and HMDB51 dataset, respectively. We set the poisoning percentage of the

training dataset as 30% as a higher ratio. The trigger size is 20 and upper bound is 8.

Then, we apply the detection on the 1000 videos in UCF101 dataset (consisting of 800

clean target videos and 200 generated poisoned videos) and 500 videos in HMDB51

dataset (400 clean target videos and 100 poisoned videos). Figure 5.9 demonstrates

the detection results. From the figure (lefthand), taking UCF101 as an example, we

observe that the detection method can only identify a small percentage (∼11%) of

poisoned videos while also reporting false positive rate (∼9%) from the clean videos.

The result of HMDB51 shows similar results. The above results indicate that such

detection cannot mitigate our attack. Also, the attack success rate only downgrades

161

about 4% even we remove the poisoned data as experiments and retrain the model.

Note that the two baselines also report the similar results for this detection.

Clean Poisoned
UCF101

0

200

400

600

800
Nu

m
be

r o
f I

ns
ta

nc
es

Clean Poisoned
HMDB51

0

200

400

600

800
Original
To Be Removed

Figure 5.9. Detection results of Spectral Detection [186].

Adaptive Defense. To fully evaluate our proposed attack, we also adopt current

defense method as adaptive defense to tailor with the attack properties [139]. That

is, we facilitate the defender with the knowledge for the 3D poisoning attack, e.g.,

the computer graphic primitive procedural noise is utilized for constructing poisoning

triggers for our 3D poisoning attack. For the defense method, we improve Spectral

Signature [186] by applying procedural noise-based poisoning triggers to its learning

scheme.

Specifically, the defender will generate poisoned video samples with the proce-

dural noise as a part of the training set for the detector. Thus it would potentially

increase the detection performance considering the detector could achieve more general-

ization with the newly added poisoned videos. Since the defender does not necessarily

know the poisoning trigger parameter, we assume that the poisoning triggers are

randomly generated and patched on the videos. We follow the same setting as the

detection experiments above. We report the final detection results in Table 5.10 for

both UCF101 (first row) and HMDB51 (second row) dataset, respectively. From the

162

(a) Clean Target Video (b) Clean Source Video

(c) Poisoned Target Video (d) Patched Source Video

Figure 5.10. Visualization of selected frames of clean target video (a), clean source
(b), poisoned target video (c), and patched source video (d) of one specific pair, i.e.,
“Apply EyeMakeup” and “PlayingDhol”. With strictly bounded perturbation, the
poisoned target video (c) is visually no difference compared with the clean target
video (a), but close (in feature space) to the patched source video (d) with 3D
poisoning trigger, where the trigger (in “red frame”) is human-imperceptible.

table, we can observe that adaptive defense achieves a higher detection rate and also

a lower false positive rate on both datasets, e.g., 27% > 11% and 5.6%>9%. Such

results show that the adaptive defense can defend our attack to some extent. However,

our proposed attack can also change its attack strategy, such as adjusting trigger

generation function with another procedural noise to bypass the detection, which

would require more robust and adaptive defense schemes.

Table 5.10. Detection results of adaptive defense on UCF101 and HMDB51

Clean Poisoned Removed Clean Removed Poisoned

800 200 47/5.6% 53 /27%

400 100 15/3.8% 32 /32%

5.6.6 Application on Image Poisoning Attack. Considering that the image

can be viewed as a one-frame video, we can simply extend our 3D poisoning attack

to images, i.e., downgrading the 3D poisoning generation to the 2-dimension by

setting the time dimension to be 1. Then, we implement our poisoning attack on

the CIFAR10 dataset [204] by benchmarking with the recent image poisoning work,

163

“Baseline2” [183]. Under same experimental setting of the baseline attack (see details

in [183]), we choose 10 randomly selected pairs of image categories, such as bird-dog,

dog-plane and cat-truck (specific information of image categories pairs refers to Table

7 in [183]). The model is a simplified AlexNet which has four convolutional layers

(64, 192, 384, and 256) kernels and two fully connected layers (512 and 10) neurons.

The size of poisoning trigger 8× 8 and the bound of trigger is 16. The size of images

evaluation dataset for each category is 1000. We average all the success rates of 10

randomly selected pairs via our attack compared with the baseline attack.

We present the attack results for four representative pairs of image categories

in Table 5.11. We observe that our downgraded 3D poisoning attack can still achieve

high success rate on the image compared with the baseline. Such results have shown

the flexibility and effectiveness of our attack. Again, our poisoning attack can also

ensure the stealthiness of poisoning trigger in the inference phase, whereas the baseline

only focuses on hiding the poisoning trigger prior to training and still reveals the

trigger pattern for testing.

Table 5.11. Comparison of attack results on the CIFAR10. Baseline attack [183].

Source/Target bird/dog dog/ship frog/plane cat/truck

Baseline 94.3% 87.6% 90.1% 93.0%

Ours 92.7% 90.4% 90.8% 94.4%

5.7 Discussion

We will discuss the potential mitigation of our 3D poisoning attacks and

advanced attacks to motivate more robust defense schemes as the following.

Potential Mitigation. Considering the poisoning attack is a data-intensive attack,

The potential defense schemes can be studied in the following aspects: 1) the detection

of input videos with poisoning trigger during the inference phase, e.g., utilizing the

164

property of trigger in the video domain; 2) the data filtering/detection of the poisoned

training data (training phase), e.g., using the adversarial outliers of poisoned training

data; 3) the certified robustness [122,167,205] against poisoned training data. The

first two aspects aim to detect or mitigate the poisoning attack empirically with

state-of-the-art schemes, while the last one is theoretical defense scheme against norm-

bounded adversarial attack. Considering that the poisoning attack could depend on

some intrinsic attributes, e.g., attack by the feature collision of feature representations,

we may extend such certified robust scheme to defend against poisoning attacks.

Detection. Recall that we have designed a detection scheme adopting from AdvIT

[114], it could effectively detect the poisoned instances with poisoning trigger of the

baselines. Thus, to mitigate the risks of the proposed attack, we may utilize the

knowledge of the procedural noise as the main defense primitive. That is, we could

utilize the procedural noise as the defender’s knowledge to revise/adopt the current

poisoning or adversarial detection schemes adaptively, such as Spectral Signature [186],

AdvIT [114]. We have shown an adaptive defense method based on spectral signature,

which can defend against our attack to some extent. Alternatively, we can revise

the AdvIT to train a detector by adding procedural noise to increase the detection

accuracy, e.g., to enable the detector to memorize the change of optical flow aroused by

the procedural-based trigger. We can also leverage ensemble-based [206,207] method

to improve the performance of the detector. For instance, we can choose multiple

video models as base models to train multiple detectors and then get an average score

for detecting the poisoned videos. Finally, we could leverage a reference database to

classify the poisoned videos by k-NN. However, it could bring extra both storage and

computational overheads.

Certified scheme. Certified robustness [122,167] schemes have been shown to defend

against adversarial attacks with additive ℓp bounded perturbations theoretically. More

165

specifically, the certified scheme, e.g., random smoothing [122], can provide consistent

predictions with guarantee for some norm-bounded input sets around one data instance,

i.e., ℓp ball. That is, such ℓp ball could provide a “safe” space to resist such adversarial

perturbed inputs. Similarly, we can enforce the trained classifier to form a “anti”-

convex polytope [167] against such convex polytope-based poisoning attacks. That is,

we can utilize the randomized smoothing method provided by certified schemes to trap

the poisoned training data with a larger convex polytope. Thus after training, the

model can still classify the poisoned video into the correct label instead of wrong label

with high confidence. However, it should be noted the curse of high-dimensionality [165]

still exists for certified robustness scheme, e.g., randomized smoothing, especially in

video domain. We will work in this direction.

Advanced Attacks. We propose a general attack framework based on 3D poisoning

trigger, which can improve the stealthiness of poisoning attack in the video domain

(new modeling of poisoning trigger). Besides, our framework also integrates new attack

ensemble to improve attack performance in both generalization and transferability.

This can bring more flexibility. For example, there will be some new or unknown video

models (black-box), we can attack such models with the transferability. Also, our 3D

trigger attack framework can also readily integrate other new attack optimizations or

powerful attacks from adversarial attack domain in the future to obtain more attack

performance. Note our poisoning attack can achieve good human-imperceptibility

(according to the quantitative or human servery results), we can also further integrate

our attack into the physical-world attacks [182,208] based on the natural-like texture

or style of poisoning trigger. For example, we can utilize visual light technology, such

as smart LED [209], which could help to realize 3D poisoning trigger by programmable

building blocks. This can pose a practical threat in the physical world.

166

CHAPTER 6

PRIVACY EVALUATION OF LANGUAGE MODELS

6.1 Introduction

With the development of deep learning technologies, a large number of ap-

plications in various domains (e.g., image classification and NLP) have been greatly

promoted with significantly improved performance. However, this also arouses serious

privacy concerns since a large portion of the training data are usually collected from

individuals. For instance, the diagnosis systems in hospitals or healthcare institutions

will be trained on the patients’ private data, such as medical history [210], and radiol-

ogy medical images [211]. In addition, it has been reported that the input keyboard

prediction model can be trained with the users’ data on mobile devices [212], and

the assisted composing function for emails/texts can be trained with users’ personal

messages [213].

The privacy-enhancing technologies (PETs) [214–217] have been widely stud-

ied to ensure the data privacy in the machine learning, which mainly include two

foundations of theory as following. First, the cryptographic protocols [216,218] can

help to securely train the model with the private data (in encrypted format), and

the privacy of data depends on the hard mathematical problems [219]. Although the

cryptographic protocol-based schemes provide good data privacy, these also arouse

high computational overheads due to the computation on encrypted data and other

complicated building blocks.

Second, differential privacy (DP) [220, 221] provides a lightweight way to

protect the data against the adversaries with arbitrary information during the training,

which can obtain quantifiable privacy guarantees. For example, the widely used DP-

SGD [222,223] ensures the privacy of training data sample by clipping the gradients

167

and adding DP noise (e.g., Gaussian mechanism) with the model updates. The

introduction of DP noise enables the limited effect of one individual data on the

trained model (and thus achieving the privacy guarantee). Additionally, another

category of work is to add DP noise into the dataset following the method of DP

synthetic data release and then train a model on such private data [224,225]. Yet, the

differential privacy-based learning schemes could cause great accuracy loss.

Despite the above demerits, both types of methods can ensure provable privacy

guarantees for the training data. This also raises the question: are there any private

learning schemes which can preserve both accuracy and efficiency? To this end, there

are several techniques [226, 227] which privately train the model via the so-called

instance encoding scheme, by encoding the local data into a somewhat “encrypted”

(encoded) data with a mixup scheme [228], and directly training the model on the

encoded data. Data privacy is claimed to be well preserved through the encoding

method while only causing minor accuracy loss with the merit of the mixup scheme.

In aspect of the privacy issues with instance encoding, we conduct compre-

hensive and empirical studies for such method in the language domain. The main

contributions are highlighted below.

• We first show that the instance encoding cannot provide sufficient privacy

protection as the conventional cryptographic techniques against well-designed

attacks. We design a reconstruction attack to recover the original data from

the privately encoded data to demonstrate the limitation of instance encoding

(Section 6.4). 9

• We then improve the TextHide with differential privacy and prove the improved

scheme ensures theoretical privacy guarantee under the differential privacy

9This work is published in EMNLP [229].

168

framework (Section 6.5). 10

6.2 TextHide

The TextHide [226] aims to protect the private text data under the federated

learning setting. First, the input text is pre-processed with a BERT transformer

encoder to output the corresponding text representation. Then, for “encryption”,

TextHide will apply the instance encoding to mix up the original text representation

with some randomly selected text (representations), which will be fed into the training

model of various downstream language understanding tasks, e.g., classification, and

question answering. Formally, given the input text xi with the label yi, we denote the

text representation as ei = ϕ(xi), where ϕ(·) is a pre-tuned BERT model. The private

instance encoded data ẽi can be generated as below:

ẽi = σ ◦
K∑
j=1

λjej (6.1)

where λj is chosen uniformly at random such that
∑K

j λj = 1, the sign-flipping

mask σ ∈ {−1, 1}d is also chosen uniformly at random, and d denotes the dimension

of the encoding vector. ◦ represents the Hardamard (element-wise) multiplication,

and K is the number of combined mix encoding data (as the security parameter).

Therefore, the label (one-hot vector) ỹi of the ẽi is updated as: ỹi =
∑K

j=1 λjyj , which

is the element-wise addition across yj. Then, for the training with one data batch

B, each data (xi, yi) ∈ B will be privately encoded as Equation 6.1, where the K

data for mixup are randomly sampled from the batch B. TextHide also specifies

another parameter m as the size of the mask pool to facilitate the security of instance

encoding against the reconstruction attacks. These formalize the (m,K)-TextHide

10This preliminary work is published in NAACL [230].

169

(Algorithm 1 in [226]), which can be integrated into the language training process

to ensure text privacy. For instance, (m = 0, K = 1) is the baseline training setting

without protection. A larger K will sacrifice some accuracy while improving the

privacy (higher costs on recovering the original data), which reflects the trade-off

between privacy and accuracy for private training.

Furthermore, TextHide can utilize another datasetXpublic (usually a large public

corpus, e.g., Wikipedia) for mixup, where such mixup works similar to a random

oracle in the cryptography domain.11 Specifically, TextHide will mix up about one

half ⌊K/2⌋ public data with the private original data, then Equation 6.1 is updated

as:

ẽi = σ ◦ (
⌊K/2⌋∑
j=1

λjej +
K∑

j=⌊K/2⌋+1

λje
p
j) (6.2)

where epj = ϕ(xpj), x
p
j ∈ Xpublic (randomly sampled). As a consequence, the

mixed label ỹ is computed by normalization with the labels of the private data (public

data usually do not have labels):

ỹi =

∑[K/2]
j=1 λjyj∑[K/2]
j=1 λj

(6.3)

In practice, given the original training dataset (denoted as X), each data

(xi, yi) ∈ X will be encoded for n times (usually equal to the number of training

epochs).

6.3 Related Work

6.3.1 Privacy Attacks in ML. Privacy attacks against machine learning mainly

11The privacy notion provided by mixup in TextHide is based on a k-vector subset
sum [231] oracle, which would require O(nk/2) efforts to break.

170

consist of two categories: 1) membership inference attacks (MIA) [232–234]; 2) data

reconstruction or extraction attacks. On the one hand, membership inference attacks

(MIA) [232,235,236] have worked as state-of-the-art attack scheme due to its simpleness

and effectiveness, where an attacker can determine whether a data point was used

to train the ML model or not. Such MIAs have been commonly used for auditing

training dataset privacy [237].

On the other hand, as a stronger attack primitive, data reconstruction attacks

[238–241] usually refer to the attacks that could utilize auxiliary information (e.g.,

background knowledge) and counter measures to reconstruct or extract the original

private data. For example, model inversion attacks [235] or data extraction by

memorization [242] could extract private information of training dataset by querying

the target model without access to dataset. Another example is that the attacker can

utilize gradients to recover data [240,243].

Our attack on TextHide works closely as the reconstruction attack [241,244],

which aims to reconstruct the original data/information from the protected data

(privately encoded data). Note that Carlini et al. [241] attacks the instance encoding

on images while we extend this method to the language understanding domain.

6.3.2 Privacy-Enhancing Technologies (PETs). As data privacy risks become

an emerging issue, there have been a number of research works, namely, privacy-

enhancing technologies (PETs) focusing on the data protection in the machine

learning [215, 218], including the two main directions as following: 1) designing

secure computation protocols with cryptographic building blocks to secure the data-

in-use [216, 218, 245], which could achieve “perfect” secrecy but bring both extra

computational and communication costs; 2) improving the privacy of machine learning

algorithm with differential privacy [223,224]. For example, a Näıve Bayes classifier

can be trained by applying Laplace noise on the dataset by computing proper sensi-

171

tivity [224], which will be further utilized to add Laplace noise to satisfy DP notion.

Another popular but different scheme, DP-SGD [223] applies the Gaussian noise into

the gradients of a single data sample during the model training, which aims to bound

the influence of such one individual data sample under the paradigm of differential

privacy. It is worth noting that there have been recent works in NLP [246–249], which

aim to empirically train/fine-tune language models to satisfy DP notion.

Both categories of privacy-enhancing schemes above can provide provable

privacy guarantee for the training data. However, the instance encoding scheme

may not obtain such privacy guarantee. As mentioned earlier, the instance encoding

scheme [226,227] was proposed to protect the training data’s privacy by mixing up

input data [228]. The paper claims that such scheme can preserve data privacy while

maintaining good data utility. However, recent data reconstruction attacks [241]

have shown that instance encoding lacks provable privacy guarantee. That is, the

“indistinguishability” definition of privately encoded data is rather spurious, which

does not comply with the concept of indistinguishability in either cryptography or

DP. For example, the security of asymmetric encryption scheme could be theoretically

proven by a security game (defined as IND-CPA [250]) where no adversary can

win the game with significantly greater probability than an adversary with random

guessing. Similarly, differential privacy [220, 223] also presents the individual data

with deniability that attacker cannot differentiate it with some probability bound.

Considering that TextHide fails to provide such privacy guarantee, it can be broken

by the carefully designed attacks and leak the private data [229,241].

6.4 Empirical Study 1: Privacy Attack Evaluation

6.4.1 Attack Setting. We assume that the attacker have full knowledge of the

public dataset Xpublic and the embedding model for downstream ML tasks. Besides,

we assume that the attacker can obtain the private dataset (but unaware of the specific

172

data for the training). Note that we need to consider the worst case (attacker) to

evaluate the vulnerabilities of the privacy-enhancing schemes. That is, the strong

knowledge (e.g., embedding model and private training dataset) can be accessed by a

skilled attacker armed with any background knowledge. For instance, such private

training dataset can be machine-generated. Specifically, if the dataset involves personal

conversations, then the attacker can utilize some language models to generate a large

set of commonly-used dialogs as the private training dataset. The attacker can also

leverage some advanced inference attacks, e.g., side-channel or public essays to derive

some sentences.

6.4.2 Attack Goal. Given a privately encoded dataset Ẽ (including the mixed

label ỹ), the attacker aims to reconstruct the original data vector e ∈ E , where E

is the set of the original data vectors. W.l.o.g., we consider the basic mixup case

that the two original data vectors are used for private encoding, i.e., for one encoded

data ẽi, it will be constructed on two original data ej1 and ej2 . Then, we denote a

mapping function for the attack as Am : ẽi ∈ Ẽ → {ej1 , ej2} ∈ E × E . Thus, given

Am(ẽi) = {ej1 , ej2}, the attacker seeks to derive such mapping function. Note that

our attack focuses on reconstructing the text representation vectors (processed by

the language understanding model, e.g., BERT) and then we can utilize the model

inversion attack [240] to recover the raw text, i.e., xi = ϕ−1(ei).

6.4.3 Attack Methodology. Our proposed attack consists of three main steps:

1. Removing the sign-flipping mask σ. We first nullify the sign-flipping step for

encoding by taking the absolute value of the encoded data ẽ ∈ Ẽ as:

Ẽ ← {abs(ẽ), ẽ ∈ Ẽ}. (6.4)

2. Revealing the mapping function Am to map the encoded data vector Ẽ to the

original data vector via clustering (Section 6.4.3.1).

173

3. Reconstructing the original text representation vector ei (by computing the λi)

given the mapping function Am (Section 6.4.3.2).

6.4.3.1 Revealing Mapping Function. The main procedure of this step is

clustering the encoded text vectors and mapping the clusters back to the original

text vectors. Given a set of original data instances |X| and every data instance will

be encoded n times. Since each encoded text vector ẽi is corresponding to the two

original data (i.e., Am(ẽi) = {ej1 , ej2}), the clustering result would expect to be |X|

clusters of size 2 ∗ n encoded data vectors (the size of encoded data Ẽ is |X| ∗ n).

1) Compute Similarity Score. For the cluster of Ẽ , we first compute a similarity

score s ∈ [0, 1] among the two privately encoded data ẽi and ẽj : if Am(ẽi)∩Am(ẽj) ̸= ∅,

s = 1 (or close to 1), otherwise 0 (or close to 0). To compute the similarity score

s, we train a neural network model f(·) by inputting two privately encoded vectors

(ẽi, ẽj), and f(ẽi, ẽj) = {0, 1}. The two vectors will be stacked together (e.g., for d× 1

encoded vector, the input will be d× 2).

Specifically, we utilize a vanilla MLP model trained with Adam (learning rate

0.01) on the cross-entropy loss. We use the MNLI dataset (around 393k examples with

all labels removed) [251] as the public dataset , and Corpus of Linguistic Acceptability

(CoLA) [252], and Stanford Sentiment Treebank (SST-2) [253] as the private dataset.

Then, we construct a large-scale training data pairs encoded with the above datasets

by TextHide, which are labeled accordingly (1 if encoded with the same original text

data; otherwise 0). The final model can achieve 94% accuracy.

Notice that reconstructing model f(·) by computing the similarity scores

between two privately encoded data is based on a key hypothesis: given any instance

encoding scheme which achieves a high accuracy, the privacy guarantee would be

somewhat weak (since the original information should be preserved with high accuracy).

174

In other words, if TextHide ensures high accuracy in the downstream tasks (e.g.,

sentence classification), then the instance encoded data can also be “learned” to

recover the original text data (model f(·) can be viewed as a downstream task in

NLP). We identify this as an intrinsic vulnerability of such instance encoding schemes,

which can be exploited to launch the reconstruction attack.

2) Clustering. Given the similarity model, we can compute the similarity scores

on all pairs of the encoded data (ẽi, ẽj) (|Ẽ |2 pairs in total). This procedure can be

computationally efficient. To find |X| clusters (exclusive), denoted the cluster set as

{Cp, p ∈ [1, |X|]} w.r.t. |X| original text vectors, we formulate the objective function

as:

max

|X|∑
p=1

∑
ẽi,ẽj∈Cp

f(ẽi, ẽj) (6.5)

Ideally, the size of each cluster should be exactly 2n, and any two encoded

data (ẽi, ẽj) in every cluster Cp should satisfy f(ẽi, ẽj) = 1 (or close to 1). Following

K-NN, we can design a greedy method to iteratively update |X| clusters by selecting

the encoded data which has the maximum average similarity score of all the data in

the cluster. Furthermore, we can audit each cluster by checking the similarity scores

among the encoded data and finally partition Ẽ into |X| clusters.

6.4.3.2 Reconstructing Original Text Vectors. After deriving the mapping

function from the encoded data to the original data, we can reconstruct the original

data. Roughly we can sum up the absolute values of all the encoded vectors mapping

to one given original data vector e and average it: e′ = 1
n

∑
abs(ẽi). The vector e′ is

approximately close to the original e based on two aspects: 1) the sign-flipping mask

σ is removed by taking the absolute values; 2) the values of other irrelevant mixup

text vectors can be “cancelled out” by the averaging (could also result in some noises

175

added into the vector). Thus, we need to ensure that the recovered result is close to

the original result with tolerable noises.

We first recover the values of the mix-up coefficients λ via the mix-up labels.

Specifically, we can get the list of λ with the mix-up labels since TextHide utilizes

one-hot vector labels. For example, given one TextHide label (0.4, 0, 0, 0.6), we can

directly derive λi, λj as 0.4, 0.6 (Figure 1 in [226]). Then, the attacker can directly

retrieve the values of λ. Note that there exists one special case: the mixed two data

could belong to the same class (the mixed label will only have one non-zero entry),

and thus we can consider λi = λj.

After we compute the value of λ, we can reconstruct the original vector e by

trying to inverse the mixup operation (Equation 6.2). Specifically, we denote Λ as an

|E| × |X| matrix. For each row of Λ, there are two non-zero entries i, j corresponding

to the two mixup values λi and λj (other entries are 0). Denote the original text

vectors as X = [e1, · · · , e|X|]
T (with dimension |X| × d), and the privately encoded

vectors as Y = [ẽ1, · · · , ẽ|E|]T (with dimension |E| × d). Then, Equation 6.2 can be

updated as:

Λ · X = Y + ϵ (6.6)

where ϵ denotes the potential introduced noises (X may not be exactly the

original one). To compute X , we can directly solve the above equation:

X = Λ−1 · Y + Λ−1 · ϵ (6.7)

Since the noise could subject to Gaussian distribution, the component Λ−1·ϵ ≈ 0

(the mean value would be close to 0, then we can average it). Furthermore, we can

176

formulate another optimization to minimize the “extra” noise ϵ:

min
X
||ϵ||22 s.t. ϵ = Y − λ · X (6.8)

Thus, with the minimization of the noise, we can accurately derive X (close to

the true value). It is worth noting that X includes the sign-flipping mask σ. Recall

that we nullify the mask σ by taking the absolute value, then Equation 6.8 can be

updated:

min
X
||ϵ||22 s.t. ϵ = abs(Y)− λ · abs(X) (6.9)

where abs is the element-wise absolute value function of the matrix X or Y.

To solve Equation 6.9, we can utilize the gradient descent to search the value of X ,

and thus compute the ϵ based a fit solution of X (w.r.t. the objective function ||ϵ||22).

Note that there may exist several values of ϵ to satisfy the constraints, then we can

heuristically search the value of ϵ entry by entry to get the smallest ||ϵ||22. Since the

attackers have the full knowledge of the pre-trained language model ϕ(·), we can

directly utilize model inversion attacks [235] to recover the original text.

6.4.4 Results and Analysis. We utilize the pre-trained BERTbase model by [254]12

as the language model to generate the text representations (the dimensionality d is

768). We evaluate our attack on two datasets for sentence classification: 1) Corpus of

Linguistic Acceptability (CoLA) [252]; 2) Stanford Sentiment Treebank (SST-2) [253]

(the private datasets). For the “public dataset”, we use MNLI daset [226]. We

utilize the open source code of TextHide (https://github.com/Hazelsuko07/

TextHide) to construct the private dataset. We vary the parameter k ∈ [1, 2, 4, 6] (the

12https://github.com/google-research/bert

177

K 1 2 4 6

CoLA 100% 88% 91% 93%

SST-2 100% 92% 95% 88%

Table 6.1. Attack success rate on the two datasets.

number of data for mixup). We keep the size of mask pool m = 1. Also, we evaluate

the attack performance on varying the size of mask pool m = [1, 16, 64, 256, 1024, 4096].

For each dataset, we randomly select 100 data points and generate 5000 encoded

data via TextHide. In our attack, we will try to reconstruct the original data from

such 5000 encoded data by instance encoding. We report the attack success rate (the

percentage of reconstructed data out of the original data). Note that our attack is

independent of datasets/applications and hyper-parameter free.

Table 6.1 illustrates the attack results (the percentage of recovering original

data) on the two datasets. We can observe that our proposed attack can almost

recover the text vectors (high success rate). Moreover, while TextHide claims that the

privacy will increase as K increases (while losing accuracy), the results show that the

value of K does not impact privacy much. Similarly, Figure 6.1 shows that the mask

cannot ensure privacy (but only increasing computational costs instead). Above all,

the text vectors cannot be simply viewed as “real-number” vectors since they may

still contain semantic meanings (features), which may help the attacker break the

security oracle more efficiently.

6.5 Empirical Study 2: Protection by Differential Privacy

A well-designed privacy-enhancing scheme must ensure provable privacy guar-

antee, and show its performance on data protection. Since TextHide is based on such

mixup encoding method, it would be possible to apply differential privacy [220] to the

178

21 23 25 27 29 211

Size of Mask Pool m
0

20

40

60

80

100

At
ta

ck
 S

uc
ce

ss
 R

at
e

(%
)

Attack Rate (K=2)
Time Costs (K=2)
Attack Rate (K=4)
Time Costs (K=4)

0

10

20

30

40

50

Ti
m

e
Co

st
s (

M
in

ut
es

)

Figure 6.1. Attack success rate vs. size of mask pool m

mixup encoding and thus to show similar indistinguishability of the privately encoded

instances. This can defend against our reconstruction attacks to some extent (at least

reducing the information disclosure). We then demonstrate the privacy practice on

the instance encoding with the differential privacy as the following.

6.5.1 Differential Privacy. As one main category of privacy-enhancing technologies,

differential privacy (DP) [220, 221] has been widely used as a de facto standard

notion in protecting individual’s data privacy for data collection and analysis [255],

especially in machine learning applications [223, 224]. The principle of the differential

privacy [220,221] is that an individual’s data point x in one dataset D will not arouse

significant change to the outcome of a randomized mechanism or algorithm applied to

the D. Thus, the attacker cannot make difference with such a specific data point x

by observing the outputs of D by the randomized mechanism, which thus provides

deniability for the existence of x (ensuring data privacy).

Formally, to define individual’s privacy, we first define the neighboring datasets,

i.e., D, D′ ∈ D are the neighbors if they only differs in one data point, denoted as

D ∼ D′. Then we define the DP notation as following:

179

Definition 6 (Differential Privacy [220, 221]). For any two neighboring datasets,

D,D′ ∈ D, a randomized mechanismM is said to be (ϵ, δ)-differentially private if it

satisfies the following equation:

Pr(M(D) ∈ O) ≤ eϵ Pr(M(D′) ∈ O) + δ (6.10)

where O denote all the events in the output space ofM. If δ = 0,M is ϵ-differentially

private.

In this work, we will utilize the Laplace and Gaussian mechanisms to guarantee

(ϵ, δ)-DP. The Laplace mechanism [220] adds the noise from Laplace distribution with

mean zero and scale parameter b, denoted as Lap(b) with density function 1
2b
exp

−|x|
b .

Formally, we have the following theorem:

Theorem 5 (Laplace Mechanism [220, 221]). Given any function f : D → Rd, the

Laplace mechanism is defined as ML(D, f, ϵ) = f(D) + N , where N is the random

noise drawn from Laplace distribution Lap(∆f
ϵ
), and ∆f is ℓ1 sensitivity. Laplace

mechanism satisfies (ϵ, 0)-DP.

Theorem 6 (Gaussian Mechanism [221,256]). Given any function f : D → Rd, the

Gaussian mechanism is defined asMG(D, f, ϵ) = f(D) +N , where N is the random

noise drawn from Gaussian Distribution N (0, σ2Id) with σ ≥ ∆f
√

2 ln (1.25/δ)/ϵ.

∆f is the ℓ2 sensitivity of function f , i.e., ℓ2 = supD∼D′ ||f(D)− f(D′||2. Guassian

mechanism satisfies (ϵ, δ)-DP.

6.5.2 DP Instance Encoding. Given a training batch of data samples of size M

B = {(x1, y1), (x2, y2), · · · , (xi, yi)}, i ∈ [1,M], which is randomly sampled from the

training set. TextHide will first encode every sample into a feature vector of dimension

size d by a pretrained feature extractor ϕ(·), i.e., vi = ϕ(xi). Then we can get the

corresponding batch of encoded feature vectors Be = {(v1, y1), (v2, y2), · · · , (vN , yN)}.

180

For original instance encoding, TextHide would mixup such set of size k vectors to

generate private encoded vectors as training data per Equation 6.1. To address the

privacy issue, we apply the differential private mechanism to such mixup process.

Algorithm 13 demonstrates the details.

Input: Batch of encoded vectors Be,

Number of mixed data samples k,

clip bound for encoder vectors C

DP NoiseM: Laplace,Gaussian

Output: Differentially private encoded vector set Bdp of size |Bdp|

1 Initialize DP mechanismM = {ML,MG}

2 Randomly sample K mixup coefficients: ΣK
i λi = 1, λi ∈ N (0, I)

// Instance Encoding by mixup

3 Randomly sample K data samples from Be

4 for i→ 1 to |Be| do

// Clip Input Vector

5 vi ← vi ·min(1, C
||vi||2)

6 if MG then

7 N ←s N (0, σ2Id)

8 else

9 N ←s ϵ
4C

exp
−ϵ|x|
2C

10 for j → 1 to |Bdp| do

11 ṽj ←
∑K

i=1 λivi +N

12 ỹj ←
∑K

i=1 λiyi

13 return |Bdp| private encoded data vectors

Algorithm 13: DP Instance Encoding

Theorem 7. The DP Instance Encoding revised with Laplace noise satisfies (ϵ, 0)-DP,

181

where the added noise NL is draw from Laplace distribution as following:

NL =
ϵ

4C
exp

−ϵ|x|
2C (6.11)

Proof. The proof complies with the original proof of Laplace mechanism [220, 221].

The instance encoding scheme with clipping works as the function f . The ℓ1 sensitivity

here is 2C since the maximum ℓ1 norm difference of two vectors are 2C (viewed as a

hyper-sphere of radius C). Then replacing ∆f with 2C in Laplace distribution, we

get the Equation 6.11. It has shown that adding Laplace noise sampled from Eq. 6.11

satisfies ϵ-DP [220], i.e., the DP instance encoding withML satisfies (ϵ, 0)-DP.

Theorem 8. The DP Instance Encoding revised with Gaussian noise satisfies (ϵ, δ)-

DP.

Proof. Similar to the previous proof for Laplace, we choose the Gaussian distribution

N (0, σ2) with mean zero and standard deviation σ2 = (
1+
√

2 log(1/δ)

ϵ
)2C2, where the

ℓ2 sensitivity is C. Note that the input vectors are multi-dimensional, and the noise

added will be drawn independently fromMG. Then we can derive that DP instance

encoding withMG satisfies (ϵ, δ)-DP.

6.5.3 Experimental Evaluation. For experiments, we would like to evaluate both

utility and privacy of the proposed scheme as the following: 1) utility of the private

instance encoding scheme, i.e., the performance (accuracy) of model trained on the

private dataset; 2) privacy guarantee of the scheme against reconstruction attacks,

i.e., the attack success rate (the percentage of reconstructed private vectors).

Dataset. We consider the sentence classification task with two popular datasets: 1)

Corpus of Linguistic Acceptability (CoLA) [252] (about 8500 training samples) for

acceptability; 2) Stanford Sentiment Treebank (SST-2) [253] (about 67000 samples)

for sentiment analysis.

182

Model Implementation. We use the pre-trained BERT model [254] as the language

feature extractor to generate the text representation vectors (the dimensionality d is

768). Note that TextHide will encode such representation vectors into the training

vectors for downstream tasks. For downstream task training, we follow TextHide

to choose a multilayer perceptron of hidden-layer size (768, 768, 768) since we take

TextHide as baseline.

Utility Evaluation. We will apply our scheme (including Gaussian and Laplace

mechanism, denoted as “DP-IE Gaussian” and ”DP-IE Laplace”, respectively) and

TextHide to the two datasets during training, and then report the model accuracy,

respectively. In addition, we will also demonstrate the accuracy of the raw dataset

(without any privacy protection scheme) for better utility comparison.

Privacy Evaluation. To fully evaluate the proposed DP instance encoding scheme,

we also utilize a privacy reconstruction attack [229] on instance encoding scheme.

Specifically, we first construct a set of private vectors generated by our proposed

scheme and TextHide (as baseline), respectively. We report the final attack success rate

(the percentage of reconstructed data vectors out of the original set) by implementing

reconstruction attack on the generated vectors above.

6.5.4 Utility Evaluation. For our proposed scheme, we set the privacy parameter

ϵ = {0.1, 1, 2, 4, 8, 10, 15, 20}. For Gaussian mechanism, we set δ to be 10−5. Then we

evaluate the model accuracy with varied ϵ for both Laplace and Gaussian mechanism

on the two datasets as depicted above. For TextHide, we select (m = 16, k = 4) as

its own privacy parameters. We also evaluate the base case (without any privacy-

protection scheme). We report the final model accuracy (the testing performance of

trained model on the private dataset).

Figure 6.2 demonstrates the results. From the figure, we can observe that the

183

model accuracy increases as the private parameter ϵ increases for both Gaussian and

Laplace. This is reasonable since the privacy parameter ϵ of the DP schemes works as

the privacy budget to determine the privacy-protection level for the dataset. That is,

the larger the privacy budget, the smaller the noise added to the original data vectors

(the privacy-protection would be weaker). As a result, the utility of the training set

would not be affected too much. In addition, we can also observe that the model

accuracy can approach the base case as ϵ increases, which will cause the compromise

of privacy to some extent (as shown in the privacy evaluation).

10 1 100 101

Privacy Parameter
0

10
20
30
40
50
60
70
80

M
od

el
 A

cc
ur

ac
y

(%
)

Original
TextHide
DP-IE Gaussian
DP-IE Laplace

(a) CoLA

10 1 100 101

Privacy Parameter
0

20

40

60

80

100

M
od

el
 A

cc
ur

ac
y

(%
)

Original
TextHide
DP-IE Gaussian
DP-IE Laplace

(b) SST-2

Figure 6.2. Accuracy (learning utility) on the two datasets with DP-IE schemes

6.5.5 Privacy Attack Evaluation. We follow the attack model setting [229,241]

that the attacker could obtain the background knowledge of the private dataset but be

unaware of the specific data for training, which would utilize any auxiliary information

to reconstruct the vectors (as a strong attack). We reproduce the attack scheme

following the attack proposed in [229]. More specifically, we randomly select 100 data

points and generate 5000 encoded data by our DP schemes for each dataset, respectively.

We measure the attack results with varying values of the privacy parameter ϵ =

{0.1, 1, 2, 4, 8, 10, 15, 20} (referring to different levels for privacy-protection). For

184

example, ϵ = 0.1 is the strong protection and 20 is a weak protection. We repeat the

same process for TextHide using the same privacy parameter as the previous utility

evaluation.

10 1 100 101

Privacy Parameter
0

20

40

60

80

100

At
ta

ck
 S

uc
ce

ss
 R

at
e

(%
)

TextHide
DP-IE Gaussian
DP-IE Laplace

(a) CoLA

10 1 100 101

Privacy Parameter
0

20

40

60

80

100

At
ta

ck
 S

uc
ce

ss
 R

at
e

(%
)

TextHide
DP-IE Gaussian
DP-IE Laplace

(b) SST-2

Figure 6.3. Attack success rate on the two datasets with DP-IE schemes

Figure 6.3 demonstrates the final attack results. First, we can observe that

the TextHide cannot ensure data privacy against privacy attacks, i.e., the privacy

attack can recover around 85% of the original data vectors for both CoLA and SST-2

dataset. This also conforms to the previous works. Second, the results show that our

proposed DP scheme can defend against such privacy attack from reconstructing the

data. Take Figure 6.3(a) as an example, the overall attack success rate is lower than

the baseline’s. Besides, the attack success rate increases as the privacy parameter ϵ

increases, which indicates that a higher privacy budget will lead weaker protection by

differential privacy. Such results also validate the previous DP theorems. Again, it

should be noted that DP cannot prevent leakage of the dataset completely. Instead,

we would like to achieve a proper utility-privacy trade-off while applying differential

privacy to the machine learning applications. For example, some privacy-sensitive

applications, e.g., on-device input prediction, could require strong privacy guarantee

185

while tolerating a fair utility loss. We can also improve our instance encoding scheme

with other techniques, e.g., Federated Learning [257] or optimize the privacy budget

to get a better utility accordingly.

186

CHAPTER 7

PRIVACY-PRESERVING CLOUD-BASED DNN INFERENCE

7.1 Introduction

Deep neural network (DNN) models have been frequently deployed in a wide

variety of real world applications, such as image classification [258], video recognition

[259] and voice assistant (e.g., Apple Siri and Google Assistant). Meanwhile, cloud

computing technologies (e.g., Microsoft Azure Machine Learning, Google Inference

API, and Amazon AWS Machine Learning) have promoted the deep learning as a

service (DLaaS) to make DNNs widely accessible. Users can outsource their own data

for inferences based on the pre-trained DNN models provided by the cloud service

provider.

However, severe privacy concerns may arise in such applications. First, if the

data of the clients are explicitly disclosed to the cloud, sensitive personal information

included in the outsourced data would be leaked. Second, if the fine-tuned DNN

models are shared for inferences [260], the parameters might be reconstructed by

untrusted parties [261]. To address such privacy concerns, several recent works

[262–265] have proposed cryptographic protocols to ensure privacy in inferences via

garbled circuits [22] and/or homomorphic encryption [219]), which rely on expensive

cryptographic primitives. Then, such protocols may result in fairly high computation

and communication overheads. Since the volume of the outsourced data grows rapidly

and the DNN models usually require high computational resources in the cloud, such

techniques may not be suitable for practical deployment due to limited scalability.

Thus, we are seeking an efficient scheme to securely implement the DNN inferences in

the cloud.

187

Specifically13, we propose a privacy-preserving cloud-based DNN inference

framework (“PROUD”) by co-designing the cryptographic primitives, deep learning,

and cloud computing technologies. We mainly take advantage of a novel matrix

permutation with ciphertext packing and parallelization to improve the computational

efficiency of linear layers. With the privacy guarantee provided via homomorphic

encryption, PROUD supports all types of non-linear activation functions by leveraging

an interactive paradigm. Above all, PROUD integrates the cloud container technology

to further improve the performance via parallel execution, which can also be readily

adapted for various DNNs via configuring container images.

7.2 System Overview

Figure 7.1 illustrates the framework of the proposed system for the users

(clients) and the cloud service provider (cloud server). The client locally holds the

private data, which will be encrypted with the client’s public key and sent to the cloud

server. Then, the cloud server initializes container instances (pre-compiled with secure

protocols, i.e., MatF and NlnF) to execute the DNN inference with the encrypted

input. Finally, the client will decrypt and receive the classification result.

Automated Backend Execution. The backend system can automatically deploy

the cryptographic protocol for the secure data inference in the cloud. Specifically, once

the server receives encrypted data from the client, it will compose the configuration file

to initialize a bunch of container instances via a pre-compiled image (with the source

codes), where the secure protocols (i.e., MatF and NlnF) will start to be executed

for DNN inference until the final result is returned. The automation of the backend

ensures that the secure protocols can be delivered efficiently, and enables the full

system to be capable of processing a large number of clients (if necessary).

13This work has been published on IEEE ICASSP [266].

188

…Video Streams

Results

PolyF + MatF

…

V
id

eo
 C

li
p

s

C
o

n
ta

in
er

M
o

d
u

le

C
la

ss
if

ie
r

Cloud Server

Client
…

Build-in Network

Container

Instance

Container

Instance

Image

Create Container

Config.

json

MatF

PolyF

…

Secure Protocol

Result

Backend

Input

Data

MatF+NlnF

Results

Client

Figure 7.1. The PROUD Framework

7.3 Protocol Design

7.3.1 Problem Formulation. The PROUD will securely compute the DNN

model with encrypted inputs in the cloud. We first denote an ℓ-layer DNN model

as M = {Li, i ∈ [1, ℓ]}, and the input video as V. The inference model M can be

viewed as a complex function f(·) integrating linear functions (corresponding to linear

layers, e.g., convolution layers and fully-connected layers) and non-linear functions

(activation functions, e.g., Sigmoid and ReLu). Denoting the inference result as S, we

have:

S = f(V) = Lℓ(Lℓ−1(· · ·L2(L1(V)) · · ·)) (7.1)

Threat Model. We consider semi-honest model where both parties are honest to

execute the protocol but are curious to learn private information. PROUD can preserve

privacy for both parties against possible leakage: (1) client’s private input videos are

not leaked to the cloud service provider; (2) cloud service provider’s DNN model (e.g.,

linear/non-linear weight parameters, and bias values) is not revealed to the client

in the computation. We also assume that all the communications are executed in a

secure and authenticated channel.

7.3.2 Protocol Overview. Algorithm 14 illustrates the protocol for PROUD.

189

In the initialization phase, the client generates a key pair and encrypts the private

data V (Line 1) while the server prepares the computation for the DNN functions

(Equation 7.1) with two subprotocols: (1) MatF for the linear functions; (2) NlnF for

the non-linear activation functions (Line 2). With such two subprotocols, PROUD will

be jointly executed by both the client and server. Specifically, the server can perform

computation of the linear layers directly on the encrypted data received from the

client using the subprotocol MatF (Line 5). For the non-linear layers, the output data

will be sent back to the client for computation by the subprotocol NlnF (Line 6), and

then the client will re-encode and encrypt the data to be sent to the server for next

layer’s computation. Once completing the computations of all the layers in the DNN

model, the client will receive the ciphertext and decrypt it to get the classification

result. The details of two subprotocols will be illustrated in Section 7.3.3 and 7.3.4,

respectively.

Input: Input Data V ,M

Output: Classification Result S

1 Client: Encode and encrypt V to get τ0

2 Server: (MatF, NlnF) ←M

3 for i ∈ [1, ℓ] do

4 switch Li do

5 Case Linear : τi ← MatF(τi−1)

6 Case Non-Linear : τi ← NlnF(τi−1)

7 Client: Decrypts τℓ to get S
Algorithm 14: PROUD Protocol

7.3.3 MatF Protocol. To ensure privacy for the linear layers, a naive method is to

apply homomorphic encryption (HE) to the arithmetic operations of encrypted matrices

(e.g., fully-connected layer), which might be inefficient since the input data tensors

190

are usually high-dimensional. To mitigate such issue, our PROUD system utilizes a

novel matrix permutation method [260] to efficiently perform matrix computations

with ciphertext packing and parallelization [267], where the matrix multiplication

equals the sum of the component-wise products for some specific permutations of the

matrices themselves.

Given the input matrix V , the linear layer (matrix) W and bias parameter B,

PROUD will securely compute the function of a linear layer as: W ∗ V +B (w.l.o.g.,

we consider the fully-connected layer with bias while W and V are two square matrices

with size n× n). We illustrate an example of the square matrix as A (of size n× n).

To compute the multiplication, the server will first find n permutations of the matrix

A via the following symmetric permutations:

σ(A)i,j = Ai,i+j, τ(A)i,j = Ai+j,j (7.2)

ϕ(A)i,j = Ai,j+1, ψ(A)i,j = Ai+1,j (7.3)

Note that ϕ, ψ are the column and row shifting operations. Then, we can

compute the product for W and V as below:

W ∗ V =
n−1∑
k=0

Wk ⊙ Vk (7.4)

where Wk = ϕk(σ(W)), Vk = ψk(τ(B)), ⊙ indicates the component-wise

product and k is the number of perturbations, e.g., ψk will perform k times ψ(·)

permutation on the matrix. We denote the function permut(·) to compute the n

permutation matrices of one matrix.

Ciphertext Packing and Parallelization. To improve the efficiency, we also

leverage the vectorable homomorphic encryption (aka. “Ciphertext Packing”) [260,262],

which transforms a matrix of size d× d to a single vector (plaintext) via an encoding

191

map function, denoted as Encode. In particular, the Decode function transforms the

vector plaintext back to the matrix form. For simplicity of notations, we denote the

encryption, evaluation, and decryption functions under an HE scheme as Enc(), Eval()

and Dec(), respectively.

Then, the component-wise product (Equation 7.4) of the ciphertexts Vk and

Wk, denote as Enc(pk,Ok), can be securely computed with the multiplicative property

of the HE:

Eval(pk,Encode(W
(l,m)
k), Enc(Encode(V

(l,m)
k)), ∗) (7.5)

where l,m ∈ [1, n] are the entry indices of the matrices W and V , and pk is

the public key. Then, the sum of all the n component-wise products of the matrices

Wk and Vk can be computed using the additive property of HE. Finally, the bias

parameter B can be computed using the additive property of HE. The protocol is

detailed in Algorithm 15.

Given a large number of plaintexts to be encrypted by ciphertext packing, we

further expedite the matrix computation with the parallelization [260]. To this end, we

modify the encoding map function to “1-to-1 map” such that an n-dimensional vector

can be transformed into a g-tuple of square matrices of order d, where g = n/d2. This

parallelization technique can also be realized with the parallel computation in the cloud

framework (using a bunch of containers), which results in a reduced computational

complexity O(d/g) per matrix.

7.3.4 NlnF Protocol. The NlnF protocol securely computes the non-linear

layers of DNNs. Most of the existing works depend on either garbled circuits [262]

or replacing square function [260], which may arouse high computational overheads

or reduce the accuracy. In our protocol, the computation of the non-linear function

192

Input: Input V , Weighted Matrix W , Bias B

Output: O = Enc(pk,W ∗ V +B)

1 {Vk}n−1
k=0 ← Enc(pk,Encode(permut(V)))

2 {Wk}n−1
k=0 ← Encode(permut(W))

3 for k ∈ [0, n− 1] do

4 Ok ← Eval(pk,W
(l,m)
k , V

(l,m)
k), ∗)

5 Enc(pk,O) ← Eval(pk, {Ok, k ∈ [0, n− 1]},+)

6 return Eval(pk,Enc(pk,O), B,+)

Algorithm 15: MatF

(e.g., ReLu) is executed at the client side with the input of decrypted data to preserve

privacy. Algorithm 16 shows that the client will first decrypt the received output of

MatF from the server with its private key. Then, the client will compute the output

of the non-linear function ϕ and return the output to the server for the computation

of next network layer. During the execution of this protocol, the client does not leak

any private information to the server and the server does not expose sensitive weight

parameters to the client.

Input: Input V (from MatF), Activation Function ϕ(·)

Output: O

1 = Server: sends V to the client

2 Client: r ← Decode(Dec(sk, V))

3 return O ← ϕ(r)

Algorithm 16: NlnF

Security and Practicality. For the linear computations (MatF), the server will not

know the plaintext since all the computations are performed on the ciphertexts (“no

leakage” can be theoretically proven). For the non-linear computations, the client

receives some encrypted intermediate results from the server, and decrypts them to get

193

some trivial intermediate data (which does not result in privacy leakage). Such trivial

non-private data release is traded for a light-weight cryptographic protocol, which

is far more efficient than other cryptographic protocols built on secure polynomial

approximation and/or garbled circuits. Since the protocol is composed independently,

many neural network based applications (e.g., image classification [258] and natural

language processing [268]) or video learning models (e.g., C3D [259] and I3D [269])

can be readily integrated into our system. The pre-trained DNNs can be adapted

with appropriate extensions, and integrated into the PROUD protocol (for feature

extraction and/or inferences on the encrypted data). Moreover, the PROUD system

can be easily integrated into the practical cloud platform (e.g., AWS) since the PROUD

is a cloud-based prototype of system.

7.4 Experiments

Experimental Setup. Our system is implemented on the NSF CloudLab platform14

in which one machine works as the client and the other one works as the server. Both

machines have eight 64-bit ARMv8 cores with 2.4GHZ, 64GB memory installed with

Ubuntu 16.04. We implement the homomorphic encryption in HEANN [267] (which

realizes the optimal computation over real numbers) for secure matrix operations. We

leverage Docker to develop the prototype for PROUD: the image of the container (all

the source codes) is pre-compiled with the specific functions (i.e., MatF and NlnF) in

Python.

We evaluate our framework on the two datasets: (1) MNIST dataset [270]

includes 70K handwritten images of size 28× 28 under the gray level 0-255; (2) IDC

dataset15 for invasive ductal carcinoma (IDC) classification (IDC-negative or positive),

14https://www.cloudlab.us/

15http://www.andrewjanowczyk.com/use-case-6-invasive-ductal-carcinoma-idc-
segmentation/

194

Table 7.1. Benchmarking on MNIST dataset

Framework Accuracy (%) Latency (s) Comm. (MB)

CryptoNets 96.09 1080.3 595.5

GAZELLE 99.05 8.05 100.65

BAYHENN 98.93 2.34 20.81

DELPHI 96.2 0.84 0.81

PROUD 99.01 0.62 1.03

which contains about 28K patches of 50× 50 pixels. We employ the LeNet5 [270] as

the test network model. In addition, we compare the performance of PROUD with

four representative schemes (CryptoNets [263], GAZELLE [262], BAYHENN [264]

and DELPHI [271]) on the MNIST and IDC dataset for image classification.

Results. All the results on the two datasets are shown in Table 7.1 and 7.2, respec-

tively. From the Table 7.1, we can observe that our PROUD results in the least average

latency (e.g., 13 times faster than GAZELLE) and communication overheads for digit

classification, compared with other three existing schemes. PROUD significantly

outperforms other schemes considering we adopt a highly light-weight matrix com-

putation scheme compared with the existing schemes (including garbled circuits and

heavily encrypting matrices). As for the classification accuracy, PROUD works almost

identical as GAZELLE (in which the optimal approximation of non-linear function

achieves the negligible loss using the original activation function). It is worth noting

that CryptoNets performs the worst, since it replaces all the activation functions with

the square functions, and all the pooling functions with sum pooling, which also greatly

increase the computational overhead and arouse the high communication bandwidth

(the larger ciphertext size). BAYHENN uses a different Bayesian inference model with

195

Table 7.2. Benchmarking on IDC dataset

Framework Accuracy (%) Latency (s) Comm. (MB)

CryptoNets 81.25 1942.6 1621.3

GAZELLE 83.74 24.64 263.4

BAYHENN 83.26 9.36 67.32

DELPHI 82.72 2.47 2.95

PROUD 84.01 1.12 3.27

some randomness for DNN, which decreases the classification accuracy to some extent.

Also, considering that the DELPHI’s computation overheads are mainly in the offline

preparation (heavy cryptographic computations), the online computation overhead is

reduced. Table 7.2 shows similar results for IDC classification. All of these results

illustrate that our proposed framework can significantly improve the computational

efficiency of secure DNN inference compared with other SOTA techniques.

We also illustrate the results of latency and communication bandwidth result

for each step of PROUD processing one image instance in Table 7.3. Specifically, the

client takes about 23.4 ms, including the runtime for encoding and encrypting the

image. Then, the server initializes the DNN model by taking 107.2 ms (note that this

step can be processed simultaneously as the first step at the client’s). Moreover, we

also observe that DNN computation in the server dominates the latency. Regarding

the communication overheads, it mainly occurs when the client sends the encrypted

images to the server (0.58MB). Moreover, there arouses communication consumption

during the DNN inference since NlnF protocol follows an interactive paradigm.

7.5 Related Work

196

Table 7.3. Performance of PROUD on MNIST dataset

Phase Latency (ms) Comm. (MB)

Client Encode + Encry. 23.4 0.58

Server Set Model 107.2 -

Server DNN Computation 410.8 0.34

Client Decry.+ Decode 2.7 0.03

Total 544.1 0.95

The generic secure computation techniques (e.g., secure two-party computation

[22, 272], fully homomorphic encryption [273] and secret sharing [274]) can be directly

used to tackle the privacy concerns in DNN inferences. However, such cryptographic

primitives would request high computation and communication overheads. For instance,

the size of garbled circuits in the MPC protocols will exponentially grow as the number

of parties increases. They also require multiple rounds of communications among

the parties. Recently, although there are multiple works that improve the efficiency

of FHE [275–277], the high computational costs still make them impractical for

performing inferences.

Therefore, it seems to be necessary to design specific protocols for secure

learning. There have been several works on designing specific secure protocols for

DNN models [262–264,278]. SecureML [278] is one of the first systems which focuses

on machine learning on encrypted data with NN model. However, it mainly depends

on the generic two-party protocols with very poor performance. Jiang et al. [260]

proposed an efficient secure matrix computation protocol to improve the performance

for the computation with neural networks. However, it only supports limited activation

functions (e.g., only the square function in the case study). GAZELLE [262] composes

197

the protocol on the heavy garbled circuits while BAYHENN [264] leverages inefficient

ciphertext packing of matrix for linear computations. Although DELPHI improves

the bandwidth of online protocol, it still depends on the off-line computation and

neural architecture search (NAS).

198

CHAPTER 8

SECURE OUTSOURCING COMPUTATION ON THE CLOUD

8.1 Introduction

With the significant development of cloud computing, an increasing number of

data-related services such as data analysis and storage have been prevalently outsourced

to the cloud [279]. In practice, outsourcing data analyses to service providers (e.g.,

the cloud) would request the data owner to share their original data. This may

result in immense privacy concerns of the data owners with severe consequences for

the enterprises [280]. As data leaking incidents become even more severe, a GDPR

article [281] states that enterprises cannot share their sensitive data without sufficient

protection, while acquiring the third-party services.

To date, different types of encryption algorithms may be applied to protect

the outsourced data. First, encrypting the datasets using a traditional algorithm like

AES [282] or 3DES [283] may prevent the external service providers from conducting

useful data analysis, whereas Homomorphic encryption (including fully) [24,76,284]

might be too expensive and inflexible for different analyses. The recent property

preserving encryption schemes [285–287] have enabled service providers to perform

efficient and accurate data analyses on the encrypted data, which are deterministic

ciphertexts to retain a certain property of their plaintexts. Examples include hashing

where the ciphertexts reveal the equality of messages, order preserving encryption

(OPE) [287,288], where the ciphertexts retain the ordering of data, and prefix preserving

encryption (PrefixPE) [286], where the ciphertexts share the same length of prefixes as

shared between the plaintexts. However, most existing property preserving encryption

schemes [285–287] as mentioned above have the following two major limitations.

First, property preserving encryption is typically limited to specific data or

199

applications. For instance, OPE is mostly applied in range queries based analysis

on numerical data. While achieving more prefix-based utility (e.g., network trace

analysis [289]), PrefixPE (e.g., CryptoPAn [286]) is only applicable to IP addresses,

which is an important limitation since PrefixPE may potentially benefit a wide variety

of outsourced data analyses on different datasets. As discussed in Section 8.2.2, besides

IP addresses, some other data types (e.g., geo-location data, DNA sequences, market

basket items, and timestamps) can be encoded with meaningful prefixes to retain very

high utility in the encrypted data. For instance, in a dataset collected from location

based services (LBS), two places which are close in the plaintexts (e.g., central park

and the empire state building in New York) can be converted to ciphertexts (sharing

the same length of prefix to maintain the same spatial distance) as two places in

another city. Thus, it is highly desirable for a service provider to analyze the prefix

preserving encrypted data. 16

Second, it is well known that most property preserving encryption techniques

are vulnerable to various forms of inference attacks [292–295], which attempt to link

the encrypted data to original data with background knowledge or auxiliary data.

As discussed in Section 8.3.1, due to the deterministic ciphertexts, PrefixPE (e.g.,

CryptoPAn [286]) is also vulnerable to the emerging inference attacks [292]. We have

also conducted experiments on the inferences attacks in Section 8.7.1 to validate this

limitation.

In this paper, we first propose a novel scheme to encode a variety of data types

into bit strings (prefix-aware encoding), and then propose a framework for outsourcing

different types of prefix preserving encrypted datasets by generalizing a multi-view

approach [289] to significantly reduce the information leakage against inference attacks.

Specifically, the proposed prefix-aware encoding converts various types of data into

16This work has been published on IEEE TKDE [290] and ICDE [291].

200

the prefix-aware data (viz. bit strings with prefix-based utility), and then the prefix

preserving encryption, i.e., CryptoPAn [286] (originally on 32-bit IPv4 addresses or

128-bit IPv6 addresses) can be generalized to encrypt any type of data that can be

encoded into the bit strings with utility resulted from the preserved prefixes. Essentially,

if any data is naturally hierarchical (e.g., IP addresses as bit strings) or can be indexed

by a prefix-aware tree (e.g., location data, and market basket data. See Section 8.2.2),

the prefixes in the encoded bit strings could be preserved to ensure utility when

directly analyzing the outsourced data. For instance, the distance between any two

locations can be fully preserved in the outsourced data.

Furthermore, to address the inference attacks, the multi-view outsourcing

framework will generate multiple indistinguishable data views in which one real data

view fully preserves the utility (ensuring 100% accuracy while performing data analyses

on the prefix preserved data), and its corresponding analysis result can also be privately

retrieved.

Contributions. The primary contributions focus on the generalization of the Cryp-

toPAn to broader data types and applications from two aspects. First, we revise

the CryptoPAn by extending the input size of block cipher function (cryptographic

building block) to encrypt any length of bit strings rather than fixed 32-bit IPv4

addresses or 128-bit IPv6 addresses. Second, we generalize the multi-view outsourcing

framework [289] with the following major improvements: (1) encrypting multiple

types of data with the new prefix-aware encoding scheme and the above generalized

CryptoPAn (for any length of data), (2) incorporating more and stronger inference

attacks [292,296–298] into the threat model, and (3) generating a minimum number of

data views given formally defined privacy leakage bound (say Γ-Leakage). Moreover,

other contributions are summarized as below.

201

• To our best knowledge, we propose the first general purpose prefix encryption

scheme, which can potentially be applied to a wide variety of data types and

applications such as geo-locations, DNA sequences, market basket datasets, and

timestamps.

• The generalized multi-view outsourcing framework provides an additional layer

of protection that can make the vulnerable PrefixPE scheme (i.e., CryptoPAn)

sufficiently secure against various inference attacks (e.g., [292,296–298]).

• Besides privacy and utility guarantees, our approach offers negligible communi-

cation overheads, and the computational costs can be easily adjusted based on

any bounded leakage w.r.t. inference attacks.

• We empirically evaluate the performance of numerous inference attacks [292,

296–298] on the PrefixPE encrypted data using real datasets (the check-in

location dataset and the network traffic dataset) and our generalized multi-view

outsourcing framework. The experimental results demonstrate that our proposed

framework preserves both privacy (with bounded leakage and indistinguishability

of data views) and utility (with 100% analysis accuracy).

8.2 PrefixPE and Prefix-aware Encoding

8.2.1 Generalized CryptoPAn. As a PrefixPE scheme, CryptoPAn [286]

was originally designed to generate deterministic ciphertexts for IP addresses (32-bit

ciphertexts for IPv4 and 128-bit ciphertexts for IPv6). We first generalize CryptoPAn

for any n-bit data as below:

Definition 7 (Generalized Prefix Preserving Encryption [286]). Given two n-bit strings

a = a1a2a3...an and b = b1b2b3...bn, if a and b share a k-bit (0 ≤ k ≤ n) prefix, we have

a1a2...ak = b1b2...bk and ak+1 ≠ bk+1. An encryption function f(·) : {0, 1}n → {0, 1}n

is said to be prefix-preserving, if f(a) and f(b) also share a k-bit prefix.

202

To encrypt each bit, CryptoPAn applies a cryptographic function (including

padding, a block cipher function such as Rijndael [282] with a 256/128-bit key K, and

the least significant bit function) to the bits, and then XOR with the current bit to

ensure the prefix preserving property [286].

Theorem 9. CryptoPAn has the following two properties [286]: (1) associative

property: given an n-bit string a ∈ {0, 1}n,

1 ≤ i, j ≤ n : f j(f i(a,K)) = f (i+j)(a,K) (8.1)

and (2) inverse property: given two n-bit strings a and b,

if f(a,K) = b, f−1(b,K) = a (8.2)

Similar to f(·), for each bit in b, the inverse CryptoPAn f−1(·) applies the

same cryptographic function to the bit’s corresponding prefix in a (which was computed

while applying f−1(·) to the previous bits) and XOR with the current bit.

Theorem 9 can be directly proven with the extension from 32-bit IP addresses

in [289] to generalized CryptoPAn.

8.2.2 Prefix-aware Encoding. We can directly apply CryptoPAn to encrypt

the sensitive IP addresses [286, 289] for outsourcing the network traffic since IP

addresses automatically hold the prefix property (32-bit IPv4 addresses or 128-bit

IPv6 addresses). The utility of preserving prefixes in the encrypted IP addresses

can be realized for many analyses since the ciphertexts can preserve all the subnet

structure of the original data (sharing a prefix in the original IP addresses also results

in sharing the same length of prefix in the encrypted IP addresses).

Motivated by such prefix properties, many other types of datasets can also be

encoded into prefix-aware bits such as the geo-location [299], DNA sequences [300],

203

items in market baskets [301], numerical data [302], and timestamps [303] (ensuring

utility for performing different analyses on the encrypted data) using a prefix-aware

tree:

Definition 8 (Prefix-aware Tree). Given the data domain, we generate a balanced

tree in which nodes (from the root to leaf) signify a sequence of prefixes, all the sibling

nodes share the same prefix. Then, each value in the domain can be represented by the

bits concatenated from the top (except the root) to each leaf node.

Example 1 (Prefix-aware Tree for IPv4). IPv4 adopts 32 bits to form the 232 addresses,

thus its prefix-aware tree is a full binary tree with 33 levels (including the root node),

where each IP address is formed by concatenating the bits from the top to each leaf

node.

In the following, we will discuss the prefix-aware encoding for some representa-

tive data types, and illustrate the corresponding prefix preserving data analysis.

8.2.2.1 Locations in Location-based Services (LBS). The location data

usually include the 2-dimensional latitude and longitude coordinates of different places,

which are highly precise float numbers (up to 8 decimal digits) for representing the

locations in map applications, e.g., Google Map and Bing Map. In the Bing Map Tiles

System [304], the map is recursively divided into four tiles equally to reach the required

resolution for users to quick map zoom in/out. Specifically, given the resolution, the

system can map the longitude and latitude coordinates to bit strings called quad key,

which is uniquely represented as the index of tile for the coordinates (can be used for

map image retrieval).

Motivated by such hierarchical structure, we encode the coordinates into bit

strings by concatenating the index of each level for one specific location. As shown in

Figure 8.1, there is a root node at the top. At each level, the four children of each

204

node can be encoded using two bits 00, 01, 10, 11 to represent four tiles, respectively.

Thus, after concatenating the bits from the first level, every location can be encoded

by a leaf node, and all the locations can be encoded with the same length of bits

if the coordinates use the same precision. Location precision can be increased with

additional levels and longer bit strings. Our experimental location data utilizes a

length of 46 bits (23 levels) with a ground resolution 4.78m×4.78m (tile) at the finest

level, which is sufficiently accurate for precise location coordinates.

…0000

Root

000010010010010000

00 01 10 11

0001 0010 0011

… … … … …

110100011000011100
London

(51.5098, -0.1181)

New York

(40.7306, -73.9352)

…

…

1100 1101 1110 1111

… …
… … …

Figure 8.1. A Prefix-aware Tree for Location Data

Prefix Preserving Data Analysis for LBS. As discussed above, for the encoded bit

strings of coordinates, utility can be fully preserved for data analysis since prefixes can

be preserved in the encrypted locations (while preserving the privacy). For instance,

“central park” and “the empire state building” in New York share a prefix, and the

encrypted data for these two locations should also share the same length of prefix (e.g.,

might be two other places in London with the same proximity). Thus, the structure

of the locations and the distance between such locations (besides other features such

as frequency) can be preserved in the outsourced data. Besides the basic queries (e.g.,

counting), the location data analysis which uses distance-based metrics can achieve the

same utility while analyzing the encrypted prefix preserving data, e.g., user mobility

prediction [299].

205

Thus, the PrefixPE on the encoded locations can fully preserve the utility in

the general data analyses for LBS. We have conducted experiments to validate such

utility with prefix preserving encrypted location data in Section 8.7.3.

Table 8.1. Prefix-aware Encoding for Representative Data

Data Type IP Location Market Basket Numerical/Timestamps Genome

Encoding
Default 4 Tiles

log(n)-bit Binary AGCT

(IPv4/6) (00, 01, 10, 11)

Pref. Utility Fully Fully Fully
Partially Partially

(Proximity) (Prefix Analysis)

8.2.2.2 Market Basket Dataset [301]. This dataset includes the purchased

items by the customers. With the item generalization hierarchy [301], we can encode

the items into the bit strings with the same length. Similar to the location hierarchy

(assigning 2 bits to each level since it is partitioned into 4 blocks), in each level of

the item hierarchy, we assign log(n) bits to the n generalized items. The bit string of

each item can be encoded by concatenating all the bits assigned in each level. The

PrefixPE can fully preserve the item generalization path (e.g., the encrypted values

of “apples” and “pears” also share a long prefix to make them close). With such

prefix-aware encoding, data mining applications (e.g., frequent itemset mining [305])

can be performed on the prefix preserving encrypted data. Thus, PrefixPE on the

encoded data/items can fully preserve the utility of the market basket data in the

related data mining.

8.2.2.3 Numerical Data [302] and Timestamps [303]. Numerical data

and timestamps are commonly included in a wide variety of datasets, e.g., network

traffic [289], transaction data [306], and search logs [307]. Such values in different

datasets can be simply converted into bit strings with meaningful prefix (aka. the

converted binary numbers). Encrypting such bit strings with PrefixPE can also fully

206

preserve the prefixes in numerical values and day-time formats (e.g., “yyyy-mm-dd

hh:mm:ss[.nnnnnnnnn]”) for outsourcing. The proximity between any two values of

these two data types can be preserved in the ciphtertexts (but not preserving the order

of them). For instance, the ciphertexts of two close numerical values (or timestamps)

also possess the same degree of proximity. Since the order of two numerical values

and timestamps cannot be fully preserved, PrefixPE can preserve the partial utility in

the encoded data of numerical and timestamp data.

8.2.2.4 Genome Dataset [308]. Genomic features (e.g., DNA sequences) of

different organisms are studied to significantly advance the biological and medical

research. For instance, DNA sequencing studies the order of adenine (A), guanine

(G), cytosine (C), and thymine (T). Thus, each of A, G, C, T can be encoded using

two bits, and the sequence can be concatenated with all the bit in order. In the

encrypted DNA sequences for analysis, e.g., Private Edit Distance [300], PrefixPE

on such encoded data can preserve the prefixes (order of nucleotide in the shared

prefixes), but cannot preserve the full distance (e.g., Hamming distance) between

two random sequences. Thus, PrefixPE using such simple encoding can partially

preserve the utility on the genome data. We will also explore other encoding schemes

in conjunction with PrefixPE to fully preserve the utility of the DNA sequences in the

future.

8.2.2.5 Summary. Table 8.1 summarizes the prefix-aware encoding for some

representative data and the utility preservation in the generic analyses. Note that the

prefix-aware encoding can be tailored with different prefix definitions if necessary.

8.3 Security Models

8.3.1 Inference Attacks. The inference attacks on the property preserving

encryption schemes [289, 292, 309–312] have been extensively studied recently. We

207

then introduce two typical inference attacks on the PrefixPE encrypted data, and

briefly discuss other inference attacks [310–312].

Inference Attacks using Frequency and ℓp-Optimization. Frequency anal-

ysis [296] is the most well known inference attack with the auxiliary background

knowledge. Extended from frequency analysis, ℓp-optimization [292] is further utilized

to form a family of attacks that maximally infer the original data from property

preserving encrypted data (e.g., order preserving encryption (OPE) and deterministic

encryption (DTE)). Such attacks find the most matches from ciphertexts to plaintexts

by minimizing the ℓp distance between the histograms of the encrypted dataset and

an auxiliary dataset (as the background knowledge). The auxiliary dataset may be

obtained by the adversary from some public statistics or prior versions of the original

dataset. We explain such attacks on the encrypted location data as below:

Example 2 (Frequency and ℓp-Optimization based Inference Attacks [292,296]). As

shown in Figure 8.2, the geo-locations can be encoded to bits (fully preserving the

utility with the preserved prefixes, see Section 8.2.2) which are represented in hex

format (for shortening the notations). The adversary may simply get some auxiliary

information from publicly known data sources, e.g., top 50 most popular spots in New

York. Then, the adversary can match the auxiliary location list (sorted by frequency)

with the ciphertext of the locations also sorted by frequency [296].

CryptoPAn

48c2127683

48c21a7d29

48c21627e0

48c2187173

48c2193fe3

Central Park:5000
Broadway:621,

Empire Building:67
Wall Street: 1957

Brooklyn Bridge:230

Auxiliary Data

Count

856

314

120

30

5

Frequency Analysis and
lp-optimization based

Inference attacks

Figure 8.2. Frequency and ℓp-Optimization

208

Inference Attacks using Fingerprinting. Adversaries can perform strong inference

attacks by injecting data into the original data collection and fingerprinting the records

in the encrypted data [297,309,313]. Then the adversary could identify his/her own

data from the encrypted data via the combination of other information, e.g., the

timestamps and frequencies of the injected checked-in locations, the timestamps, port

numbers and protocols of the network traffic data (with IP addresses). Then, the

adversary can obtain a set of matches between the original data and the encrypted

data, and eventually learn the prefixes of other values that share the prefix with the

identified prefixes.

Example 3 (Fingerprinting based Inference Attacks [297, 298]). Some detailed in-

formation of the same check-in location dataset in Example 2 are given in Figure

8.3. The leftmost table shows such real world dataset, the table in the middle gives

the encoded bit strings for the GPS coordinates (see Section 8.2.2), and the rightmost

table is the bit strings encrypted by CryptoPAn.

ID Time Stamp Coordinates

2247 2010-10-19T23:55:27Z (30.23590911, -97.79513958)

2247 2010-10-12T15:57:20Z (40.64388453, -73.78280639)

41 2010-06-17T16:35:00Z (30.26910295, -97.74939537)

9054 2010-07-02T17:51:31Z (30.25104620, -97.74932429)

345 2010-06-04T17:45:21Z (40.64388453, -73.78280639)

CryptoPAn

368cb6e196

2450d167f2

368cb6ea02

368cb6e1b7

2450d167f2

Encoding

48c2167d23

868cb6e196

48c2167fe0

48c2167173

868cb6e196

1. Identify two data records via ID and timestamp

2. Compare prefixes

3. Recognize more data

Figure 8.3. Fingerprinting based Inferences

The adversary can inject his/her tuples in such real data (e.g., using the

application with its account). Then, he/she can identify two of his/her encrypted bit

strings (w.r.t. his/her two location records) via other original information which are

retained for utility (e.g., combination of timestamps and pseudonyms). Then, he/she

can infer more prefixes and subprefixes by comparing the identified prefixes with other

encrypted locations (bit strings). For instance, as “368cb6e196” and “2450d167f2” in

209

the first two rows are known (the adversary knows the location he/she has visited at

that time), the location data of the first row (“368cb6e196”) also shares 28-bit prefix

(“368cb6e”, 7 digits in hex) with the location in the 4th row. Similarly, the 6th record

can also be breached since the encrypted bit string is identical to “2450d167f2”.

Inference Attacks and Defense. Some other inference attacks [310–312] have been

recently identified for OPE, such as exploiting the correlations among attributes [310]

and learning query pattern access via statistical learning [312]. All these inference

attacks (including the two detailed in the above examples) share some similarities,

e.g., identifying the similar patterns from the original data and the encrypted data.

We will propose a generalized multi-view outsourcing framework which effectively

obfuscates such patterns (detailed in Section 8.4 and 8.5).

8.3.2 Threat Model and Privacy Notion. In our framework, the data owner

outsources its encrypted data to the service provider, which is assumed to be honest-

but-curious. The service provider has possessed background knowledge to implement a

given set of inference attacks [289,292,297,298] (can be any emerging inference attacks

on the property preserving encryption). Moreover, the adversary is assumed to know

the set of attributes in the outsourced data, and the domain for the attributes. We

also assume that all the communications are in secure channel.

Then, we present the privacy notion in the threat model. Since the degree

of privacy is quantified w.r.t. different inference attacks, we first formally give the

following definition.

Definition 9 (Inference Attack Function). Function I(Enc(D), {α}) is defined to

quantify the leakage derived from performing a given set of inference attacks on

encrypted data Enc(D) with a set of background knowledge parameters {α}.

Example 4. Assume that the adversary pose two kinds of inference attacks: (1)

210

frequency and ℓp-optimization based inference attacks, and (2) fingerprinting based

inference attacks, with two background knowledge parameters αf , αs, respectively:

• the adversary holds a public auxiliary dataset including any αf of the original

data (percent between 0% and 100% of the domain) and their similar count

distribution.

• the adversary has already identified any αs of the original data (percent between

0% and 100% out of the domain) via injecting data before encryption.

As a result, the attack function I(Enc(D), {αf , αs}) returns the information

leakage, which is defined as below:

Definition 10 (Information Leakage [286]). The percent of bits in D (encoded as

bit strings) inferred from the encrypted data Enc(D) (including the partially inferred

prefixes).

Then, we bound the leakage derived from the inference attacks with the

following privacy notion.

Definition 11 (Γ-Leakage). While performing a given set of inference attacks on the

encrypted data Enc(D) (generated by encrypting the original data D using PrefixPE),

the information leakage is upper bounded by Γ ∈ [0, 1].

Prefix-aware
Encoding

Step (3):
Partition Data

via Prefix

Generate Seed Data
with CryptoPAn keys

Outsourcing

Generate
N views
(min N)

Data
Analysis

Service Provider

Seed Data

Data Owner

Prefix-aware
Data

Seed Data

1 2 N, , ... ,

ε–Indistinguishable
Data Views

𝒟s

Original Data

with CryptoPAn keys

Seed Data

Minimize N given specified leakage

Seed Data (generated by the data owner and
outsourced to the service provider)

Generate
Seed Data

Obliviously Retrieved
by Data Owner

–Leakage

1 2 N, , ... ,

Γ

Figure 8.4. Generalized Outsourcing Framework on the Multi-view Approach [289]

8.4 System and Privacy Properties

211

In this section, we present the system and privacy properties. Table 8.2

summarizes the frequently used notations.

8.4.1 System Model. As illustrated in Figure 8.4, the proposed outsourcing

framework involves two entities: (1) data owner: the party owns the original data

and outsources the prefix preserving encrypted data to the service provider for data

analysis, and (2) service provider: a cloud platform or an external company who

provides data analysis services, which might intend to infer the original data from the

outsourced encrypted data.

Specifically, Mohammady et al. [289] proposed a multi-view approach to defend

against inference attacks on the PrefixPE encrypted data. The core idea is to hide

the real data view among other fake data views, where the service provider cannot

identify the real data view. However, such approach is only limited to network traffic

data. We make the following key improvements on the multi-view outsourcing:

• generalize the outsourcing framework to privately outsource a wide variety of

data types (any length of the data vs. 32/128-bit IP addresses).

• generalize the defense (bounded leakage) against any given set of inference

attacks (to make the illustration more concrete, we conducted experiments on

more inference attacks, compared to [289]).

• improve the privacy guarantee (by specifying a privacy bound Γ-Leakage) and

computational overheads on analyzing the outsourced data (minimizing the

number of views while satisfying Γ-Leakage against a given set of inference

attacks).

As shown in Figure 2.1, the generalized multi-view outsourcing framework is

detailed as follows:

212

Table 8.2. Notations for Chapter 6

Symbol Definition

D original data

A number of distinct values in D

Dp prefix-aware data

D0 initially encrypted data

Ds seed data

D1 . . .DN N generated data views

αf

background knowledge parameter on frequency

and ℓp-optimization based inference attacks

αs

background knowledge parameter on

fingerprinting based inference attacks

f r(·) executing r times CryptoPAn

I(·)
inference attack function: returns the leakage

derived from the encrypted data in the attacks

p(x) number of partitions with x-bit shared prefix

R a pseudorandom matrix

G1 . . . GN vectors for generating data views

K0 non-shared key for CryptoPAn

K1 outsourced key for CryptoPAn

Pi data partition i

213

At the Data Owner.

(1) Prefix-aware Encoding: encodes the sensitive attributes of the original data

(e.g., locations, IP addresses, set of items) to prefix-aware data Dp with prefix-

aware encoding, as discussed in Section 8.2.2.

(2) Partitioning and Generating Seed Data: initially encrypts the encoded data

Dp to D0 using CryptoPAn with a non-shared CryptoPAn key K0 (for preventing

the brute force attack), and then partitions D0, as well as generates a seed data

Ds by executing CryptoPAn in each partitions with a random number of iterations

using another key K1. This step obfuscates the data in the seed data Ds, which

is safe to share and can be used to generate multiple data views by the service

provider (note that K1 is shared to the service provider for generating the data

views). See details in Section 8.5.1.

(3) Outsourcing: the Seed Data Ds, the key K1 and some other required parameters

for generating multiple data views will be outsourced to the service provider.

At the Service Provider.

(4) Generating N Data Views: generates N data views using Ds, the CryptoPAn

key K1 and other parameters, where exactly one out of N data views is the real

data view (which fully preserves the prefixes).

(5) Analyzing N Data Views: performs the required data analysis on the N data

views (note that N is minimized for satisfying Γ-Leakage). The real data views

fully preserves the prefixes with the 100% analysis accuracy.

The details are given in Section 8.5.2.

Both Data Owner and Service Provider.

214

(6) Obliviously Retrieving Analysis Result: the data owner leverages an oblivious

random access memory (ORAM) protocol [314] to retrieve the correct analysis

result out of N results while the service provider does not know which result is

retrieved by the data owner.

8.4.2 Privacy Guarantees. We now summarize two desired privacy properties

against the inference attacks in semi-honest model.

8.4.2.1 Indistinguishability. The proposed framework first ensures that N data

views are indistinguishable (inspired from differential privacy [315]):

Definition 12. [289] The generated N data views are ϵ-indistinguishable against

inference attacks if and only if

∃ ϵ ≥ 0, s.t. ∀i, j ∈ {1, 2, · · · , N} ⇒

e−ϵ ≤ Pr[data view i may be real]

Pr[data view j may be real]
≤ eϵ (8.3)

As ϵ is smaller, the N different data views would be more indistinguishable. As

a result, a smaller number of fake data views will be filtered out by the adversary. For

instance, e−ϵ = 0.9 means that at least 90% of the fake data views are indistinguishable

from the real one. We give the indistinguishability analysis in Section 8.5.2.4 and

experimentally validate that ϵ is quite small in Section 8.7.2.

8.4.2.2 Bounded Leakage against Inference Attacks. Our framework can

ensure that all the encrypted data held by the adversary satisfy Γ-Leakage (Definition

11) as an additional layer of protection:

I(Ds,D1, . . . ,DN , {α}) ≤ Γ (8.4)

where the adversary performs the inference attacks with background knowledge

215

{α} on the seed data Ds (received by the service provider) and N different data

views D1, . . . ,DN (generated by itself). In the outsourcing framework, the information

leakage is bounded by a very small Γ, as experimentally validated in Section 8.7.

Remark. The first privacy notion ϵ-indistinguishability is defined to measure how

indistinguishable the generatedN data views can be (hiding the real data view). Indeed,

all the fake data views and one real data view could possibly leak information (though

they are indistinguishable) if the adversary is armed with background knowledge to

perform inference attacks. Thus, another privacy notion Γ-Leakage is defined to bound

the overall information leakage in all the data obtained and generated by the adversary.

Two privacy notions measure different aspects of the privacy and complement each

other in the generalized multi-view outsourcing framework.

8.5 Generalized Framework Design

8.5.1 Prefix-based Partition. The initially encrypted data D0 is partitioned by

assigning all the values sharing at least x-bit prefix into the same partition. Specifically,

given D0, the data (e.g., location) has been encoded into L bits. We first traverse

D0 to get the set of distinct values. Given the prefix length x ∈ [1, L], we generate a

mapping set by grouping all the values sharing length-x prefix to one subset. Finally,

we obtain the partitions in D0 using the mapping set. Denote the number of partitions

in D0 created with length-x prefix as p(x). Thus, we have partitions Pi with length-x

prefix di, i ∈ [1, p(x)].

This prefix-based partitioning scheme can potentially result in the identification

of the real data view by the adversary due to the collision property of CryptoPAn [286].

In [289], the identification of the real data view was proposed by the collision of the

encrypted full IP addresses. Indeed, there also exists subprefix collision of the prefix

which can possibly help identify the real data view. We generalize such attack and

216

name it as Subprefix Collision Attack, which is caused by similar prefixes or subprefixes

(“close prefix”).

Closeness of Prefixes. The data in the same partition share a common prefix

(length-x), the prefixes of two different partitions may also share a length-y subprefix

where y < x. We use the following measure to define such relationship between such

two partitions (with close prefix).

Definition 13 (β-closeness). While partitioning D0 using the shared length-x prefix,

given two prefixes di and dj where i, j ∈ [1, p(x)], if di and dj also share a length-y

subprefix (y < x) such that |x− y| ≤ β, the two partitions Pi and Pj are said to satisfy

β-closeness (or Pi and Pj are β-close).

As mentioned before, applying CryptoPAn in real data view would also preserve

such closeness relationship across different partitions in D0, which may cause subprefix

collision attack : the real data view will preserve all the prefixes (including subprefixes)

among all the partitions whereas the fake data views would not retain them (see

Example 5).

Example 5 (Subprefix Collision Attack). As shown in Figure 8.5, the original data

are encoded into prefix-aware bit strings and represented in hexadecimal (for simplicity

of notations). The prefix length of the partition is x = 20 bits (dash line) in binary

(5-digit in hexadecimal). The original data is divided into two partitions, P1 with

prefix 38456 and P2 with 38457, both of which share a common subprefix of length 19;

only the the least significant bit (LSB) is different (i.e., 0 and 1) – these two partitions

satisfy 1-closeness. The real data view can be readily distinguished from other data

views with the prefix 27c27 and 27c26, which still keep the subprefixes across partitions.

Considering that CryptoPAn has collision-resistant property [286], the probability that

every fake data view generates a common subprefix in different partitions (by executing

217

random number of iterations CryptoPAn) is negligible. Then, the adversary can directly

identify the real data view.

3845613f50

38457240b3

3a3a781be8

39499adaae

26cb852df5

254a19daac

27c26e5b6f

27c27e3eb3

Execution
Times [2, 4]T

Fake Data View Fake Data View Real Data View

P1

P2

Execution
Times [5, 3]T

Execution
Times [1, 1]T

Figure 8.5. Subprefix Collision Attack

Notice that, β-closeness has the following characteristics for this subprefix

collision attack:

1. for a small β (different partitions share a longer subprefix), if many β-close

partitions are identified, then the real data view can be simply identified;

2. for a large β (short subprefix; an extreme case, many partitions share the first

bit), then the β-close partitions would not increase the confidence of such attack.

To tackle such attacks, the proposed scheme aims to create more similar

collisions among β-close partitions while generating data views, thus the adversary

cannot identify the real view from the subprefix collision (see Section 8.5.2).

8.5.2 Multiple Data Views Generation.

8.5.2.1 Seed Data for Generating Views. The objective of partitioning D0 is

to obfuscate the encrypted data across different partitions in the outsourced data but

still be able to reconstruct the encrypted data with fully prefix preservation (D0 or

similar data) for analysis. Thus, the next step is to generate the “Seed Data” which

is safe to outsource (obfuscated) and oblivious to reconstruct a real data (fully prefix

preserved).

218

Specifically, the framework applies CryptoPAn f(·) to different partitions in D0

with random number of iterations to generate the seed data Ds. Given shared prefix

length x, there are p(x) partitions, D0 = {P1, P2, ..., Pp(x)}. Then, we define a random

vector G0 = [v01, v
0
2, ..., v

0
p(x)]

T , where entry v0i , i ∈ [1, p(x)] is an integer representing

the number of iterations applying CryptoPAn on the partition Pi. Thus, we have

f(D0, G0, K1) = [f v01(P1), f
v02(P2), . . . , f

v0
p(x)(Pp(x))], where K1 is the CryptoPAn key

for obfuscating the data across p(x) partitions in the seed data Ds (the same key will

be used for reconstructing prefix preserving data). Note that v0i , i ∈ [1, p(x)] can be

chosen from the domain [−h, h] where h is comparable to p(x).

8.5.2.2 N Data Views. As discussed in Section 8.4.1, generating multiple data

views (say N) which include only one real data view (fully prefix preserving) and N−1

fake data views (non prefix preserving across partitions) could mitigate the leakage

against inference attacks (since the probabilities of matching the encrypted data to true

values can be greatly reduced by providing more data views). This is experimentally

validated in Section 8.7.

To this end, the service provider generates N different data views based on

the seed data and N pseudorandom vectors (similar to the procedure of generating

the seed data Ds). The data owner generates N pseudorandom vectors which form

a matrix R = [G1, . . . , GN], and then outsources the seed data Ds, pseudorandom

matrix R, and the CryptoPAn key K1 used for generating N views.

Definition 14 (data view). Given pseudorandom vectors Gi = [vi1, v
i
2, . . . , v

i
p(x)], i ∈

[1, N] in the matrix R, the ith data view can be represented as:

Di = [f
∑i

j=0 v
j
1(P1), f

∑i
j=0 v

j
2(P2), . . . , f

∑i
j=0 v

j
p(x)(Pp(x))]

With the associative and inverse property of CryptoPAn encryption f(·), the

219

ith data view can be the prefix preserving if the entries in the pseudorandom vectors

satisfy:
i∑

j=0

vj1 =
i∑

j=0

vj2 = · · · =
i∑

j=0

vjp(x) (8.5)

In other words, if the aggregated pseudorandom vectors for the ith data view

G0+G1+· · ·+Gi have equivalent entries, the ith data view can be prefix preserving (real

data view); otherwise, not prefix preserving (fake data view). If G0+G1+ · · ·+Gi = 0,

then the real data view would be the initially encrypted data D0. Note that only one

prefix preserving data is necessarily generated out of N data views (for reducing the

probability of identifying it and the leakage). Since the data owner generates all the

pseudorandom vectors G0, G1, . . . , GN and the first vector G0 (for generating the seed

data) is not shared to the service provider, the service provider would not know when

Equation 8.5 holds for generating the real data view.

Mitigate Subprefix Collision Attacks. As discussed before, our multi-view out-

sourcing creates more collisions among these prefixes which have common subprefixes

(in β-close partitions) to address the subprefix collision attack. Specifically, when

generating the pseudorandom number of executions of CryptoPAn on the partitions,

we can generate the same execution times (aggregated pseudorandom) for the β-close

partitions in the fake data views while generating different aggregated pseudorandom

numbers for partitions with different subprefixes or β is too large (collisions may

naturally occur in this case). Thus, the random matrix R (G1, . . . , GN) to determine

the execution times for each data view is generated as below:

1. the data owner first generates a random vector G0 with the size p(x). Then the

data owner will determine the minimum N as illustrated in Section 8.5.2.3.

2. the data owner then generates N pseudorandom vectors (as p(x)×N matrix).

r ∈ [1, N] is the randomly generated index for the real data view (only data

220

owner knows), and the generated pseudorandom vector Gr, r ∈ [1, N] satisfies

Equation 8.5 (e.g.,
∑r

i=0Gi = [0, 0, ..., 0]T) to preserve all the original prefixes.

3. finally, the data owner generates a set of N − 1 pseudorandom vectors for the

fake data views. Recall that we expect to create as much collisions among the

partitions as possible (for also satisfying β-closeness in the fake data views). Each

aggregated vector of G0 and Gi, i ∈ [1, N] (e.g., G0+G1, G0+G1+G2, . . . , G0+

G1 + · · ·+GN) should have at least two equal execution times for each pair of

β-close partitions.

Input : x, N , β, G0

Output : pseudo random matrix R = [G1, . . . , GN]

1 Generate the set of prefixes with length-x

2 Group the β-close partitions (a reasonable β)

3 for i = 1 : n do

4 if i ̸= r then

5 generate a length-p(x) pseudorandom vector Gi such that the

vector
∑i

j=0Gi includes two identical values if the

corresponding two partitions are β-close

6 if i = r then

7 generate a length-p(x) pseudorandom vector Gi: the entries in∑i
j=0Gi are identical

Algorithm 17: Pseudorandom Matrix Generation

Algorithm 17 gives the details for generating such pseudorandom vectors/matrix.

Example 6 illustrates how such pseudorandom matrix can address the subprefix collision

attacks and hide the real data view.

Example 6. Figure 8.6 shows 5 partitions with 20-bit prefixes. The initial random vec-

tor G0 = [−2, 2, 3, 0,−1]T , and the pseudorandom vectors G1 = [3, 0,−2, 2, 3]T , G2 =

221

[2, 1, 2, 1, 1]T , and G3 = [1, 1,−1,−2,−2]T are generated by the data owner. D2 is the

real data view while D1 and D3 are the fake data view. G0 will be held privately, only

the pseudorandom matrix R = [G1, G2, G3] are outsourced. Thus, we have:

• generating D1 (fake) executes CryptoPAn for G0 +G1 = [1, 2, 1, 2, 2]T times in 5

partitions, resp. (G1 = [3, 0,−2, 2, 3]T times by the service provider).

• generating D2 (real) executes CryptoPAn for G0 +G1 +G2 = [3, 3, 3, 3, 3]T times

in 5 partitions, resp. (G1 +G2 = [5, 1, 0, 3, 4]T times by the service provider).

• generating D3 (fake) executes CryptoPAn for G0 +G1 +G2 +G3 = [4, 4, 2, 1, 1]T

times in 5 partitions, resp. (G1 +G2 +G3 = [6, 2,−1, 1, 2]T times by the service

provider).

Note that G0 for 5 partitions are locally executed to generate the seed data Ds

by the data owner, and the service provider cannot reconstruct G0 from the received

data.

Fake Data ViewReal Data ViewFake Data View

[3, 0, -2, 2, 3]T

[2, -2, -3, 0, 1]T

[5, 1, -1, 1, 2]T

48c2167f23

48c228df14

48c2040f03

2450d167f2

46f39e49c5

387e710dd4

39738300f8

2450d167f2

46f39e49c5

368cb6e196

368c85f0fc

29af4a4e0c

29af5e555c

39739e4236

3973becaa7

46f383ef04

5a502a49ed

5a503e65bb

Execution Times
[1, 2, 1, 2, 2]T

Execution Times
[4, 4, 2, 1, 1]T

Execution Times
[-2, 2, 3, 0, -1]T

48c2167f23

48c228df14

48c2040f03

2450d167f2

Execution Times
[3, 3, 3, 3, 3]T

5a503e65bb

P1

P2

P3

P4

P5

G0=[-2, 2, 3, 0, -1]T G1=[3, 0, -2, 2, 3]T G2=[2, 1, 2, 1, 1]T G3=[1, 1, -1, -2, -2]T

Initially Encrypted
Data

Seed Data

2450c2197b 2450c2197b

G1

G2

G3G0

Figure 8.6. Utilizing Pseudorandom Matrix to Generate 3 Data Views (negative
execution times refer to repeating inverse CryptoPAn execution)

Example 7. In Fig 8.6, the seed data generates 3 data views. The two fake data

views have at least 2 subprefix collisions, e.g., 368cb and 368c8 in fake data view D1

222

and 5a502 and 5a503 in fake data view D3. Thus, D1,D2,D3 are subjected to some

indistinguishablity (which will be formally analyzed below).

8.5.2.3 Minimum N with Bounding Γ-Leakage. As shown in Equation 8.4,

the leakage drawn from inference attacks is determined by background knowledge

parameters {αs, αf}, the received seed data Ds and generated data views D1, . . . ,DN .

As N grows, leakage can be smaller, but more data views should be generated for the

same data analysis (more computation). Thus, our multi-view outsourcing seeks a

minimum N while satisfying Γ-leakage.

More specifically, the prefix length x determines the partitions P1, . . . , Pp(x).

Then, given any x ∈ [1, L], there exists a minimum N while bounding the leakage

with Γ in our experiments (fixing {αf , αs} for the background knowledge). As a

result, before partitioning the data, the data owner can find an x such that the

required minimum N for Γ-leakage is minimized – searching the x and minimum

N takes O(n log(n)) since the leakage derived from the fixed inference attacks is

anti-monotonic on N .

8.5.2.4 Privacy Analysis. In practice, an adversary will exploit any related

information (received data, background knowledge, etc.) to identify whether a data

view is the real or fake one. Recall that only the sensitive attributes (prefix-aware

encoded) are encrypted with CryptoPAn while other attributes are identical among

all the data views. Thus, identifying the real data view only depends on the encrypted

partitions, such as comparing N different data views and the leakage derived from

them via inference attacks.

Theorem 10. The generated N data views satisfy ϵ-indistinguishability where

ϵ = ln[

∑b
k=1(

∏p(x)αs

k=1 |Pk|)(p(x)αs)!∏Aαf+p(x)αs−1
j=0 (A− j)

], (8.6)

223

b =
(p(x)−pf)!

(p(x)αs)!
, k ∈ [1, p(x)] and A is the number of distinct values in D.

Proof. The adversary is armed with αf knowledge of the original data for the frequency

and ℓp-optimization attacks, and the αs knowledge for the fingerprinting attacks. Then,

we derive the indistinguishability bound ϵ as follows.

Recall that we generate p(x) partitions in D0 based on the prefix length x.

Denote the cardinality of each partition Pi as |Pi|, i ∈ [1, p(x)]. Then, the total number

of possibilities (denoted as O) of dividing A distinct values into the p(x) partitions is:

O =
A!

|P1|!|P2|! · · · |Pp(x)|!
(8.7)

Next, all the possible outcomes of the real data views for the adversary (denoted

as T) depends on it’s armed background knowledge (αs, αf), we thus need to consider

the following two aspects: (1) the adversary can reconstruct A ∗ αf out of A distinct

values by ℓp-optimization based inference attacks while these compromised A ∗ αf

distinct values are possibly across pf ∈ [1, A ∗ αf] partitions, which will eleminate a

number of partitions for at most p(x)− pf ; (2) the adversary matches the remaining

partitions with the p(x)αs inferred prefixes via the fingerprinting based inference

attacks. Thus, we have the following equation:

T =

∑b
k=1(

∏p(x)αs

k=1 |Pk|)(A ∗ (1− αf)− p(x)αs)!(p(x)αs)!

|P1|!|P2|! · · · |Pp(x)|!
(8.8)

where b =
(p(x)−pf)!

(p(x)αs)!
, k ∈ [1, p(x)].

Finally, we thus have:

224

∀i, j ∈ {1, 2, · · · , N},P r[data view i may be real]

Pr[data view j may be real]
=
T

O

=

∑b
k=1(

∏p(x)αs

k=1 |Pk|)(p(x)αs)!∏Aαf+p(x)αs−1
j=0 (A− j)

(8.9)

where b =
(p(x)−pf)!

(p(x)αs)!
, k ∈ [1, p(x)]. Per Definition 12, we can complete the

proof.

In Section 8.7.2, the experiments on the real datasets show ϵ ≤ 1.5 in general.

Furthermore, the overall information leakage is also upper bounded as below.

Theorem 11. Given the attacker with background knowledge {αf , αs}, the information

leakage from the seed data and N data views (D = {Ds,D1, . . . ,DN}) satisfies the

Γ-leakage where

I(D, {αf , αs}) ≤ Γ =
αf

N
+
x(
∑

∀Pk∈C |Pk| − A · αf)

A · L ·N
(8.10)

where A is the number of distinct values in D, L is the length of the encoded

bit strings, x is the prefix length used for partitioning, C is the union of the two sets

of data partitions derived by the inference attacks with background knowledge {αf , αs},

and ∀Pk ∈ C, |Pk| is the number of distinct values in partition Pk.

Proof. The adversary is armed with αf knowledge of the original data for the frequency

and ℓp-optimization attacks, and the αs knowledge for the fingerprinting attacks.

According to Definition 11, to derive the upper bound Γ of information leakage, we

consider the worst case scenario by assuming that the unique data or prefixes inferred

by two types of inference attacks are disjoint (to derive the highest leakage). Note that

we also assume that the adversary attacks all the data D (seed data and N data views)

225

and the adversary does not know which data view is the real one (indistinguishability).

Then, we compute the leakage on the two types of inference attacks, respectively.

As depicted before, the adversary can reconstruct A · αf out of A distinct

values by ℓp-optimization based inference attacks while the adversary can matches

p(x) · αs inferred prefixes by the fingerprinting based inference attacks. Then, we

get the bits of information leakage (as percents) by ℓp-optimization based inference

attacks: Aαf · L+ x(
∑

∀Pk
|Pk| − A · αf), where ∀k ∈ [1, |Aαf |], |Pk| are the number

of distinct values across all the A · αf partitions. Similarly, we can compute the bits

of information leakage (as percents) by the fingerprinting based inference attacks∑
|Pj| · x, where ∀j ∈ [1, |p(x)αs|], |Pj| are the number of distinct values across all the

p(x)αs partitions. To sum up, we can get the leakage (the percent of bits inferred by

the adversary, Definition 10) as below:

Aαf · L+ (Σ|Pk| − Aαf) · x+ Σ|Pj| · x
N · A · L

(8.11)

Thus, the overall leakage is upper bounded by

Γ =
αf

N
+
x(
∑

∀Pk∈C |Pk| − A · αf)

A · L ·N
(8.12)

where C is the union of the two sets of data partitions inferred by the two

types of inference attacks with background knowledge {αf , αs}. This completes the

proof.

We also demonstrate the defense performance (on bounded leakage) of our

proposed framework with the given inference attacks in Section 8.7.1.2. To sum up,

our framework can ensure any bounded leakage against any given set of inference

attacks, whereas the existing multi-view approach [289] cannot strictly bound it.

226

8.5.3 Privately Retrieving Analysis Result. In Step (7), the service provider

performs the same analysis on all the N data views to derive N analysis results. Then,

in Step (8), the data owner can privately retrieve the analysis result of the real data

view (Dr) via the oblivious random access memory (ORAM) [314] without letting the

service provider know which analysis result has been retrieved.

Proposition 2. The generalized outsourcing framework (with the prefix-aware encod-

ing) ensures 100% accuracy for analyzing the prefix preserving encrypted data.

Proof. Equation 8.5 ensures that exactly one real data view with fully prefix preserving

encrypted data will be generated out of N data views. The accuracy for analyzing

such real data view is 100%. Since the data owner knows the end-to-end data

encryption (with two CryptoPAn keys K0 and K1 for multiple rounds of prefix

preserving encryption), it knows the index for the real data view with its locally

generated pseudorandom matrix R = [G1, . . . , GN].

Thus, the data owner can privately retrieve the analysis result of the real data

view, which ensures 100% utility on the fully preserved prefixes (validated in Section

8.7.3).

8.6 Discussion

Worst Case Leakage and Amplification Effect. We bound the worst leakage for

all the attacks with Γ, e.g., the maximum leakage resulted from different combinations

of background knowledge in different inference attacks. Moreover, amplification effect

of different inference attacks are also considered in the experiment. For instance,

as fingerprinting based inference attacks have recovered some encrypted data with

background knowledge αs, then the accuracy of frequency and ℓp-optimization based

inference attacks can be improved. Thus, the leakage bounded by Γ is derived from

multiple attacks with the amplification effect.

227

New Inference Attacks. Our generalized outsourcing defines Γ to bound the leakage

from any combinations of the inference attacks. In case of other threat models (e.g.,

other inference attacks [313,316], or newly identified attacks [310–312], the data owner

only needs to simulate the inference attacks to estimate the leakage and specify the x

which results in the minimum N to bound the leakage.

Communication Overheads. Although the framework generates N (could be

hundreds) data views to ensure privacy, the data owner only sends one seed data Ds

with the same size as the original data, some pseudorandom vectors (matrix) R and

the CryptoPAn key K1 to the service provider. Moreover, the data owner privately

retrieves the corresponding analysis result (with a small size in general) via ORAM.

Thus, the total communication overheads are quite close to that of a regular data

outsourcing.

8.7 Experimental Evaluations

We implemented our outsourcing framework on the CloudLab platform [317]

where one server works as the client and another as the service provider. We utilize

two different real world datasets in the experiments.

Traveler Check-in Location Data. It includes 6,442,890 check-ins records of

196,591 users on a social network (http://snap.stanford.edu/data/loc-gowalla.html).

We integrated the data into 633,743 distinct locations in total. A single data record

consists of the user IDs, timestamps, locations (GPS coordinates) and location IDs.

Network Traffic Data (https://www.unb.ca/cic/datasets/dos-dataset.html). It is

collected from DoS attacks. We extracted the source/destination IPs, timestamps,

packet types, and port numbers from a 4.8GB raw dataset. 104,820 records are

attributed to 778 distinct source IPs.

228

We encode the traveler check-in location data (i.e., GPS locations) into bit

strings with prefix-aware encoding. For the network traffic data, IP addresses can also

be binarized. Then, CryptoPAn can be applied to preserve prefixes in the encrypted

bit strings for both datasets.

8.7.1 Experiments on the Inference Attacks. We have implemented two

common inference attacks on the encrypted data: 1) Frequency and ℓp-optimization

(p = 2) based inference attacks [292]; 2) Fingerprinting based inference attacks [289,297]

and set the background knowledge parameters as αf and αs. While attacking two

encrypted datasets, leakage [286] out of the original data (Definition 11) is adopted as

the metric to evaluate the confidence of the attacks.

To model the background knowledge of the adversary in the frequency or

ℓp-optimization based inference attacks, we setup the corresponding auxiliary dataset

(including αf of the original locations/IP addresses’ similar frequencies). In addition,

any αs of the original locations/IP addresses are assumed to be identified by the

adversary via fingerprinting. We repeated each attacking experiment for 100 times and

average the results as the leakage. The average runtimes of different inference attacks

on two datasets are shown in Table 8.3 (all the attacks can be efficiently performed by

the service provider and simulated by the data owner).

Table 8.3. Average Runtime of Attacks (sec)

Data Attacks Frequency ℓ2-opt ℓ3-opt Fingerprinting

Location Data 2.64 15.19 18.73 5.24

Network Data 0.12 3.17 4.38 1.23

8.7.1.1 Attacking CryptoPAn. We first implement the attacks on the two

datasets encrypted by CryptoPAn (keys are randomly generated).

229

1. fixing the fingerprinting-based background knowledge αs = 10%, 50%, and

measure the leakage via varying the other background knowledge αf ∈ [10%, 90%]

(from weak to very strong background knowledge);

2. fixing the background knowledge for frequency and ℓp-optimization based in-

ference attacks αf = 50%, 90% and varying the fingerprinting inference αs ∈

[10%, 50%] (data injection does not exceed 50% in general).

In Figure 8.7(a) and 8.7(c), the leakage grows from 40% to 80% of the original

locations/IP addresses as αf increases from 10% to 90% (changing αs = 10% to

50% does not increase the leakage much, compared to αf). In Figure 8.7(b) and

8.7(d), we learn a similar trend for both datasets. These empirical results demonstrate

that encrypted locations/IP addresses (by CryptoPAn) are very vulnerable to both

ℓp-optimization and fingerprinting based inference attacks.

8.7.1.2 Attacking Multi-view Outsourcing.

Intuitively, the more N data views are generated, the less the leakage will be

derived from the inference attacks since the adversary cannot distinguish them.

To validate this, we consider the worst case scenario. Given the indistinguisha-

bility bound ϵ, the real data view is ϵ-distinguishable with other generated N − 1 fake

data views. We also assume that the adversary attacks all the data views. Denote the

probability of identifying any data view as the real data view as Prr and the leakage

as γr. Also, denote the probability of identifying any data view as a fake data view

as Pri, i ∈ [1, N], i ̸= r and the leakage as γi (γr might be larger while γi might be

smaller since the data is fake). Then, the leakage in the worst case can be obtained as

γtotal =
∑N

i=1,i ̸=r γi ∗ Pri + γr ∗ Prr, where Pri = 1
N−1+eϵ

, Prr =
eϵ

N−1+eϵ
in the worst

case (since ∀i ∈ [1, N], i ̸= r, Prr
Pri
≤ eϵ).

230

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
p-optimization based Inference f

0

20

40

60

80

100

Le
ak

ag
e

(%
)

s=0.1
s=0.5

(a) Encrypted Location Data

0.1 0.2 0.3 0.4 0.5
Fingerprinting based Inference s

0

20

40

60

80

100

Le
ak

ag
e

(%
)

f=0.5
f=0.9

(b) Encrypted Location Data

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
p-optimization based Inference f

0

20

40

60

80

100

Le
ak

ag
e

(%
)

s=0.1
s=0.5

(c) Encrypted Network Data

0.1 0.2 0.3 0.4 0.5
Fingerprinting based Inference s

0

20

40

60

80

100

Le
ak

ag
e

(%
)

f=0.5
f=0.9

(d) Encrypted Network Data

Figure 8.7. Inference Attacks on Data Encrypted by CryptoPAn

We now examine the bounded leakage of multi-view outsourcing against the

same inference attacks. Figure 8.8 presents the required minimum number of data

views N on the encrypted location and network traffic data, respectively. Specifically,

if the leakage bound Γ increases (from 0.1% to 5%), the required minimum number N

declines from ∼ 300 to ∼ 50 (against strong attackers αf = 50% and αs = 50%), and

declines from ∼ 50 to ∼ 5 (against weak attackers αf = 10% and αs = 10%). While

increasing the background knowledge αf from 10% to 90%, the required minimum N

increases for all the leakage bound and αs (Figure 8.8(c)). Similarly, while increasing

231

the background knowledge of fingerprinting from 10% to 50%, the required minimum

N also increases for all the leakage bound and αf in the multi-view outsourcing (see

Figure 8.8(e)). Figure 8.8 (b,c,d) shows a similar trend on network traffic data. Table

8.4 shows the optimal x for different leakage bound Γ ∈ [0.1%, 5%] on the location

data, and different background knowledge of two types of inference attacks (αf , αs).

Most x values are greater than 20 (out of 46). Such long prefixes in the optimal case

(minimum N) would generate more partitions.

Table 8.4. Optimal x for Encrypting Locations

(αf , αs)

Γ (%)
0.1 0.5 1 1.5 2 2.5 3 3.5 4 5

(0.1, 0.1) 30 25 27 29 20 26 27 20 28 23

(0.1, 0.5) 22 27 29 26 20 29 30 22 25 30

(0.5, 0.1) 24 26 26 23 26 29 21 29 26 29

(0.5, 0.5) 26 27 26 28 26 24 25 26 23 24

232

0 1 2 3 4 5
Leakage Bound (%)

0

50

100

150

200

250

300

M
in

im
um

 N

f=0.1, s=0.1
f=0.1, s=0.5
f=0.5, s=0.1
f=0.5, s=0.5

(a) N vs. Γ

0 1 2 3 4 5
Leakage Bound (%)

0

100

200

300

400

M
in

im
um

 N

f=0.1, s=0.1
f=0.1, s=0.5
f=0.5, s=0.1
f=0.5, s=0.5

(b) N vs. Γ

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
p-optimization based Inference f

0

50

100

150

200

250

300

350

400

M
in

im
um

 N

s=0.1, =0.1%
s=0.1, =5%
s=0.5, =0.1%
s=0.5, =5%

(c) N vs. αf

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
p-optimization based Inference f

0

100

200

300

400

500

M
in

im
um

 N

s=0.1, =0.1%
s=0.1, =5%
s=0.5, =0.1%
s=0.5, =5%

(d) N vs. αf

0.1 0.2 0.3 0.4 0.5
Fingerprinting based Inference s

0

50

100

150

200

250

M
in

im
um

 N

f=0.1, =0.1%
f=0.1, =5%
f=0.5, =0.1%
f=0.5, =5%

(e) N vs. αs

0.1 0.2 0.3 0.4 0.5
Fingerprinting based Inference s

0

50

100

150

200

250

300

M
in

im
um

 N

f=0.1, =0.1%
f=0.1, =5%
f=0.5, =0.1%
f=0.5, =5%

(f) N vs. αs

Figure 8.8. Minimum N on Location Data (a,c,e), Network Data (b,d,f)

233

8.7.2 Indistinguishability. We also demonstrate the indistinguishablity bound ϵ

w.r.t. different αf , αs and leakage bound Γ. As illustrated in Figure 8.9 (a,c) and (b,d),

ϵ increases as αs or αf grows. This indicates that a stronger attacker would be more

likely to identify the real data view. Moreover, ϵ is relatively small even if the adversary

holds a strong background knowledge. For instance, in case of αf = 90%, αs = 50%, ϵ

only equals 1.47 (which is also proven to be bounded in Theorem 10). Note that the

leakage bound has no significant effect on ϵ since the indistinguishability among the

data views is mainly determined by the background knowledge.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
p-optimization based Inference f

0

1

2

3

4

5
s=0.1, =0.1%
s=0.1, =5%
s=0.5, =0.1%
s=0.5, =5%

(a) ϵ vs. αf

0.1 0.2 0.3 0.4 0.5
Fingerprinting based Inference s

0

1

2

3

4

5
f=0.1, =0.1%
f=0.1, =5%
f=0.5, =0.1%
f=0.5, =5%

(b) ϵ vs. αs

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
p-optimization based Inference f

0

1

2

3

4

5
s=0.1, =0.1%
s=0.1, =5%
s=0.5, =0.1%
s=0.5, =5%

(c) ϵ vs. αf

0.1 0.2 0.3 0.4 0.5
Fingerprinting based Inference s

0

1

2

3

4

5
f=0.1, =0.1%
f=0.1, =5%
f=0.5, =0.1%
f=0.5, =5%

(d) ϵ vs. αs

Figure 8.9. Indistinguishability on Location Data (a,b) and Network Data (c,d)

234

8.7.3 Utility of the Outsourced Data. Furthermore, we evaluate the utility

for the outsourced location data using the Periodic Mobility Model (PMM) [299],

which can be used to predict the mobility of the users in one week by analyzing their

historical check-in data.

First, in Figure 8.10(a), we plot the location distribution of 100 blocks (each

block includes multiple locations) at different times in the original data, real data

view and fake data view. We observe that the distributions between the original data

and the real data view are identical. Such 100% accuracy is ensured by the prefix

preserving property in the outsourced data.

Second, we evaluate the accuracy and relative error distance for the real data

view and one randomly selected fake data view. In Figure 8.10(b), the average accuracy

of the real data views is exactly the same as the original dataset, both of which have

a better accuracy than the fake data view. This also matches the fact that the

outsourced data can fully preserve the prefixes of the real data without changing other

attributes. Figure 8.10(c) demonstrates the results for relative error of distance, which

also validate such excellent utility.

8.7.4 System Performance. Finally, we also evaluate the computational and

communication overheads for outsourcing different datasets. In Figure 8.11(a), as

the number of data views N grows, the runtime increases almost linearly for fixing

different x as the prefix length to generate data partitions. While enlarging the prefix

length x, the runtime also increases since the number of partitions also increases.

Then, the overall computational costs become higher (with more CryptoPAn execution

in more data partitions).

Figure 8.11(b) shows the experimental results of runtime versus different data

sizes with fixed prefix length x = 16 (which is also a linear increase). We leverage

235

0 20 40 60 80 100
Block of Location Index

0

50

100

150

200

250

300

Nu
m

be
r o

f D
ist

in
ct

 L
oc

at
io

ns

Original Data
Real Data View
Fake Data View

(a) Location Distribution

1 2 3 4 5 6 7
Day

0.0

0.1

0.2

0.3

0.4

0.5

Ac
cu

ra
cy

Original Data
Real Data View
Fake Data View

(b) Accuracy vs. Days

1 2 3 4 5 6 7
Day

0

5

10

15

20

25

30

35

40

Re
la

tiv
e

Er
ro

r R
at

e
(%

)
Original Data
Real Data View
Fake Data View

(c) Relative Error Rate vs. Days

Figure 8.10. Utility Evaluation on Location Data

the Path-ORAM [318,319] to implement private result retrieval. The communication

bandwidth is around 0.93MB and runtime is only 289ms for outsourcing the location

data on average. Such experimental results are reasonable since the data owner only

retrieves the analysis result corresponding to the real data view rather than the entire

dataset. This is also confirmed in [319].

Finally, bounded by the same information leakage Γ, the proposed generalized

framework requires less number of data views compared to [289], and thus reduces the

236

10 40 70 100 130 160 190 220 250 280
N

0

50

100

150

200

250

300

Ti
m

e
(s

)

x=8
x=12
x=16

(a) Time vs. N

10 20 30 40 50 60 70 80 90 100
Data Size (%)

0

50

100

150

200

250

300

Ti
m

e
(s

)

N=100
N=200
N=300

(b) Time vs. Data Size (x = 16)

Figure 8.11. Running Time on Location Data

computational overheads at the service provider end (on analyzing all the generated

data views). Thus, we also validate this using two real datasets. Specifically, given the

prefix length, we apply both our generalized framework and multi-view framework for

generating the data views to ensure the same bounded information leakage Γ. For the

multi-view framework, we fix the length of prefix to be 16/23 for the network traffic

and location data, respectively. Table 8.5 summarizes the running time of conducting

the analysis on all the generated data views by both approaches with different leakage

bound Γ. We can observe that our generalized framework needs less time to analyze

all the data views on both two datasets.

8.8 Related Work

Securely Outsourcing Analysis. Securely outsourcing data analysis to third-party

service providers has recently grown rapidly, especially with the increasing popularity

of cloud technology [320, 321]. For this purpose, provably secure outsourcing has

attracted significant attention during past decade. For instance, Sion et al. [322] define

the requirements to build a secure outsourcing mechanism. Zhou et al. [323] propose

a secure key management scheme which ensures that the source of the data can be

237

Table 8.5. Running Time (sec) vs. Information Leakage

Dataset

Scheme

Leakage
1% 3% 5% 7% 10%

Network
Multi-view [289] 11.6 8.3 6.7 4.5 3.2

Ours 8.2 6.5 5.8 3.7 2.8

Location
Multi-view [289] 16.2 13.3 11.0 7.5 5.4

Ours 11.3 10.4 8.3 5.9 3.6

securely accessed by different parties under different requirements. Alternatively,

oblivious random access memory (ORAM) [324] aims to hide the access patterns of

the users, which has been well developed on different topics [318,325–327]. In addition,

Franz et al. [328] propose a method which can make the data owner delegate rights to

new clients for accessing to the outsourced data via a curious server based on ORAM.

Stefanov et al. [318] propose a simple ORAM protocol with a small amount of client

storage, which is formally proven to require small bandwidth and overheads.

Property Preserving Encryption Schemes. Broadly, various encryption schemes

have been proposed to protect the data in different security levels, including fully

homomorphic encryption (FHE) [76, 329], functional encryption [330, 331], searchable

symmetric encryption [332,333] and oblivious RAM (ORAM) [314,319]. Moreover,

there are a number of property preserving encryption schemes based on the CryptDB

[334], such as order preserving encryption [287,288] and deterministic encryption [285].

CryptoPAn [286] was proposed by Xu et al. to ensure the prefix preserving property

on IP addresses from the cryptographic view. Kerschbaum [335] proposes a new order

preserving encryption scheme which can hide the frequency pattern of plaintexts via

238

randomizing the ciphertexts to mitigate frequency analysis. Wang et al. [336] design a

more efficient oblivious data structure which achieves a high efficiency.

Inference Attacks. Brekne et al. [298] presents the attacks via frequency analysis

to compromise IP addresses under two prefix preserving anonymization schemes.

There are several works which focus on the practical attacks to the encrypted data

[292,293,337,338]. Islam et al. [338] introduce the first inference attack which leverages

the leakage of access pattern and auxiliary information to get more information about

the remaining queries. Naveed et al. [292] present a series of inference attacks on the

property preserving encrypted database and implement the attacks on the medical

databases to show the effectiveness of the attacks. Recently, Kellaris et al. [293] develop

a generic reconstruction attacks on the range queries in the outsourced databases

where the access patterns and communication volume are leaked.

239

CHAPTER 9

CONCLUSION

As IoT systems have been overwhelming to the whole society and environment,

the trustworthiness of IoT is very important to ensure the sustainable development

and social wellness. My dissertation has presented a complete research with two key

trustworthy aspects, i.e., data privacy and robustness in aspects of two critical system

components: MAS and ML systems. My work systemically studied various applications

or domains in IoT systems, including smart grid, video recognition, natural language

and cloud computing systems. To tackle the data privacy and robustness issues, I

propose various privacy-enhancing and robust schemes with the integration of multiple

foundational theories, such as applied cryptography, differential privacy. I believe my

dissertation research can motivate to build more and more trustworthy IoT systems.

240

BIBLIOGRAPHY

[1] A. Sobe and W. Elmenreich, “Smart microgrids: Overview and outlook,” CoRR,
vol. abs/1304.3944, 2013.

[2] S. Maharjan, Q. Zhu, Y. Zhang, S. Gjessing, and T. Basar, “Dependable demand
response management in the smart grid: A stackelberg game approach,” IEEE
Trans. Smart Grid, vol. 4, no. 1, pp. 120–132, 2013.

[3] W. Saad, Z. Han, H. V. Poor, and T. Basar, “Game-theoretic methods for the
smart grid: An overview of microgrid systems, demand-side management, and
smart grid communications,” IEEE Signal Process. Mag., vol. 29, no. 5, pp.
86–105, 2012.

[4] Z. Alibhai, W. Gruver, D. Kotak, and D. Sabaz, “Distributed coordination of
micro-grids using bilateral contracts,” in Systems, Man and Cybernetics, 2004
IEEE International Conference on, vol. 2, 2004, pp. 1990–1995.

[5] A. Ouammi, H. Dagdougui, L. Dessaint, and R. Sacile, “Coordinated model
predictive-based power flows control in a cooperative network of smart
microgrids,” IEEE Trans. Smart Grid, vol. 6, no. 5, pp. 2233–2244, 2015.
[Online]. Available: http://dx.doi.org/10.1109/TSG.2015.2396294

[6] Y. Hong, S. Goel, and W. M. Liu, “An efficient and privacy-preserving scheme
for p2p energy exchange among smart microgrids,” International Journal of
Energy Research, vol. 40, no. 3, pp. 313–331, 2016.

[7] S. Xie, Y. Hong, and P.-J. Wan, “A privacy preserving multiagent system for load
balancing in the smart grid,” in Proceedings of the 18th International Conference
on Autonomous Agents and MultiAgent Systems, 2019, pp. 2273–2275.

[8] V. Mathew, R. K. Sitaraman, and P. Shenoy, “Energy-aware load balancing in
content delivery networks,” in 2012 Proceedings IEEE INFOCOM, March 2012,
pp. 954–962.

[9] M. Yu and S. H. Hong, “Supply and demand balancing for power
management in smart grid: A stackelberg game approach,” Applied
Energy, vol. 164, pp. 702 – 710, 2016. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/S0306261915016128

[10] J. Schwill, “How to balance supply and demand on new electricity markets,”
Gencom’s Newsletter, 2016.

[11] E. Csanyi, “Substation main functions and classification,” http://
electrical-engineering-portal.com/substation-main-functions-and-classification,
accessed: 2018-04-10.

[12] G. Ács and C. Castelluccia, “I have a dream! (differentially private smart
metering),” in Information Hiding, 2011, pp. 118–132.

[13] Y. Hong, W. M. Liu, and L. Wang, “Privacy preserving smart meter streaming
against information leakage of appliance status,” IEEE Trans. Information
Forensics and Security, vol. 12, no. 9, pp. 2227–2241, 2017. [Online]. Available:
https://doi.org/10.1109/TIFS.2017.2704904

241

[14] A. Hussain, V. Bui, and H. Kim, “A resilient and privacy-preserving
energy management strategy for networked microgrids,” IEEE Trans.
Smart Grid, vol. 9, no. 3, pp. 2127–2139, 2018. [Online]. Available:
https://doi.org/10.1109/TSG.2016.2607422

[15] L. Sankar, S. R. Rajagopalan, S. Mohajer, and H. V. Poor, “Smart meter privacy:
A theoretical framework,” IEEE Trans. Smart Grid, vol. 4, no. 2, pp. 837–846,
2013.

[16] S. Xie, Y. Hong, and P.-J. Wan, “A privacy preserving multiagent
system for load balancing in the smart grid,” in Proceedings of the 18th
International Conference on Autonomous Agents and MultiAgent Systems,
ser. AAMAS ’19. Richland, SC: International Foundation for Autonomous
Agents and Multiagent Systems, 2019, pp. 2273–2275. [Online]. Available:
http://dl.acm.org/citation.cfm?id=3306127.3332082

[17] S. Xie, Y. Hong, and P.-J. Wan, “Pairing: Privately balancing multiparty real-
time supply and demand on the power grid,” IEEE Transactions on Information
Forensics and Security, vol. 15, pp. 1114–1127, 2020 ©2020 IEEE. Reprinted,
with permission, from Shangyu Xie, Yuan Hong and Peng-Jun Wan, Pairing:
Privately Balancing Multiparty Real-Time Supply and Demand on the Power
Grid, IEEE Transactions on Information Forensics and Security, 2020.

[18] C. Rottondi, G. Verticale, and A. Capone, “Privacy-preserving smart metering
with multiple data consumers,” Computer Networks, vol. 57, no. 7, pp. 1699–
1713, 2013.

[19] C.-K. Chu, J. K. Liu, J. W. Wong, Y. Zhao, and J. Zhou, “Privacy-preserving
smart metering with regional statistics and personal enquiry services,” in ASI-
ACCS, 2013, pp. 369–380.

[20] K. Kursawe, G. Danezis, and M. Kohlweiss, “Privacy-friendly aggregation for
the smart-grid,” in PETS’11, 2011, pp. 175–191.

[21] C. Rottondi, A. Barbato, L. Chen, and G. Verticale, “Enabling privacy in a
distributed game-theoretical scheduling system for domestic appliances,” IEEE
Transactions on Smart Grid, vol. 8, no. 3, pp. 1220–1230, May 2017.

[22] A. C. Yao, “How to generate and exchange secrets,” in Proceedings of the 27th
IEEE Symposium on Foundations of Computer Science, IEEE. Los Alamitos,
CA, USA: IEEE Computer Society, 1986, pp. 162–167.

[23] O. Goldreich, S. Micali, and A. Wigderson, “How to play any mental game - a
completeness theorem for protocols with honest majority,” in Proceedings of the
19th ACM Symposium on the Theory of Computing. New York, NY: ACM,
1987, pp. 218–229. [Online]. Available: http://doi.acm.org/10.1145/28395.28420

[24] P. Paillier, “Public key cryptosystems based on composite degree residuosity
classes,” in Advances in Cryptology - Eurocrypt ’99 Proceedings, LNCS 1592,
1999, pp. 223–238.

[25] D. Malkhi, N. Nisan, B. Pinkas, and Y. Sella, “Fairplay - secure two-party
computation system,” in Proceedings of the 13th USENIX Security Symposium,
August 9-13, 2004, San Diego, CA, USA, 2004, pp. 287–302. [Online].
Available: http://www.usenix.org/publications/library/proceedings/sec04/tech/
malkhi.html

242

[26] B. Yang, H. Nakagawa, I. Sato, and J. Sakuma, “Collusion-resistant
privacy-preserving data mining,” in Proceedings of the 16th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, ser. KDD
’10. New York, NY, USA: ACM, 2010, pp. 483–492. [Online]. Available:
http://doi.acm.org/10.1145/1835804.1835867

[27] S. Sridhar and G. Manimaran, “Data integrity attacks and their impacts on
scada control system,” in IEEE PES General Meeting, July 2010, pp. 1–6.

[28] Y. Liu, M. K. Reiter, and P. Ning, “False data injection attacks against
state estimation in electric power grids,” in Proceedings of the 2009 ACM
Conference on Computer and Communications Security, CCS 2009, Chicago,
Illinois, USA, November 9-13, 2009, 2009, pp. 21–32. [Online]. Available:
http://doi.acm.org/10.1145/1653662.1653666

[29] R. Lasseter, “Microgrids,” in Power Engineering Society Winter Meeting, 2002.
IEEE, vol. 1, 2002, pp. 305–308.

[30] Z. Huang, T. Zhu, D. Irwin, A. Mishra, D. Menasche, and P. Shenoy,
“Minimizing transmission loss in smart microgrids by sharing renewable energy,”
ACM Trans. Cyber-Phys. Syst., vol. 1, no. 2, pp. 5:1–5:22, Dec. 2016. [Online].
Available: http://doi.acm.org/10.1145/2823355

[31] R. A. van der Veen and R. A. Hakvoort, “The electricity balancing market:
Exploring the design challenge,” Utilities Policy, vol. 43, pp. 186 – 194,
2016. [Online]. Available: http://www.sciencedirect.com/science/article/pii/
S0957178716303125

[32] A. Ricci, B. Vinerba, E. Smargiassi, I. D. Munari, V. Aisa, and P. Ciampolini,
“Power-grid load balancing by using smart home appliances,” in 2008 Digest of
Technical Papers - International Conference on Consumer Electronics, Jan 2008,
pp. 1–2.

[33] D. Naccache and J. Stern, “A new public-key cryptosystem,” in Interna-
tional Conference on the Theory and Applications of Cryptographic Techniques.
Springer, 1997, pp. 27–36.

[34] T. Okamoto and S. Uchiyama, “A new public-key cryptosystem as secure
as factoring,” in International conference on the theory and applications of
cryptographic techniques. Springer, 1998, pp. 308–318.

[35] P. Vithayasrichareon, T. Lozanov, J. Riesz, and I. MacGill, “Impact of opera-
tional constraints on generation portfolio planning with renewables,” in 2015
IEEE Power Energy Society General Meeting, July 2015, pp. 1–5.

[36] D. Montenegro, M. Hernandez, and G. Ramos, “Real time opendss framework
for distribution systems simulation and analysis,” in 2012 Sixth IEEE/PES
Transmission and Distribution: Latin America Conference and Exposition (T&D-
LA). IEEE, 2012, pp. 1–5.

[37] O. Goldreich, “Secure multi-party computation,” Sep. 1998, (working draft).
[Online]. Available: http://www.wisdom.weizmann.ac.il/∼oded/pp.html

[38] “tor,” https://www.torproject.org/, accessed: 2018-05-10.

243

[39] O. Goldreich, The Foundations of Cryptography. Cambridge University
Press, 2004, vol. 2, ch. Encryption Schemes. [Online]. Available: http:
//www.wisdom.weizmann.ac.il/∼oded/PSBookFrag/enc.ps

[40] J. Katz and Y. Lindell, Introduction to Modern Cryptography (Chapman &
Hall/Crc Cryptography and Network Security Series). Chapman & Hall/CRC,
2007.

[41] A. Fiat and A. Shamir, “How to prove yourself: Practical solutions to identifi-
cation and signature problems,” in Advances in Cryptology — CRYPTO’ 86,
A. M. Odlyzko, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987, pp.
186–194.

[42] Y. Hong, H. Wang, S. Xie, and B. Liu, “Privacy preserving and collusion resistant
energy sharing,” in 2018 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), April 2018, pp. 6941–6945.

[43] Z. Wang, K. Yang, and X. Wang, “Privacy-preserving energy scheduling in
microgrid systems,” IEEE Trans. Smart Grid, vol. 4, no. 4, pp. 1810–1820, 2013.

[44] T. Zhu, S. Xiao, Y. Ping, D. Towsley, and W. Gong, “A secure energy routing
mechanism for sharing renewable energy in smart microgrid,” in SmartGrid-
Comm, 2011, pp. 143–148.

[45] J. Vaidya, M. Kantarcioglu, and C. Clifton, “Privacy preserving naive bayes
classification,” International Journal on Very Large Data Bases, vol. 17, no. 4,
pp. 879–898, Jul. 2008.

[46] J. Alwen, J. Katz, Y. Lindell, G. Persiano, a. shelat, and I. Visconti, “Collusion-
free multiparty computation in the mediated model,” in Advances in Cryptology
- CRYPTO 2009, S. Halevi, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg,
2009, pp. 524–540.

[47] X. Wang, S. Ranellucci, and J. Katz, “Authenticated garbling and efficient
maliciously secure two-party computation,” in Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security, CCS 2017,
Dallas, TX, USA, October 30 - November 03, 2017, 2017, pp. 21–37. [Online].
Available: http://doi.acm.org/10.1145/3133956.3134053

[48] R. A. Popa, A. J. Blumberg, H. Balakrishnan, and F. H. Li, “Privacy and
accountability for location-based aggregate statistics,” in Proceedings of the
18th ACM Conference on Computer and Communications Security, CCS 2011,
Chicago, Illinois, USA, October 17-21, 2011, 2011, pp. 653–666. [Online].
Available: http://doi.acm.org/10.1145/2046707.2046781

[49] X. S. Wang, Y. Huang, Y. Zhao, H. Tang, X. Wang, and D. Bu, “Efficient
genome-wide, privacy-preserving similar patient query based on private edit
distance,” in Proceedings of the 22nd ACM SIGSAC Conference on Computer
and Communications Security, Denver, CO, USA, October 12-16, 2015, 2015,
pp. 492–503. [Online]. Available: http://doi.acm.org/10.1145/2810103.2813725

[50] F. G. Mármol, C. Sorge, O. Ugus, and G. M. Pérez, “Do not snoop my habits:
preserving privacy in the smart grid,” IEEE Communications Magazine, vol. 50,
no. 5, pp. 166–172, 2012.

244

[51] W. Yang, N. Li, Y. Qi, W. H. Qardaji, S. E. McLaughlin, and P. McDaniel,
“Minimizing private data disclosures in the smart grid,” in ACM Conference on
Computer and Communications Security, 2012, pp. 415–427.

[52] O. Tan, D. Gündüz, and H. V. Poor, “Increasing smart meter privacy through
energy harvesting and storage devices,” IEEE Journal on Selected Areas in
Communications, vol. 31, no. 7, pp. 1331–1341, 2013.

[53] A. Rial and G. Danezis, “Privacy-preserving smart metering,” in WPES, 2011,
pp. 49–60.

[54] Z. Erkin and G. Tsudik, “Private computation of spatial and temporal power
consumption with smart meters,” in ACNS, 2012, pp. 561–577.

[55] H.-Y. Lin, W.-G. Tzeng, S.-T. Shen, and B.-S. P. Lin, “A practical smart
metering system supporting privacy preserving billing and load monitoring,” in
ACNS, 2012, pp. 544–560.

[56] X. Liang, X. Li, R. Lu, X. Lin, and X. Shen, “Udp: Usage-based dynamic pricing
with privacy preservation for smart grid,” IEEE Trans. Smart Grid, vol. 4, no. 1,
pp. 141–150, 2013.

[57] C. Tham and T. Luo, “Sensing-driven energy purchasing in smart grid cyber-
physical system,” IEEE Transactions on Systems, Man, and Cybernetics: Sys-
tems, vol. 43, no. 4, pp. 773–784, July 2013.

[58] S. D. J. McArthur, E. M. Davidson, V. M. Catterson, A. L. Dimeas, N. D.
Hatziargyriou, F. Ponci, and T. Funabashi, “Multi-agent systems for power
engineering applications—part i: Concepts, approaches, and technical challenges,”
IEEE Transactions on Power Systems, vol. 22, no. 4, pp. 1743–1752, Nov 2007.

[59] J. Cerquides, G. Picard, and J. A. Rodŕıguez-Aguilar, “Designing a marketplace
for the trading and distribution of energy in the smart grid,” in Proceedings
of the 2015 International Conference on Autonomous Agents and Multiagent
Systems, AAMAS 2015, Istanbul, Turkey, May 4-8, 2015, 2015, pp. 1285–1293.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2773316

[60] S. Xie, Y. Hong, and P. Wan, “A privacy preserving multiagent system for
load balancing in the smart grid,” in Proceedings of the 18th International
Conference on Autonomous Agents and MultiAgent Systems, AAMAS ’19,
Montreal, QC, Canada, May 13-17, 2019, 2019, pp. 2273–2275. [Online].
Available: http://dl.acm.org/citation.cfm?id=3332082

[61] W. Tushar, B. Chai, C. Yuen, D. B. Smith, K. L. Wood, Z. Yang, and H. V.
Poor, “Three-party energy management with distributed energy resources in
smart grid,” IEEE Transactions on Industrial Electronics, vol. 62, no. 4, pp.
2487–2498, April 2015.

[62] S. Nguyen, W. Peng, P. Sokolowski, D. Alahakoon, and X. Yu, “Optimizing
rooftop photovoltaic distributed generation with battery storage for peer-to-peer
energy trading,” Applied Energy, vol. 228, pp. 2567–2580, 2018.

[63] P. Agrawal, A. Kumar, and P. Varakantham, “Near-optimal decentralized power
supply restoration in smart grids,” in Proceedings of the 2015 International
Conference on Autonomous Agents and Multiagent Systems, AAMAS 2015,
Istanbul, Turkey, May 4-8, 2015, 2015, pp. 1275–1283. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2773315

245

[64] Y. Hong, H. Wang, S. Xie, and B. Liu, “Privacy preserving and collusion resistant
energy sharing,” in 2018 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP). IEEE, 2018, pp. 6941–6945.

[65] W. Tushar, C. Yuen, H. Mohsenian-Rad, T. Saha, H. V. Poor, and K. L. Wood,
“Transforming energy networks via peer-to-peer energy trading: The potential of
game-theoretic approaches,” IEEE Signal Processing Magazine, vol. 35, no. 4,
pp. 90–111, 2018.

[66] C. Zhang, J. Wu, M. Cheng, Y. Zhou, and C. Long, “A bidding system
for peer-to-peer energy trading in a grid-connected microgrid,” Energy
Procedia, vol. 103, pp. 147–152, 2016, renewable Energy Integration
with Mini/Microgrid – Proceedings of REM2016. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1876610216314746

[67] E. McKenna and M. Thomson, “Photovoltaic metering configurations, feed-in
tariffs and the variable effective electricity prices that result,” IET Renewable
Power Generation, vol. 7, no. 3, pp. 235–245, 2013.

[68] F. Fioretto, W. Yeoh, E. Pontelli, Y. Ma, and S. J. Ranade, “A distributed
constraint optimization (DCOP) approach to the economic dispatch with
demand response,” in Proceedings of the 16th Conference on Autonomous Agents
and MultiAgent Systems, AAMAS 2017, São Paulo, Brazil, May 8-12, 2017, 2017,
pp. 999–1007. [Online]. Available: http://dl.acm.org/citation.cfm?id=3091267

[69] S. Xie, H. Wang, Y. Hong, and M. Thai, “Privacy preserving distributed energy
trading,” in 2020 IEEE 40th International Conference on Distributed Computing
Systems (ICDCS), pp. 322–332 ©2020 IEEE. Reprinted, with permission, from
Shangyu Xie, Han Wang, Yuan Hong and My Thai,Privacy preserving distributed
energy trading, IEEE ICDCS, 2020.

[70] T. Basar and G. J. Olsder, Dynamic Noncooperative Game Theory, 1999.

[71] N. Nisan, T. Roughgarden, E. Tardos, and V. V. Vazirani, Algorithmic Game
Theory. New York, NY, USA: Cambridge University Press, 2007.

[72] W. Yang, N. Li, Y. Qi, W. Qardaji, S. McLaughlin, and P. McDaniel,
“Minimizing private data disclosures in the smart grid,” in Proceedings of the
2012 ACM Conference on Computer and Communications Security, ser. CCS
’12. New York, NY, USA: ACM, 2012, pp. 415–427. [Online]. Available:
http://doi.acm.org/10.1145/2382196.2382242

[73] A. Mas-Colell, M. Whinston, and J. Green, Microeconomic Theory, 1995.

[74] P. Samadi, A. Mohsenian-Rad, R. Schober, V. W. S. Wong, and J. Jatskevich,
“Optimal real-time pricing algorithm based on utility maximization for smart grid,”
in 2010 First IEEE International Conference on Smart Grid Communications,
Oct 2010, pp. 415–420.

[75] A. Ben-David, N. Nisan, and B. Pinkas, “Fairplaymp: a system for secure multi-
party computation,” in Proceedings of the 15th ACM conference on Computer
and communications security, ser. CCS ’08. New York, NY, USA: ACM, 2008,
pp. 257–266. [Online]. Available: http://doi.acm.org/10.1145/1455770.1455804

246

[76] C. Gentry, “Fully homomorphic encryption using ideal lattices,” in Proceedings
of the 41st Annual ACM Symposium on Theory of Computing, STOC 2009,
Bethesda, MD, USA, May 31 - June 2, 2009, 2009, pp. 169–178. [Online].
Available: https://doi.org/10.1145/1536414.1536440

[77] A. T. Al-Awami and E. Sortomme, “Coordinating vehicle-to-grid services with
energy trading,” IEEE Transactions on smart grid, vol. 3, no. 1, pp. 453–462,
2011.

[78] Z. Wang, C. Gu, F. Li, P. Bale, and H. Sun, “Active demand response using
shared energy storage for household energy management,” IEEE Transactions
on Smart Grid, vol. 4, no. 4, pp. 1888–1897, 2013.

[79] L. Yang, H. Kim, J. Zhang, M. Chiang, and C. W. Tan, “Pricing-based de-
centralized spectrum access control in cognitive radio networks,” IEEE/ACM
Transactions on Networking, vol. 21, no. 2, pp. 522–535, April 2013.

[80] X. Yuan, X. Qin, F. Tian, Y. T. Hou, W. Lou, S. F. Midkiff, and J. H. Reed,
“Coexistence between wi-fi and lte on unlicensed spectrum: A human-centric
approach,” IEEE Journal on Selected Areas in Communications, vol. 35, no. 4,
pp. 964–977, April 2017.

[81] Y. Wang, W. Saad, Z. Han, H. V. Poor, and T. Başar, “A game-theoretic
approach to energy trading in the smart grid,” IEEE Transactions on Smart
Grid, vol. 5, no. 3, pp. 1439–1450, 2014.

[82] S. Xie, Y. Hong, and P. Wan, “Pairing: Privately balancing multiparty real-time
supply and demand on the power grid,” IEEE Transactions on Information
Forensics and Security, vol. ©, pp. 1–1, 2019.

[83] S. Nakamoto et al., “Bitcoin: A peer-to-peer electronic cash system,” 2008.

[84] A. Kosba, A. Miller, E. Shi, Z. Wen, and C. Papamanthou, “Hawk: The
blockchain model of cryptography and privacy-preserving smart contracts,” in
2016 IEEE symposium on security and privacy (SP). IEEE, 2016, pp. 839–858.

[85] A. Barak, M. Hirt, L. Koskas, and Y. Lindell, “An end-to-end system for
large scale p2p mpc-as-a-service and low-bandwidth mpc for weak participants,”
in Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, ser. CCS ’18. New York, NY, USA: ACM, 2018, pp.
695–712. [Online]. Available: http://doi.acm.org/10.1145/3243734.3243801

[86] J. Furukawa, Y. Lindell, A. Nof, and O. Weinstein, “High-throughput secure
three-party computation for malicious adversaries and an honest majority,” in
Annual International Conference on the Theory and Applications of Crypto-
graphic Techniques. Springer, 2017, pp. 225–255.

[87] M. Byali, A. Joseph, A. Patra, and D. Ravi, “Fast secure computation
for small population over the internet,” in Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security, ser. CCS
’18. New York, NY, USA: ACM, 2018, pp. 677–694. [Online]. Available:
http://doi.acm.org/10.1145/3243734.3243784

[88] S. Barker, A. Mishra, D. Irwin, P. Shenoy, and J. Albrecht, “SmartCap: Flat-
tening peak electricity demand in smart homes,” 2012 IEEE International
Conference on Pervasive Computing and Communications, PerCom 2012, pp.
67–75, 2012.

247

[89] X. He, X. Zhang, and C.-C. J. Kuo, “A distortion-based approach to privacy-
preserving metering in smart grids,” IEEE Practical Innovations: Open Solutions,
vol. 1, no. 3, pp. 67–78, 2013.

[90] T. Dimitriou and G. Karame, “Privacy-friendly tasking and trading of energy
in smart grids,” in Proceedings of the 28th Annual ACM Symposium on Applied
Computing. ACM, 2013, pp. 652–659.

[91] H. Wang and J. Huang, “Incentivizing energy trading for interconnected micro-
grids,” IEEE Transactions on Smart Grid, vol. 9, no. 4, pp. 2647–2657, July
2018.

[92] H. S. V. S. K. Nunna and S. Doolla, “Multiagent-based distributed-energy-
resource management for intelligent microgrids,” IEEE Transactions on Indus-
trial Electronics, vol. 60, no. 4, pp. 1678–1687, April 2013.

[93] K. Gai, Y. Wu, L. Zhu, M. Qiu, and M. Shen, “Privacy-preserving energy trading
using consortium blockchain in smart grid,” IEEE Transactions on Industrial
Informatics, 2019.

[94] J. Yang, P. Ren, D. Zhang, D. Chen, F. Wen, H. Li, and G. Hua, “Neural
aggregation network for video face recognition,” in 2017 IEEE Conference on
Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA,
July 21-26, 2017, 2017, pp. 5216–5225.

[95] C. Feichtenhofer, A. Pinz, and A. Zisserman, “Convolutional two-stream network
fusion for video action recognition,” in 2016 IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, June 27-30,
2016, 2016, pp. 1933–1941.

[96] W. Sultani, C. Chen, and M. Shah, “Real-world anomaly detection in surveillance
videos,” in 2018 IEEE Conference on Computer Vision and Pattern Recognition,
CVPR 2018, Salt Lake City, UT, USA, June 18-22, 2018, 2018, pp. 6479–6488.

[97] V. Rausch, A. Hansen, E. Solowjow, C. Liu, E. Kreuzer, and J. K. Hedrick,
“Learning a deep neural net policy for end-to-end control of autonomous vehicles,”
in 2017 American Control Conference, ACC 2017, Seattle, WA, USA, May
24-26, 2017, 2017, pp. 4914–4919.

[98] T. Onishi, T. Motoyoshi, Y. Suga, H. Mori, and T. Ogata, “End-to-end learning
method for self-driving cars with trajectory recovery using a path-following
function,” in 2019 International Joint Conference on Neural Networks (IJCNN).
IEEE, 2019, pp. 1–8.

[99] R. Chalapathy and S. Chawla, “Deep learning for anomaly detection: A survey,”
arXiv preprint arXiv:1901.03407, 2019.

[100] S. Xie, H. Wang, Y. Kong, and Y. Hong, “Universal 3-dimensional perturbations
for black-box attacks on video recognition systems,” in 2022 IEEE Symposium on
Security and Privacy (SP), 2022, pp. 1390–1407 ©2022 IEEE. Reprinted, with
permission, from Shangyu Xie, Han Wang, Yu Kong and Yuan Hong, Universal 3–
Dimensional Perturbations for Black–Box Attacks on Video Recognition Systems,
IEEE Symposium on Security and Privacy, 2022.

248

[101] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. J. Goodfellow,
and R. Fergus, “Intriguing properties of neural networks,” in 2nd International
Conference on Learning Representations, ICLR 2014, Banff, AB, Canada, April
14-16, 2014, 2014.

[102] S. Moosavi-Dezfooli, A. Fawzi, and P. Frossard, “Deepfool: A simple and
accurate method to fool deep neural networks,” in 2016 IEEE Conference on
Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA,
June 27-30, 2016, 2016, pp. 2574–2582.

[103] S. Moosavi-Dezfooli, A. Fawzi, O. Fawzi, and P. Frossard, “Universal adversarial
perturbations,” in 2017 IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2017, Honolulu, HI, USA, July 21-26, 2017, 2017, pp. 86–94.

[104] K. T. Co, L. Muñoz-González, S. de Maupeou, and E. C. Lupu, “Procedural
noise adversarial examples for black-box attacks on deep convolutional networks,”
in Proceedings of the 2019 ACM SIGSAC Conference on Computer and Com-
munications Security, CCS 2019, London, UK, November 11-15, 2019, 2019, pp.
275–289.

[105] Y. Mirsky, T. Mahler, I. Shelef, and Y. Elovici, “Ct-gan: Malicious tampering of
3d medical imagery using deep learning,” in 28th {USENIX} Security Symposium
({USENIX} Security 19), 2019, pp. 461–478.

[106] J. Li, S. Ji, T. Du, B. Li, and T. Wang, “Textbugger: Generating adversarial
text against real-world applications,” arXiv preprint arXiv:1812.05271, 2018.

[107] N. Carlini, P. Mishra, T. Vaidya, Y. Zhang, M. Sherr, C. Shields, D. Wagner, and
W. Zhou, “Hidden voice commands,” in 25th {USENIX} Security Symposium
({USENIX} Security 16), 2016, pp. 513–530.

[108] G. Chen, S. Chen, L. Fan, X. Du, Z. Zhao, F. Song, and Y. Liu, “Who is
real bob? adversarial attacks on speaker recognition systems,” arXiv preprint
arXiv:1911.01840, 2019.

[109] Z. Li, Y. Wu, J. Liu, Y. Chen, and B. Yuan, “Advpulse: Universal,
synchronization-free, and targeted audio adversarial attacks via subsecond per-
turbations,” in Proceedings of the 2020 ACM SIGSAC Conference on Computer
and Communications Security, 2020, p. 1121–1134.

[110] X. Wei, J. Zhu, S. Yuan, and H. Su, “Sparse adversarial perturbations for videos,”
in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, 2019,
pp. 8973–8980.

[111] S. Li, A. Neupane, S. Paul, C. Song, S. V. Krishnamurthy, A. K. Roy-Chowdhury,
and A. Swami, “Stealthy adversarial perturbations against real-time video
classification systems,” in 26th Annual Network and Distributed System Security
Symposium, NDSS 2019, San Diego, California, USA, February 24-27, 2019.
The Internet Society, 2019.

[112] Z. Wei, J. Chen, X. Wei, L. Jiang, T.-S. Chua, F. Zhou, and Y.-G. Jiang,
“Heuristic black-box adversarial attacks on video recognition models,” arXiv
preprint arXiv:1911.09449, 2019.

[113] L. Jiang, X. Ma, S. Chen, J. Bailey, and Y.-G. Jiang, “Black-box adversarial
attacks on video recognition models,” in Proceedings of the 27th ACM Interna-
tional Conference on Multimedia, 2019, pp. 864–872.

249

[114] C. Xiao, R. Deng, B. Li, T. Lee, B. Edwards, J. Yi, D. Song, M. Liu, and
I. Molloy, “Advit: Adversarial frames identifier based on temporal consistency
in videos,” in Proceedings of the IEEE International Conference on Computer
Vision, 2019, pp. 3968–3977.

[115] Y. Liu, X. Chen, C. Liu, and D. Song, “Delving into transferable adversarial
examples and black-box attacks,” arXiv preprint arXiv:1611.02770, 2016.

[116] N. Papernot, P. McDaniel, I. Goodfellow, S. Jha, Z. B. Celik, and A. Swami,
“Practical black-box attacks against machine learning,” in Proceedings of the
2017 ACM on Asia conference on computer and communications security, 2017,
pp. 506–519.

[117] S. Cheng, Y. Dong, T. Pang, H. Su, and J. Zhu, “Improving black-box adversarial
attacks with a transfer-based prior,” arXiv preprint arXiv:1906.06919, 2019.

[118] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “Towards deep
learning models resistant to adversarial attacks,” in International Conference
on Learning Representations, 2018.

[119] A. Shafahi, M. Najibi, Z. Xu, J. Dickerson, L. S. Davis, and T. Goldstein,
“Universal adversarial training,” in Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 34, no. 04, 2020, pp. 5636–5643.

[120] X. Yin, S. Kolouri, and G. K. Rohde, “Adversarial example detection and classifi-
cation with asymmetrical adversarial training,” arXiv preprint arXiv:1905.11475,
2019.

[121] M. Lécuyer, V. Atlidakis, R. Geambasu, D. Hsu, and S. Jana, “Certified robust-
ness to adversarial examples with differential privacy,” in 2019 IEEE Symposium
on Security and Privacy, SP 2019, San Francisco, CA, USA, May 19-23, 2019,
2019, pp. 656–672.

[122] J. M. Cohen, E. Rosenfeld, and J. Z. Kolter, “Certified adversarial robustness
via randomized smoothing,” arXiv preprint arXiv:1902.02918, 2019.

[123] F. Suya, J. Chi, D. Evans, and Y. Tian, “Hybrid batch attacks: Finding
black-box adversarial examples with limited queries,” in 29th USENIX Security
Symposium (USENIX Security 20), Aug. 2020, pp. 1327–1344.

[124] D. Tran, L. D. Bourdev, R. Fergus, L. Torresani, and M. Paluri, “Learning
spatiotemporal features with 3d convolutional networks,” in 2015 IEEE Interna-
tional Conference on Computer Vision, ICCV 2015, Santiago, Chile, December
7-13, 2015, 2015, pp. 4489–4497.

[125] M. S. Khandare and A. Mahajan, “Mobile monitoring system for smart home,”
in 2010 3rd International Conference on Emerging Trends in Engineering and
Technology. IEEE, 2010, pp. 848–852.

[126] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and F. Li,
“Large-scale video classification with convolutional neural networks,” in 2014
IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2014,
Columbus, OH, USA, 2014, pp. 1725–1732.

250

[127] J. Donahue, L. Anne Hendricks, S. Guadarrama, M. Rohrbach, S. Venugopalan,
K. Saenko, and T. Darrell, “Long-term recurrent convolutional networks for
visual recognition and description,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2015, pp. 2625–2634.

[128] K. Simonyan and A. Zisserman, “Two-stream convolutional networks for action
recognition in videos,” in Advances in neural information processing systems,
2014, pp. 568–576.

[129] J. Carreira and A. Zisserman, “Quo vadis, action recognition? A new model
and the kinetics dataset,” in 2017 IEEE Conference on Computer Vision and
Pattern Recognition, CVPR 2017, Honolulu, HI, USA, July 21-26, 2017, 2017,
pp. 4724–4733.

[130] A. Costin, “Security of cctv and video surveillance systems: Threats, vulnerabil-
ities, attacks, and mitigations,” in Proceedings of the 6th international workshop
on trustworthy embedded devices, 2016.

[131] J. Obermaier and M. Hutle, “Analyzing the security and privacy of cloud-
based video surveillance systems,” in Proceedings of the 2nd ACM international
workshop on IoT privacy, trust, and security, 2016.

[132] N. Kalbo, Y. Mirsky, A. Shabtai, and Y. Elovici, “The security of ip-based video
surveillance systems,” Sensors, vol. 20, no. 17, 2020.

[133] H. Kuehne, H. Jhuang, E. Garrote, T. A. Poggio, and T. Serre, “HMDB: A
large video database for human motion recognition,” in IEEE International
Conference on Computer Vision, ICCV 2011, Barcelona, Spain, November 6-13,
2011, 2011, pp. 2556–2563.

[134] P.-Y. Chen, H. Zhang, Y. Sharma, J. Yi, and C.-J. Hsieh, “Zoo: Zeroth order
optimization based black-box attacks to deep neural networks without training
substitute models,” in Proceedings of the 10th ACM Workshop on Artificial
Intelligence and Security, 2017, pp. 15–26.

[135] W. Brendel, J. Rauber, and M. Bethge, “Decision-based adversarial attacks:
Reliable attacks against black-box machine learning models,” arXiv preprint
arXiv:1712.04248, 2017.

[136] A. Ilyas, L. Engstrom, A. Athalye, and J. Lin, “Black-box adversarial attacks
with limited queries and information,” in Proceedings of the 35th International
Conference on Machine Learning, J. Dy and A. Krause, Eds., vol. 80. PMLR,
10–15 Jul 2018, pp. 2137–2146.

[137] N. Carlini and D. Wagner, “Towards evaluating the robustness of neural net-
works,” in 2017 IEEE Symposium on Security and Privacy (SP), 2017, pp.
39–57.

[138] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson, “How transferable are features
in deep neural networks?” in Advances in neural information processing systems,
2014, pp. 3320–3328.

[139] F. Tramer, N. Carlini, W. Brendel, and A. Madry, “On adaptive attacks to
adversarial example defenses,” arXiv preprint arXiv:2002.08347, 2020.

[140] A. Athalye and N. Carlini, “On the robustness of the cvpr 2018 white-box
adversarial example defenses,” arXiv preprint arXiv:1804.03286, 2018.

251

[141] N. Carlini and D. Wagner, “Magnet and ”efficient defenses against adversarial
attacks” are not robust to adversarial examples,” 2017.

[142] U. Muller, J. Ben, E. Cosatto, B. Flepp, and Y. L. Cun, “Off-road obstacle
avoidance through end-to-end learning,” in Advances in neural information
processing systems, 2006, pp. 739–746.

[143] K. Perlin, “An image synthesizer,” SIGGRAPH Comput. Graph., vol. 19, no. 3, p.
287–296, Jul. 1985. [Online]. Available: https://doi.org/10.1145/325165.325247

[144] A. Lagae, S. Lefebvre, R. Cook, T. DeRose, G. Drettakis, D. S. Ebert, J. P.
Lewis, K. Perlin, and M. Zwicker, “A survey of procedural noise functions,” in
Computer Graphics Forum, vol. 29, no. 8. Wiley Online Library, 2010, pp.
2579–2600.

[145] K. Perlin, “Improving noise,” ACM Trans. Graph., vol. 21, no. 3, p. 681–682,
Jul. 2002. [Online]. Available: https://doi.org/10.1145/566654.566636

[146] A. Lagae, S. Lefebvre, G. Drettakis, and P. Dutré, “Procedural noise using
sparse gabor convolution,” ACM Trans. Graph., vol. 28, no. 3, p. 54, 2009.

[147] D. A. Szafir, “Modeling color difference for visualization design,” IEEE transac-
tions on visualization and computer graphics, vol. 24, no. 1, pp. 392–401, 2017.

[148] D. Gabor, “Theory of communication. part 1: The analysis of information,”
Journal of the Institution of Electrical Engineers-Part III: Radio and Communi-
cation Engineering, vol. 93, no. 26, pp. 429–441, 1946.

[149] F. Perronnin, J. Sánchez, and T. Mensink, “Improving the fisher kernel for
large-scale image classification,” in European conference on computer vision.
Springer, 2010, pp. 143–156.

[150] R. Eberhart and J. Kennedy, “A new optimizer using particle swarm theory,” in
MHS’95. Proceedings of the Sixth International Symposium on Micro Machine
and Human Science. Ieee, 1995, pp. 39–43.

[151] D. E. Goldberg and J. H. Holland, “Genetic algorithms and machine learning,”
1988.

[152] P. J. Van Laarhoven and E. H. Aarts, “Simulated annealing,” in Simulated
annealing: Theory and applications. Springer, 1987, pp. 7–15.

[153] F. Glover, “Tabu search—part i,” ORSA Journal on computing, vol. 1, no. 3,
pp. 190–206, 1989.

[154] R. Hassan, B. Cohanim, O. De Weck, and G. Venter, “A comparison of
particle swarm optimization and the genetic algorithm,” in 46th AIAA/AS-
ME/ASCE/AHS/ASC structures, structural dynamics and materials conference,
2005, p. 1897.

[155] K. Soomro, A. R. Zamir, and M. Shah, “UCF101: A dataset of 101 human
actions classes from videos in the wild,” CoRR, vol. abs/1212.0402, 2012.
[Online]. Available: http://arxiv.org/abs/1212.0402

[156] C. Osborne, “amazon-surveillance-cameras-infected-with-malware,”
2016. [Online]. Available: https://www.zdnet.com/article/
amazon-surveillance-cameras-infected-with-malware/

252

[157] Shodan, “Shodan report,” 2016. [Online]. Available: https://www.shodan.io/
report/UMAja2tN

[158] “Ffmpeg guide,” 2020. [Online]. Available: https://ffmpeg.org/ffmpeg.html

[159] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing adver-
sarial examples,” in 3rd International Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings,
2015.

[160] A. Shafahi, M. Najibi, A. Ghiasi, Z. Xu, J. Dickerson, C. Studer, L. S. Davis,
G. Taylor, and T. Goldstein, “Adversarial training for free!” arXiv preprint
arXiv:1904.12843, 2019.

[161] D. Meng and H. Chen, “Magnet: a two-pronged defense against adversarial
examples,” in Proceedings of the 2017 ACM SIGSAC conference on computer
and communications security, 2017, pp. 135–147.

[162] K. Roth, Y. Kilcher, and T. Hofmann, “The odds are odd: A statistical test
for detecting adversarial examples,” in Proceedings of the 36th International
Conference on Machine Learning, ser. Proceedings of Machine Learning Research,
K. Chaudhuri and R. Salakhutdinov, Eds., vol. 97. PMLR, 09–15 Jun 2019,
pp. 5498–5507.

[163] F. Liao, M. Liang, Y. Dong, T. Pang, X. Hu, and J. Zhu, “Defense against ad-
versarial attacks using high-level representation guided denoiser,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp.
1778–1787.

[164] E. Ilg, N. Mayer, T. Saikia, M. Keuper, A. Dosovitskiy, and T. Brox, “Flownet
2.0: Evolution of optical flow estimation with deep networks,” in Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
July 2017.

[165] A. Kumar, A. Levine, T. Goldstein, and S. Feizi, “Curse of dimensionality on
randomized smoothing for certifiable robustness,” in International Conference
on Machine Learning. PMLR, 2020, pp. 5458–5467.

[166] A. Blum, T. Dick, N. Manoj, and H. Zhang, “Random smoothing might be
unable to certify ℓ∞ robustness for high-dimensional images,” Journal of Machine
Learning Research, vol. 21, no. 211, pp. 1–21, 2020.

[167] E. Wong and Z. Kolter, “Provable defenses against adversarial examples via the
convex outer adversarial polytope,” in International Conference on Machine
Learning. PMLR, 2018, pp. 5286–5295.

[168] T. Pang, K. Xu, and J. Zhu, “Mixup inference: Better exploiting mixup to
defend adversarial attacks,” arXiv preprint arXiv:1909.11515, 2019.

[169] B. Biggio, I. Corona, D. Maiorca, B. Nelson, N. Šrndić, P. Laskov, G. Giacinto,
and F. Roli, “Evasion attacks against machine learning at test time,” in Joint
European conference on machine learning and knowledge discovery in databases.
Springer, 2013, pp. 387–402.

[170] A. Kurakin, I. Goodfellow, and S. Bengio, “Adversarial examples in the physical
world,” arXiv preprint arXiv:1607.02533, 2016.

253

[171] M. Cheng, T. Le, P. Chen, H. Zhang, J. Yi, and C. Hsieh, “Query-efficient hard-
label black-box attack: An optimization-based approach,” in 7th International
Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA,
May 6-9, 2019. OpenReview.net, 2019.

[172] K. Grosse, N. Papernot, P. Manoharan, M. Backes, and P. McDaniel, “Adver-
sarial perturbations against deep neural networks for malware classification,”
arXiv preprint arXiv:1606.04435, 2016.

[173] N. Papernot, P. McDaniel, I. Goodfellow, S. Jha, Z. B. Celik, and A. Swami,
“Practical black-box attacks against machine learning,” in Proceedings of the
2017 ACM on Asia Conference on Computer and Communications Security,
2017, p. 506–519. [Online]. Available: https://doi.org/10.1145/3052973.3053009

[174] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “To-
wards deep learning models resistant to adversarial attacks,” arXiv preprint
arXiv:1706.06083, 2017.

[175] S. Xie, Y. Yan, and Y. Hong, “Stealthy 3d poisoning attack on video recognition
models,” IEEE Transactions on Dependable and Secure Computing, pp. 1–1,
2022 ©2022 IEEE. Reprinted, with permission, from Shangyu Xie, Yan Yan
and Yuan Hong, Stealthy 3D Poisoning Attack on Video Recognition Models,
IEEE Transactions on Dependable and Secure Computing, 2022.

[176] X. Chen, C. Liu, B. Li, K. Lu, and D. Song, “Targeted backdoor attacks on
deep learning systems using data poisoning,” arXiv preprint arXiv:1712.05526,
2017.

[177] A. Shafahi, W. R. Huang, M. Najibi, O. Suciu, C. Studer, T. Dumitras, and
T. Goldstein, “Poison frogs! targeted clean-label poisoning attacks on neural
networks,” in Advances in Neural Information Processing Systems, 2018, pp.
6103–6113.

[178] B. Biggio, B. Nelson, and P. Laskov, “Poisoning attacks against support vector
machines,” arXiv preprint arXiv:1206.6389, 2012.

[179] O. Suciu, R. Marginean, Y. Kaya, H. D. III, and T. Dumitras, “When does
machine learning FAIL? generalized transferability for evasion and poisoning
attacks,” in 27th USENIX Security Symposium (USENIX Security 18). Balti-
more, MD: USENIX Association, Aug. 2018, pp. 1299–1316.

[180] C. Zhu, W. R. Huang, H. Li, G. Taylor, C. Studer, and T. Goldstein,
“Transferable clean-label poisoning attacks on deep neural nets,” in Proceedings
of the 36th International Conference on Machine Learning, ser. Proceedings
of Machine Learning Research, K. Chaudhuri and R. Salakhutdinov, Eds.,
vol. 97. PMLR, 09–15 Jun 2019, pp. 7614–7623. [Online]. Available:
http://proceedings.mlr.press/v97/zhu19a.html

[181] A. Turner, D. Tsipras, and A. Madry, “Clean-label backdoor attacks,” 2018.

[182] T. Gu, B. Dolan-Gavitt, and S. Garg, “Badnets: Identifying vulnerabilities in
the machine learning model supply chain,” arXiv preprint arXiv:1708.06733,
2017.

[183] A. Saha, A. Subramanya, and H. Pirsiavash, “Hidden trigger backdoor attacks,”
in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, no. 07,
2020, pp. 11 957–11 965.

254

[184] S. Zhao, X. Ma, X. Zheng, J. Bailey, J. Chen, and Y.-G. Jiang, “Clean-label
backdoor attacks on video recognition models,” in IEEE CVPR, 2020, pp. 14 443–
14 452.

[185] J. Steinhardt, P. W. W. Koh, and P. S. Liang, “Certified defenses for data
poisoning attacks,” in NIPS, 2017.

[186] B. Tran, J. Li, and A. Madry, “Spectral signatures in backdoor attacks,” in
NIPS, 2018, pp. 8000–8010.

[187] K. Liu, B. Dolan-Gavitt, and S. Garg, “Fine-pruning: Defending against back-
dooring attacks on deep neural networks,” in International Symposium on
Research in Attacks, Intrusions, and Defenses. Springer, 2018, pp. 273–294.

[188] B. Wang, Y. Yao, S. Shan, H. Li, B. Viswanath, H. Zheng, and B. Y. Zhao,
“Neural cleanse: Identifying and mitigating backdoor attacks in neural networks,”
in IEEE SP. IEEE, 2019, pp. 707–723.

[189] J. Lin, C. Gan, and S. Han, “Tsm: Temporal shift module for efficient video
understanding,” in Proceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV), October 2019.

[190] C. Feichtenhofer, “X3d: Expanding architectures for efficient video recognition,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2020, pp. 203–213.

[191] D. Tran, H. Wang, L. Torresani, and M. Feiszli, “Video classification with channel-
separated convolutional networks,” in Proceedings of the IEEE International
Conference on Computer Vision, 2019, pp. 5552–5561.

[192] K. Soomro, A. R. Zamir, and M. Shah, “Ucf101: A dataset of 101 human actions
classes from videos in the wild,” arXiv preprint arXiv:1212.0402, 2012.

[193] C. Tan, F. Sun, T. Kong, W. Zhang, C. Yang, and C. Liu, “A survey on deep
transfer learning,” in International conference on artificial neural networks.
Springer, 2018, pp. 270–279.

[194] K. Perlin, “Improving noise,” ser. SIGGRAPH’02, 2002.

[195] G. Takács, “Convex polyhedron learning and its applications,” 2009.

[196] J. Bao, Y.-H. He, E. Hirst, J. Hofscheier, A. Kasprzyk, and S. Majumder,
“Polytopes and machine learning,” arXiv preprint arXiv:2109.09602, 2021.

[197] V. Sehwag, A. N. Bhagoji, L. Song, C. Sitawarin, D. Cullina, M. Chiang,
and P. Mittal, “Analyzing the robustness of open-world machine learning,” in
Proceedings of the 12th ACM Workshop on Artificial Intelligence and Security,
ser. AISec’19. New York, NY, USA: Association for Computing Machinery,
2019, p. 105–116. [Online]. Available: https://doi.org/10.1145/3338501.3357372

[198] N. Inkawhich, W. Wen, H. H. Li, and Y. Chen, “Feature space perturbations
yield more transferable adversarial examples,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2019, pp. 7066–7074.

[199] T. Goldstein, C. Studer, and R. Baraniuk, “A field guide to forward-backward
splitting with a fasta implementation,” arXiv preprint arXiv:1411.3406, 2014.

255

[200] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv
preprint arXiv:1412.6980, 2014.

[201] W. Kay, J. Carreira, K. Simonyan, B. Zhang, C. Hillier, S. Vijayanarasimhan,
F. Viola, T. Green, T. Back, P. Natsev et al., “The kinetics human action video
dataset,” arXiv preprint arXiv:1705.06950, 2017.

[202] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality
assessment: from error visibility to structural similarity,” IEEE Trans. Image
Processing, vol. 13, no. 4, pp. 600–612, 2004.

[203] E. Ilg, N. Mayer, T. Saikia, M. Keuper, A. Dosovitskiy, and T. Brox, “Flownet
2.0: Evolution of optical flow estimation with deep networks,” in Proceedings
of the IEEE conference on computer vision and pattern recognition, 2017, pp.
2462–2470.

[204] A. Krizhevsky et al., “Learning multiple layers of features from tiny images,”
2009.

[205] A. Raghunathan, J. Steinhardt, and P. Liang, “Certified defenses against adver-
sarial examples,” arXiv preprint arXiv:1801.09344, 2018.

[206] F. Tramèr, A. Kurakin, N. Papernot, I. Goodfellow, D. Boneh, and P. Mc-
Daniel, “Ensemble adversarial training: Attacks and defenses,” arXiv preprint
arXiv:1705.07204, 2017.

[207] C. Zhang and Y. Ma, Ensemble machine learning: methods and applications.
Springer, 2012.

[208] E. Wenger, J. Passananti, A. N. Bhagoji, Y. Yao, H. Zheng, and B. Y. Zhao,
“Backdoor attacks against deep learning systems in the physical world,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2021, pp. 6206–6215.

[209] M. Shen, Z. Liao, L. Zhu, K. Xu, and X. Du, “Vla: A practical visible
light-based attack on face recognition systems in physical world,” Proc. ACM
Interact. Mob. Wearable Ubiquitous Technol., vol. 3, no. 3, sep 2019. [Online].
Available: https://doi.org/10.1145/3351261

[210] T. Pham, T. Tran, D. Phung, and S. Venkatesh, “Predicting healthcare trajec-
tories from medical records: A deep learning approach,” Journal of biomedical
informatics, vol. 69, pp. 218–229, 2017.

[211] A. Hosny, C. Parmar, J. Quackenbush, L. H. Schwartz, and H. J. Aerts, “Artificial
intelligence in radiology,” Nature Reviews Cancer, vol. 18, no. 8, pp. 500–510,
2018.

[212] A. Hard, K. Rao, R. Mathews, S. Ramaswamy, F. Beaufays, S. Augenstein,
H. Eichner, C. Kiddon, and D. Ramage, “Federated learning for mobile keyboard
prediction,” arXiv preprint arXiv:1811.03604, 2018.

[213] M. Chen, B. Lee, G. Bansal, Y. Cao, S. Zhang, J. Y. Lu, J. Tsay, Y. Wang, A. M.
Dai, Z. Chen, T. Sohn, and Y. Wu, “Gmail smart compose: Real-time assisted
writing,” Proceedings of the 25th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, 2019.

256

[214] C. Gentry, “Fully homomorphic encryption using ideal lattices,” in Proceedings
of the forty-first annual ACM symposium on Theory of computing, 2009, pp.
169–178.

[215] K. Chaudhuri, C. Monteleoni, and A. D. Sarwate, “Differentially private empiri-
cal risk minimization.” Journal of Machine Learning Research, vol. 12, no. 3,
2011.

[216] P. Mohassel and Y. Zhang, “Secureml: A system for scalable privacy-preserving
machine learning,” in 2017 IEEE Symposium on Security and Privacy (SP),
2017, pp. 19–38.

[217] J. Cabrero-Holgueras and S. Pastrana, “Sok: Privacy-preserving computation
techniques for deep learning,” Proceedings on Privacy Enhancing Technologies,
vol. 2021, no. 4, pp. 139–162, 2021.

[218] P. Mohassel and P. Rindal, “Aby3: A mixed protocol framework for machine
learning,” in Proceedings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security, 2018, pp. 35–52.

[219] P. Paillier, “Public-key cryptosystems based on composite degree residuosity
classes,” in International conference on the theory and applications of crypto-
graphic techniques. Springer, 1999, pp. 223–238.

[220] C. Dwork, F. McSherry, K. Nissim, and A. Smith, “Calibrating noise to sensitivity
in private data analysis,” in Theory of cryptography conference. Springer, 2006,
pp. 265–284.

[221] C. Dwork, A. Roth et al., “The algorithmic foundations of differential privacy.”
Found. Trends Theor. Comput. Sci., vol. 9, no. 3-4, pp. 211–407, 2014.

[222] R. Bassily, A. Smith, and A. Thakurta, “Private empirical risk minimization:
Efficient algorithms and tight error bounds,” in 2014 IEEE 55th Annual Sympo-
sium on Foundations of Computer Science. IEEE, 2014, pp. 464–473.

[223] M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan, I. Mironov, K. Talwar, and
L. Zhang, “Deep learning with differential privacy,” in Proceedings of the 2016
ACM SIGSAC conference on computer and communications security, 2016, pp.
308–318.

[224] J. Vaidya, B. Shafiq, A. Basu, and Y. Hong, “Differentially private naive bayes
classification,” in 2013 IEEE/WIC/ACM International Joint Conferences on
Web Intelligence (WI) and Intelligent Agent Technologies (IAT), vol. 1. IEEE,
2013, pp. 571–576.

[225] M. Mohammady, S. Xie, Y. Hong, M. Zhang, L. Wang, M. Pourzandi, and
M. Debbabi, “R2dp: A universal and automated approach to optimizing
the randomization mechanisms of differential privacy for utility metrics with
no known optimal distributions,” in Proceedings of the 2020 ACM SIGSAC
Conference on Computer and Communications Security, ser. CCS ’20. New
York, NY, USA: Association for Computing Machinery, 2020, p. 677–696.
[Online]. Available: https://doi.org/10.1145/3372297.3417259

[226] Y. Huang, Z. Song, D. Chen, K. Li, and S. Arora, “TextHide: Tackling
data privacy in language understanding tasks,” in Findings of the Association
for Computational Linguistics: EMNLP 2020. Online: Association for

257

Computational Linguistics, Nov. 2020, pp. 1368–1382. [Online]. Available:
https://www.aclweb.org/anthology/2020.findings-emnlp.123

[227] Y. Huang, Z. Song, K. Li, and S. Arora, “InstaHide: Instance-hiding schemes for
private distributed learning,” in Proceedings of the 37th International Conference
on Machine Learning, ser. Proceedings of Machine Learning Research, H. D. III
and A. Singh, Eds., vol. 119. PMLR, 13–18 Jul 2020, pp. 4507–4518. [Online].
Available: http://proceedings.mlr.press/v119/huang20i.html

[228] H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-Paz, “mixup: Beyond empiri-
cal risk minimization,” in International Conference on Learning Representations,
2018.

[229] S. Xie and Y. Hong, “Reconstruction attack on instance encoding for language
understanding,” in Proceedings of the 2021 Conference on Empirical Methods in
Natural Language Processing. Online and Punta Cana, Dominican Republic:
Association for Computational Linguistics, Nov. 2021, pp. 2038–2044. [Online].
Available: https://aclanthology.org/2021.emnlp-main.154

[230] S. Xie and Y. Hong, “Differentially private instance encoding against privacy
attacks,” in Proceedings of the 2022 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language
Technologies: Student Research Workshop. Hybrid: Seattle, Washington +
Online: Association for Computational Linguistics, Jul. 2022, pp. 172–180.
[Online]. Available: https://aclanthology.org/2022.naacl-srw.22

[231] A. Abboud and K. Lewi, “Exact weight subgraphs and the k-sum conjecture,” in
International Colloquium on Automata, Languages, and Programming. Springer,
2013, pp. 1–12.

[232] R. Shokri, M. Stronati, C. Song, and V. Shmatikov, “Membership inference
attacks against machine learning models,” in 2017 IEEE Symposium on Security
and Privacy (SP). IEEE, 2017, pp. 3–18.

[233] A. Salem, Y. Zhang, M. Humbert, P. Berrang, M. Fritz, and M. Backes, “Ml-
leaks: Model and data independent membership inference attacks and defenses
on machine learning models,” arXiv preprint arXiv:1806.01246, 2018.

[234] L. Song and P. Mittal, “Systematic evaluation of privacy risks of machine
learning models,” in 30th USENIX Security Symposium (USENIX Security 21),
2021, pp. 2615–2632.

[235] C. Song and A. Raghunathan, “Information leakage in embedding models,” in
Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communi-
cations Security, 2020, pp. 377–390.

[236] S. Hisamoto, M. Post, and K. Duh, “Membership inference attacks on
sequence-to-sequence models: Is my data in your machine translation system?”
Transactions of the Association for Computational Linguistics, vol. 8, pp. 49–63,
2020. [Online]. Available: https://www.aclweb.org/anthology/2020.tacl-1.4

[237] N. Carlini, S. Chien, M. Nasr, S. Song, A. Terzis, and F. Tramer, “Membership
inference attacks from first principles,” arXiv preprint arXiv:2112.03570, 2021.

258

[238] M. Fredrikson, S. Jha, and T. Ristenpart, “Model inversion attacks that exploit
confidence information and basic countermeasures,” in Proceedings of the 22nd
ACM SIGSAC Conference on Computer and Communications Security, ser.
CCS ’15. New York, NY, USA: Association for Computing Machinery, 2015, p.
1322–1333. [Online]. Available: https://doi.org/10.1145/2810103.2813677

[239] X. Wu, M. Fredrikson, S. Jha, and J. F. Naughton, “A methodology for formaliz-
ing model-inversion attacks,” in 2016 IEEE 29th Computer Security Foundations
Symposium (CSF). IEEE, 2016, pp. 355–370.

[240] L. Zhu, Z. Liu, and S. Han, “Deep leakage from gradients,” in Advances
in Neural Information Processing Systems, H. Wallach, H. Larochelle,
A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, Eds., vol. 32. Curran
Associates, Inc., 2019. [Online]. Available: https://proceedings.neurips.cc/
paper/2019/file/60a6c4002cc7b29142def8871531281a-Paper.pdf

[241] N. Carlini, S. Deng, S. Garg, S. Jha, S. Mahloujifar, M. Mahmoody, S. Song,
A. Thakurta, and F. Tramer, “An attack on instahide: Is private learning
possible with instance encoding?” arXiv preprint arXiv:2011.05315, 2020.

[242] N. Carlini, F. Tramer, E. Wallace, M. Jagielski, A. Herbert-Voss, K. Lee,
A. Roberts, T. Brown, D. Song, U. Erlingsson et al., “Extracting training data
from large language models,” arXiv preprint arXiv:2012.07805, 2020.

[243] J. Geiping, H. Bauermeister, H. Dröge, and M. Moeller, “Inverting gradients-
how easy is it to break privacy in federated learning?” Advances in Neural
Information Processing Systems, vol. 33, pp. 16 937–16 947, 2020.

[244] I. Dinur and K. Nissim, “Revealing information while preserving privacy,” in
Proceedings of the Twenty-Second ACM SIGMOD-SIGACT-SIGART Symposium
on Principles of Database Systems, ser. PODS ’03. New York, NY, USA:
Association for Computing Machinery, 2003, p. 202–210. [Online]. Available:
https://doi.org/10.1145/773153.773173

[245] K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H. B. McMahan, S. Patel,
D. Ramage, A. Segal, and K. Seth, “Practical secure aggregation for federated
learning on user-held data,” arXiv preprint arXiv:1611.04482, 2016.

[246] G. Kerrigan, D. Slack, and J. Tuyls, “Differentially private language models
benefit from public pre-training,” in Proceedings of the Second Workshop on
Privacy in NLP. Online: Association for Computational Linguistics, Nov. 2020,
pp. 39–45. [Online]. Available: https://aclanthology.org/2020.privatenlp-1.5

[247] D. Yu, S. Naik, A. Backurs, S. Gopi, H. A. Inan, G. Kamath, J. Kulkarni,
Y. T. Lee, A. Manoel, L. Wutschitz et al., “Differentially private fine-tuning of
language models,” arXiv preprint arXiv:2110.06500, 2021.

[248] X. Li, F. Tramer, P. Liang, and T. Hashimoto, “Large language models can be
strong differentially private learners,” arXiv preprint arXiv:2110.05679, 2021.

[249] C. Dupuy, R. Arava, R. Gupta, and A. Rumshisky, “An efficient dp-sgd mech-
anism for large scale nlu models,” in ICASSP 2022-2022 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2022,
pp. 4118–4122.

[250] O. Goldreich, Foundations of cryptography: volume 2, basic applications. Cam-
bridge university press, 2009.

259

[251] A. Williams, N. Nangia, and S. Bowman, “A broad-coverage challenge corpus
for sentence understanding through inference,” in Proceedings of the 2018
Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long Papers). New
Orleans, Louisiana: Association for Computational Linguistics, Jun. 2018, pp.
1112–1122. [Online]. Available: https://www.aclweb.org/anthology/N18-1101

[252] A. Warstadt, A. Singh, and S. R. Bowman, “Neural network acceptability
judgments,” Transactions of the Association for Computational Linguistics,
vol. 7, pp. 625–641, Mar. 2019. [Online]. Available: https://www.aclweb.org/
anthology/Q19-1040

[253] R. Socher, A. Perelygin, J. Wu, J. Chuang, C. D. Manning, A. Ng, and
C. Potts, “Recursive deep models for semantic compositionality over a sentiment
treebank,” in Proceedings of the 2013 Conference on Empirical Methods in
Natural Language Processing. Seattle, Washington, USA: Association for
Computational Linguistics, Oct. 2013, pp. 1631–1642. [Online]. Available:
https://www.aclweb.org/anthology/D13-1170

[254] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of
deep bidirectional transformers for language understanding,” in Proceedings
of the 2019 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume
1 (Long and Short Papers). Minneapolis, Minnesota: Association for
Computational Linguistics, Jun. 2019, pp. 4171–4186. [Online]. Available:
https://www.aclweb.org/anthology/N19-1423

[255] C. Dwork and A. Smith, “Differential privacy for statistics: What we know and
what we want to learn,” Journal of Privacy and Confidentiality, vol. 1, no. 2,
2010.

[256] C. Dwork, K. Kenthapadi, F. McSherry, I. Mironov, and M. Naor, “Our data,
ourselves: Privacy via distributed noise generation,” in Annual international
conference on the theory and applications of cryptographic techniques. Springer,
2006, pp. 486–503.

[257] J. Konečnỳ, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh, and D. Bacon,
“Federated learning: Strategies for improving communication efficiency,” arXiv
preprint arXiv:1610.05492, 2016.

[258] W. Liu, Z. Wang, X. Liu, N. Zeng, Y. Liu, and F. E. Alsaadi, “A survey of deep
neural network architectures and their applications,” Neurocomputing, vol. 234,
pp. 11–26, 2017.

[259] D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri, “Learning spa-
tiotemporal features with 3d convolutional networks,” in Proceedings of the
IEEE international conference on computer vision, 2015, pp. 4489–4497.

[260] X. Jiang, M. Kim, K. Lauter, and Y. Song, “Secure outsourced matrix compu-
tation and application to neural networks,” in Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security. ACM, 2018,
pp. 1209–1222.

[261] F. Tramèr, F. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart, “Stealing
machine learning models via prediction apis,” in 25th {USENIX} Security
Symposium ({USENIX} Security 16), 2016, pp. 601–618.

260

[262] C. Juvekar, V. Vaikuntanathan, and A. Chandrakasan, “{GAZELLE}: A low
latency framework for secure neural network inference,” in 27th {USENIX}
Security Symposium ({USENIX} Security 18), 2018, pp. 1651–1669.

[263] R. Gilad-Bachrach, N. Dowlin, K. Laine, K. Lauter, M. Naehrig, and J. Wernsing,
“Cryptonets: Applying neural networks to encrypted data with high throughput
and accuracy,” in International Conference on Machine Learning, 2016, pp.
201–210.

[264] P. Xie, B. Wu, and G. Sun, “Bayhenn: Combining bayesian deep learn-
ing and homomorphic encryption for secure dnn inference,” arXiv preprint
arXiv:1906.00639, 2019.

[265] Q. Zhang, C. Wang, H. Wu, C. Xin, and T. V. Phuong, “Gelu-net: A globally
encrypted, locally unencrypted deep neural network for privacy-preserved learn-
ing.”

[266] S. Xie, B. Liu, and Y. Hong, “Privacy-preserving cloud-based dnn inference,”
in ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP). IEEE, 2021 ©2021 IEEE. Reprinted, with
permission, from Shangyu Xie, Bingyu Liu and Yuan Hong, Privacy-Preserving
Cloud-Based DNN Inference, IEEE ICASSP, 2021, pp. 2675–2679.

[267] J. H. Cheon, A. Kim, M. Kim, and Y. Song, “Homomorphic encryption for
arithmetic of approximate numbers,” in International Conference on the Theory
and Application of Cryptology and Information Security. Springer, 2017, pp.
409–437.

[268] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of
deep bidirectional transformers for language understanding,” arXiv preprint
arXiv:1810.04805, 2018.

[269] J. Carreira and A. Zisserman, “Quo vadis, action recognition? a new model
and the kinetics dataset,” in proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2017, pp. 6299–6308.

[270] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner et al., “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp.
2278–2324, 1998.

[271] P. Mishra, R. Lehmkuhl, A. Srinivasan, W. Zheng, and R. A. Popa, “Delphi: A
cryptographic inference service for neural networks,” in 29th {USENIX} Security
Symposium ({USENIX} Security 20), 2020.

[272] O. Goldreich, S. Micali, and A. Wigderson, “How to play any mental game,” in
Proceedings of the nineteenth annual ACM symposium on Theory of computing,
1987, pp. 218–229.

[273] C. Gentry, “Fully homomorphic encryption using ideal lattices,” in Proceedings
of the Forty-first Annual ACM Symposium on Theory of Computing, ser. STOC
’09. New York, NY, USA: ACM, 2009, pp. 169–178. [Online]. Available:
http://doi.acm.org/10.1145/1536414.1536440

[274] E. Boyle, G. Couteau, N. Gilboa, Y. Ishai, and M. Orrù, “Homomorphic secret
sharing: optimizations and applications,” in Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security, 2017, pp.
2105–2122.

261

[275] J. Fan and F. Vercauteren, “Somewhat practical fully homomorphic encryption,”
Cryptology ePrint Archive, 2012.

[276] S. Halevi and V. Shoup, “Faster homomorphic linear transformations in helib,”
in Annual International Cryptology Conference. Springer, 2018, pp. 93–120.

[277] S. Halevi, Y. Polyakov, and V. Shoup, “An improved rns variant of the bfv
homomorphic encryption scheme,” in Cryptographers’ Track at the RSA Confer-
ence. Springer, 2019, pp. 83–105.

[278] P. Mohassel and Y. Zhang, “Secureml: A system for scalable privacy-preserving
machine learning,” in 2017 IEEE Symposium on Security and Privacy (SP).
IEEE, 2017, pp. 19–38.

[279] C. Lu, C. Hsieh, C. Chang, and C. Yang, “An improvement to data service in
cloud computing with content sensitive transaction analysis and adaptation,”
in 2013 IEEE 37th Annual Computer Software and Applications Conference
Workshops, July 2013, pp. 463–468.

[280] N. Perlroth, “All 3 billion yahoo accounts were affected by 2013 attack,” https:
//www.nytimes.com/2017/10/03/technology/yahoo-hack-3-billion-users.html,
2017.

[281] “Gdpr,” https://gdpr-info.eu/art-28-gdpr/, accessed: 2019-10-30.

[282] J. Daemen and V. Rijmen, “Aes proposal: Rijndael,” 1999.

[283] P. Karn, W. A. Simpson, and P. Metzger, “The esp triple des transform,” 1995.

[284] M. van Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan, “Fully
homomorphic encryption over the integers,” in Advances in Cryptology -
EUROCRYPT 2010, 29th Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Monaco / French Riviera,
May 30 - June 3, 2010. Proceedings, 2010, pp. 24–43. [Online]. Available:
https://doi.org/10.1007/978-3-642-13190-5\ 2

[285] M. Bellare, A. Boldyreva, and A. O’Neill, “Deterministic and efficiently search-
able encryption,” in Annual International Cryptology Conference. Springer,
2007, pp. 535–552.

[286] J. Xu, J. Fan, M. H. Ammar, and S. B. Moon, “Prefix-preserving ip address
anonymization: Measurement-based security evaluation and a new cryptography-
based scheme,” in 10th IEEE International Conference on Network Protocols,
2002. Proceedings. IEEE, 2002, pp. 280–289.

[287] A. Boldyreva, N. Chenette, Y. Lee, and A. O’neill, “Order-preserving symmetric
encryption,” in Annual International Conference on the Theory and Applications
of Cryptographic Techniques. Springer, 2009, pp. 224–241.

[288] R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu, “Order preserving encryption
for numeric data,” in Proceedings of the 2004 ACM SIGMOD international
conference on Management of data, 2004, pp. 563–574.

[289] M. Mohammady, L. Wang, Y. Hong, H. Louafi, M. Pourzandi, and
M. Debbabi, “Preserving both privacy and utility in network trace
anonymization,” in Proceedings of the 2018 ACM SIGSAC Conference

262

on Computer and Communications Security, CCS 2018, Toronto, ON,
Canada, October 15-19, 2018, 2018, pp. 459–474. [Online]. Available:
https://doi.org/10.1145/3243734.3243809

[290] S. Xie, M. Mohammady, H. Wang, L. Wang, J. Vaidya, and Y. Hong, “A
generalized framework for preserving both privacy and utility in data outsourcing,”
IEEE Transactions on Knowledge and Data Engineering, pp. 1–1, 2021 ©2021
IEEE. Reprinted, with permission, from Shangyu Xie, Meisam Mohammady,
Han Wang and Lingyu Wang, Jaideep Vaidya and Yuan Hong, A Generalized
Framework for Preserving Both Privacy and Utility in Data Outsourcing, IEEE
Transactions on Knowledge and Data Engineering, 2021.

[291] S. Xie, M. Mohammady, H. Wang, L. Wang, J. Vaidya, and Y. Hong, “A
generalized framework for preserving both privacy and utility in data outsourcing
(extended abstract),” in 2022 IEEE 38th International Conference on Data
Engineering (ICDE), 2022 ©2022 IEEE. Reprinted, with permission, from
Shangyu Xie, Meisam Mohammady, Han Wang and Lingyu Wang, Jaideep
Vaidya and Yuan Hong, A Generalized Framework for Preserving Both Privacy
and Utility in Data Outsourcing (Extended Abstract), IEEE Transactions on
Knowledge and Data Engineering, 2022, pp. 1549–1550.

[292] M. Naveed, S. Kamara, and C. V. Wright, “Inference attacks on
property-preserving encrypted databases,” in Proceedings of the 22Nd ACM
SIGSAC Conference on Computer and Communications Security, ser. CCS
’15. New York, NY, USA: ACM, 2015, pp. 644–655. [Online]. Available:
http://doi.acm.org/10.1145/2810103.2813651

[293] G. Kellaris, G. Kollios, K. Nissim, and A. O’neill, “Generic attacks on secure
outsourced databases,” in Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security. ACM, 2016, pp. 1329–1340.

[294] M. Burkhart, D. Schatzmann, B. Trammell, E. Boschi, and B. Plattner, “The
role of network trace anonymization under attack,” ACM SIGCOMM Computer
Communication Review, vol. 40, no. 1, pp. 5–11, 2010.

[295] J. King, K. Lakkaraju, and A. Slagell, “A taxonomy and adversarial model for
attacks against network log anonymization,” in Proceedings of the 2009 ACM
symposium on Applied Computing. ACM, 2009, pp. 1286–1293.

[296] I. A. Al-Kadit, “Origins of cryptology: The arab contributions,”
Cryptologia, vol. 16, no. 2, pp. 97–126, 1992. [Online]. Available:
https://doi.org/10.1080/0161-119291866801

[297] T.-F. Yen, X. Huang, F. Monrose, and M. K. Reiter, “Browser fingerprinting
from coarse traffic summaries: Techniques and implications,” in Detection of
Intrusions and Malware, and Vulnerability Assessment, U. Flegel and D. Bruschi,
Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 157–175.

[298] T. Brekne, A. Årnes, and A. Øslebø, “Anonymization of ip traffic monitoring
data: Attacks on two prefix-preserving anonymization schemes and some pro-
posed remedies,” in International Workshop on Privacy Enhancing Technologies.
Springer, 2005, pp. 179–196.

[299] E. Cho, S. A. Myers, and J. Leskovec, “Friendship and mobility: User movement
in location-based social networks,” in Proceedings of the 17th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, ser. KDD

263

’11. New York, NY, USA: ACM, 2011, pp. 1082–1090. [Online]. Available:
http://doi.acm.org/10.1145/2020408.2020579

[300] X. S. Wang, Y. Huang, Y. Zhao, H. Tang, X. Wang, and D. Bu, “Efficient
genome-wide, privacy-preserving similar patient query based on private edit
distance,” in Proceedings of the 22Nd ACM SIGSAC Conference on Computer
and Communications Security, ser. CCS ’15. New York, NY, USA: ACM, 2015,
pp. 492–503. [Online]. Available: http://doi.acm.org/10.1145/2810103.2813725

[301] Y. He and J. F. Naughton, “Anonymization of set-valued data via top-down,
local generalization,” PVLDB, vol. 2, no. 1, pp. 934–945, 2009.

[302] Z. Huang, “Clustering large data sets with mixed numeric and categorical values,”
in Proceedings of the 1st pacific-asia conference on knowledge discovery and data
mining,(PAKDD). Singapore, 1997, pp. 21–34.

[303] C. Chatfield, The analysis of time series: an introduction. Chapman and
Hall/CRC, 2016.

[304] “Bing maps — microsoft learn,” https://docs.microsoft.com/en-us/bingmaps/
articles/bing-maps-tile-system, accessed: 2019-10-30.

[305] J. Pei, J. Han, and L. V. Lakshmanan, “Mining frequent itemsets with convertible
constraints,” in Proceedings 17th International Conference on Data Engineering.
IEEE, 2001, pp. 433–442.

[306] R. Agrawal, T. Imieliński, and A. Swami, “Mining association rules between
sets of items in large databases,” in Acm sigmod record, vol. 22, no. 2. ACM,
1993, pp. 207–216.

[307] M. Götz, A. Machanavajjhala, G. Wang, X. Xiao, and J. Gehrke, “Publishing
search logs - A comparative study of privacy guarantees,” IEEE Trans.
Knowl. Data Eng., vol. 24, no. 3, pp. 520–532, 2012. [Online]. Available:
https://doi.org/10.1109/TKDE.2011.26

[308] A. Rheinländer, M. Knobloch, N. Hochmuth, and U. Leser, “Prefix tree indexing
for similarity search and similarity joins on genomic data,” in International
Conference on Scientific and Statistical Database Management. Springer, 2010,
pp. 519–536.

[309] D. Riboni, A. Villani, D. Vitali, C. Bettini, and L. V. Mancini, “Obfuscation of
sensitive data in network flows,” in 2012 Proceedings IEEE INFOCOM, March
2012, pp. 2372–2380.

[310] F. B. Durak, T. M. DuBuisson, and D. Cash, “What else is revealed by order-
revealing encryption?” in Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security. ACM, 2016, pp. 1155–1166.

[311] P. Grubbs, K. Sekniqi, V. Bindschaedler, M. Naveed, and T. Ristenpart,
“Leakage-abuse attacks against order-revealing encryption,” in 2017 IEEE Sym-
posium on Security and Privacy (SP). IEEE, 2017, pp. 655–672.

[312] P. Grubbs, M.-S. Lacharité, B. Minaud, and K. G. Paterson, “Learning to
reconstruct: Statistical learning theory and encrypted database attacks,” 2019.

264

[313] J. Vaidya, B. Shafiq, X. Jiang, and L. Ohno-Machado, “Identifying inference
attacks against healthcare data repositories,” AMIA Summits on Translational
Science Proceedings, vol. 2013, p. 262, 2013.

[314] X. S. Wang, Y. Huang, T.-H. H. Chan, A. Shelat, and E. Shi, “Scoram:
Oblivious ram for secure computation,” in Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communications Security, ser. CCS
’14. New York, NY, USA: ACM, 2014, pp. 191–202. [Online]. Available:
http://doi.acm.org/10.1145/2660267.2660365

[315] C. Dwork, “Differential privacy,” in Automata, Languages and Programming,
M. Bugliesi, B. Preneel, V. Sassone, and I. Wegener, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2006, pp. 1–12.

[316] K. Chen, G. Sun, and L. Liu, Towards Attack-Resilient Geometric Data Pertur-
bation, pp. 78–89.

[317] “cloudlab,” https://docs.cloudlab.com/, accessed: 2019-06-20.

[318] E. Stefanov, M. V. Dijk, E. Shi, T.-H. H. Chan, C. Fletcher, L. Ren, X. Yu, and
S. Devadas, “Path oram: An extremely simple oblivious ram protocol,” Journal
of the ACM (JACM), vol. 65, no. 4, p. 18, 2018.

[319] Z. Chang, D. Xie, and F. Li, “Oblivious ram: A dissection and experimental
evaluation,” Proc. VLDB Endow., vol. 9, no. 12, pp. 1113–1124, Aug. 2016.
[Online]. Available: https://doi.org/10.14778/2994509.2994528

[320] J. Zhang, N. Borisov, and W. Yurcik, “Outsourcing security analysis with
anonymized logs,” in 2006 Securecomm and Workshops, Aug 2006, pp. 1–9.

[321] W. Ding, W. Yurcik, and X. Yin, “Outsourcing internet security: Economic
analysis of incentives for managed security service providers,” in Internet and
Network Economics, X. Deng and Y. Ye, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2005, pp. 947–958.

[322] R. Sion, “Secure data outsourcing,” in Proceedings of the 33rd International
Conference on Very Large Data Bases, ser. VLDB ’07. VLDB Endowment,
2007, pp. 1431–1432. [Online]. Available: http://dl.acm.org/citation.cfm?id=
1325851.1326036

[323] M. Zhou, Y. Mu, W. Susilo, J. Yan, and L. Dong, “Privacy enhanced
data outsourcing in the cloud,” Journal of Network and Computer
Applications, vol. 35, no. 4, pp. 1367 – 1373, 2012, intelligent
Algorithms for Data-Centric Sensor Networks. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/S1084804512000367

[324] O. Goldreich, “Towards a theory of software protection and simulation by
oblivious rams,” in Proceedings of the Nineteenth Annual ACM Symposium on
Theory of Computing, ser. STOC ’87. New York, NY, USA: ACM, 1987, pp.
182–194. [Online]. Available: http://doi.acm.org/10.1145/28395.28416

[325] M. T. Goodrich and M. Mitzenmacher, “Privacy-preserving access of outsourced
data via oblivious ram simulation,” in International Colloquium on Automata,
Languages, and Programming. Springer, 2011, pp. 576–587.

[326] E. Stefanov and E. Shi, “Oblivistore: High performance oblivious cloud storage,”
in 2013 IEEE Symposium on Security and Privacy. IEEE, 2013, pp. 253–267.

265

[327] D. Cash, A. Küpçü, and D. Wichs, “Dynamic proofs of retrievability via oblivious
ram,” Journal of Cryptology, vol. 30, no. 1, pp. 22–57, 2017.

[328] M. Franz, P. Williams, B. Carbunar, S. Katzenbeisser, A. Peter, R. Sion, and
M. Sotakova, “Oblivious outsourced storage with delegation,” in International
Conference on Financial Cryptography and Data Security. Springer, 2011, pp.
127–140.

[329] V. Vaikuntanathan, “Computing blindfolded: New developments in fully homo-
morphic encryption,” in 2011 IEEE 52nd Annual Symposium on Foundations
of Computer Science, Oct 2011, pp. 5–16.

[330] D. Boneh, G. Di Crescenzo, R. Ostrovsky, and G. Persiano, “Public key encryp-
tion with keyword search,” in Advances in Cryptology - EUROCRYPT 2004,
C. Cachin and J. L. Camenisch, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2004, pp. 506–522.

[331] E. Shen, E. Shi, and B. Waters, “Predicate privacy in encryption systems,”
in Proceedings of the 6th Theory of Cryptography Conference on Theory of
Cryptography, ser. TCC ’09. Berlin, Heidelberg: Springer-Verlag, 2009, pp.
457–473. [Online]. Available: http://dx.doi.org/10.1007/978-3-642-00457-5 27

[332] R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky, “Searchable symmetric
encryption: Improved definitions and efficient constructions,” in Proceedings
of the 13th ACM Conference on Computer and Communications Security, ser.
CCS ’06. New York, NY, USA: ACM, 2006, pp. 79–88. [Online]. Available:
http://doi.acm.org/10.1145/1180405.1180417

[333] D. Cash, S. Jarecki, C. Jutla, H. Krawczyk, M.-C. Roşu, and M. Steiner, “Highly-
scalable searchable symmetric encryption with support for boolean queries,” in
Advances in Cryptology – CRYPTO 2013, R. Canetti and J. A. Garay, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 353–373.

[334] R. A. Popa, C. M. S. Redfield, N. Zeldovich, and H. Balakrishnan, “Cryptdb:
Protecting confidentiality with encrypted query processing,” in Proceedings
of the Twenty-Third ACM Symposium on Operating Systems Principles, ser.
SOSP ’11. New York, NY, USA: ACM, 2011, pp. 85–100. [Online]. Available:
http://doi.acm.org/10.1145/2043556.2043566

[335] F. Kerschbaum, “Frequency-hiding order-preserving encryption,” in Proceedings
of the 22Nd ACM SIGSAC Conference on Computer and Communications
Security, ser. CCS ’15. New York, NY, USA: ACM, 2015, pp. 656–667. [Online].
Available: http://doi.acm.org/10.1145/2810103.2813629

[336] X. S. Wang, K. Nayak, C. Liu, T.-H. H. Chan, E. Shi, E. Stefanov, and
Y. Huang, “Oblivious data structures,” in Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communications Security, ser. CCS
’14. New York, NY, USA: ACM, 2014, pp. 215–226. [Online]. Available:
http://doi.acm.org/10.1145/2660267.2660314

[337] B. Ribeiro, W. Chen, G. Miklau, and D. Towsley, “Analyzing privacy in enter-
prise packet trace anonymization,” in In Proceedings of the 15 th Network and
Distributed Systems Security Symposium, 2008.

[338] M. S. Islam, M. Kuzu, and M. Kantarcioglu, “Access pattern disclosure on
searchable encryption: Ramification, attack and mitigation.” in Ndss, vol. 20.
Citeseer, 2012, p. 12.

