
Differentially Private Naı̈ve Bayes Classification
Jaideep Vaidya

Rutgers, The State University of New Jersey
1, Washington Park, Newark, New Jersey 07102, USA

jsvaidya@business.rutgers.edu

Basit Shafiq
Lahore University of Management Sciences

Street 29, Lahore 54792, Pakistan
basit@lums.edu.pk

Anirban Basu
KDDI R&D Laboratories, Inc.

2-1-15 Ohara, Fujimino-shi, Saitama 356-8502, Japan
basu@kddilabs.jp

Yuan Hong
University at Albany, SUNY

1400 Washington Ave., Albany, NY 12222, USA
hong@albany.edu

Abstract—Privacy and security concerns often prevent the
sharing of users’ data or even of the knowledge gained from it,
thus deterring valuable information from being utilized. Privacy-
preserving knowledge discovery, if done correctly, can alleviate
this problem. One of the most important and widely used data
mining techniques is that of classification. We consider the model
where a single provider has centralized access to a dataset
and would like to release a classifier while protecting privacy
to the best extent possible. Recently, the model of differential
privacy has been developed which provides a strong privacy
guarantee even if adversaries hold arbitrary prior knowledge.
In this paper, we apply this rigorous privacy model to develop
a Naı̈ve Bayes classifier, which is often used as a baseline and
consistently provides reasonable classification performance. We
experimentally evaluate the proposed approach, and discuss how
it could be potentially deployed in PaaS clouds.

Index Terms—Differential Privacy, Naı̈ve Bayes Classification

I. INTRODUCTION

Data Mining has many applications in the real world,
such as in bioinformatics, genetics, medicine, seismology,
climatology, economics, and so on. Building and applying
any data mining model generally assumes that the underlying
data is freely accessible. Often when it involves users’ data,
this is not realistic. Privacy and security concerns restrict
sharing and centralization of users’ data. Privacy-preserving
data mining [1] has emerged as an effective method to solve
this problem. Distributed solutions have been proposed that
can preserve privacy while still facilitating data mining. The
definition of privacy followed in this line of research is
conceptually simple: no site should learn anything new from
the process of data mining. Specifically, anything learned
during the data mining process must be derivable given one’s
own data and the final result – nothing is learned about any
other site’s data that isn’t inherently obvious from the data
mining result. The approach followed in this research has been
to select a type of data mining model to be learned and develop
a protocol to learn the model while meeting this definition
of privacy. However, the typical cryptographic solutions have
not been very scalable, and are not effective for large scale
datasets, where data mining is primarily needed.

Alternatively, in many situations, a centralized trusted party
can be found to serve as a data warehouse. In this case, since
the trusted party has full access to the data, it can learn the
appropriate data mining model. However, while the raw data
can be safely stored in such a repository, giving access to even
summarized knowledge can enable inference-based attacks,
hence creating privacy breaches.

Recently, the model of Differential Privacy [2] has been
developed to enable data release while providing a strong
privacy guarantee even in situations where adversaries hold
arbitrary prior knowledge. Differential Privacy is a very strong
notion of privacy wherein it is possible to guarantee that a
randomization algorithm working on two datasets close to each
other will produce very similar outputs. Differential Privacy is
the de facto model of choice for private data release and has
been recently used for developing several privacy-preserving
classification models.

The Naı̈ve Bayes classifier is simple but highly effective.
This combination of its simplicity and effectiveness has led
to its use as a baseline standard by which other classifiers are
measured. With various enhancements, it is highly accurate
and receives practical use in many applications (e.g., text
classification [3]). In this paper, we consider the case where a
single provider has centralized access to a dataset and would
like to release a classifier while ensuring privacy of users’ data.
We apply the rigorous privacy model of differential privacy
to construct a privacy preserving Naı̈ve Bayes classifier. We
experimentally validate the proposed approach and discuss
how it can be deployed on a Platform-as-a-Service cloud, such
as the Google App Engine1.

II. PRELIMINARIES

We first give a brief overview of Naı̈ve Bayes classification,
followed by an overview of Differential Privacy.

A. Naı̈ve Bayes Classification

Naı̈ve Bayes is a highly practical Bayesian learning method
and is particularly suited to high dimensional tasks. It is

1See: http://appengine.google.com.

often used as a baseline classifier and despite its simplicity,
often outperforms more sophisticated methods. The following
description is based on the discussion in Mitchell [3]. The
Naı̈ve Bayes classifier takes an arbitrary number of continuous
or categorical variables and classifies an instance to belong to
one of several classes. Thus, it applies to learning tasks where
each instance x is described by a conjunction of attribute
values and the target function f(x). The target function
can take on any value from some finite set C. A set of
training examples of the target function is provided, and a
new instance is presented, described by the tuple of attribute
values < a1, a2, . . . , an >. The learner is asked to predict the
target value, or classification, for this new instance.

The Bayesian approach to classifying the new instance is
to assign the most probable target value, cMAP , given the
attribute values < a1, a2, . . . , an > that describe the instance.

cMAP = argmax
cj∈C

(P (cj |a1, a2, . . . , an)) (1)

Using Bayes theorem,

cMAP = argmax
cj∈C

(
P (a1, a2, . . . , an|cj)P (cj)

P (a1, a2, . . . , an)

)
= argmax

cj∈C
(P (a1, a2, . . . , an|cj)P (cj)) (2)

The Naı̈ve Bayes classifier makes the further simplifying
assumption that the attribute values are conditionally indepen-
dent given the target value. Therefore,

cNB = argmax
cj∈C

(
P (cj)

∏
i

P (ai|cj)

)
(3)

where cNB denotes the output by the Naı̈ve Bayes classifier.
The conditional probabilities P (ai|cj) need to be estimated

from the training set. The prior probabilities P (cj) also need
to be fixed in some fashion (typically by simply counting the
frequencies from the training set). The probabilities for differ-
ing hypotheses (classes) can also be computed by normalizing
the values received for each hypothesis (class).

Probabilities are computed differently for nominal and nu-
meric attributes.

1) Nominal Attributes: For a nominal attribute X with r
possible attributes values x1, . . . , xr, the probability P (X =
xk|cj) =

nkj
n where n is the total number of training examples

for which C = cj , and nkj is the number of those training
examples that also have X = xk.

To make the classifier more robust to cases where some
counts may be zero (resulting in the overall probability being
zero even if the other attributes are extremely likely), a Laplace
estimator is normally applied, which simply consists of adding
1 to all of the counts before normalization to ensure that none
of the counts are zero.

2) Numeric Attributes: In the simplest case, numeric at-
tributes are assumed to have a “normal” or “Gaussian” prob-
ability distribution. It is also possible to use instead the
lognormal, gamma, and Poisson density function or to use
binning to discretize the values. Another possibility is to use

a kernel estimation method to approximate more complex
distributions. However, we restrict our attention to the normal
distribution in this paper and leave the rest for future work.

The probability density function for a normal distribution
with mean µ and variance σ2 is given by

f(x) =
1√
2πσ

e−
(x−µ)2

2σ2 (4)

The mean µ and variance σ2 are calculated for each class and
each numeric attribute from the training set. Now the required
probability that the instance is of the class cj , P (X = x′|cj),
can be estimated by substituting x = x′ in equation 4.

B. Differential Privacy

Differential Privacy [2], [4] provides a formal and quan-
tifiable privacy guarantee irrespective of an adversary’s back-
ground knowledge and available computational power. Dif-
ferential Privacy is actually a condition on the data release
mechanism and not on the dataset. A randomized algorithm
is considered to be differentially private if for any pair of
neighboring inputs, the probability of generating the same
output, is within a small multiple of each other, for the entire
output space. This means that for any two datasets which are
close to one another, a differentially private algorithm will
behave approximately the same on both data sets. This notion
provides sufficient privacy protection for users regardless of
the prior knowledge possessed by the adversaries.

Definition 1 (ε-Differential Privacy): A randomization algo-
rithm R satisfies ε-differential privacy if for any two neigh-
boring datasets D1 and D2 (differing in one record), and any
output D ∈ Range(R), we have e−ε ≤ Pr[R(D1)=D]

Pr[R(D2)=D] ≤ e
ε.

Definition 2 (Sensitivity): For any query q over the input
datasets, the sensitivity of q is ∆q = max ||q(D1) − q(D2)||
for any two neighboring datasets D1 and D2.

Queries with lower sensitivity can better tolerate the data
modifications from added noise. The work in [4] shows that
to release a (perturbed) value f(x) while satisfying privacy, it
suffices to add Laplace noise with standard deviation S(f)/ε.
We make use of this in our work below.

III. MAKING NAÏVE BAYES DIFFERENTIALLY PRIVATE

We now present how to make the standard Naı̈ve Bayes
Classifier differentially private. The basic idea is to derive
the sensitivity of the classifier parameters and to use those
to add Laplacian noise, so that the derived classifier is then
guaranteed to be differentially private.

A. Deriving Sensitivity

We first discuss how the sensitivity is derived for categorical
attributes, and then discuss the case for numeric attributes.

1) Categorical Attributes: We do make a simplifying as-
sumption that all possible values for the given categorical
attributes are already known (i.e., we do not consider the case
where the extra new record encodes a “brand” new category.)
As long as every category has at least 2 records in the dataset
from which the Naı̈ve Bayes classifier is learned, this is true.

Recall that for a nominal attribute X with r possible
attributes values x1, . . . , xr, the probability P (X = xk|cj) =
nkj
n where n is the total number of training examples for which
C = cj , and nkj is the number of those training examples that
also have X = xk.

The sensitivity computation can be done on the counts
or on the likelihoods. Since it is easier to carry this out
on the counts, we use this approach. Note the difference
in the counts due to a new record is simply 1, since the
presence of the record can increment the count for a particular
<class-value, attribute-value> combination by
1. Therefore, the sensitivity of each nkj is 1 for all attribute
values xk and class values cj .

2) Numeric Attributes: In the case of numeric attributes,
the probability P (X = x′|cj) depends on the mean µj and
standard deviation σj , where the mean µj and variance σ2

j

are calculated for class j based on the values of attribute
X from the training set. Therefore, we need to derive the
sensitivity for both the mean and standard deviation. Unlike
the case of categorical attributes, to derive the sensitivity for
numeric attribute we need to fix the size of the dataset since the
extent to which the mean and standard deviation are affected
by a single record, depends on the number of records from
which that mean and standard deviation have been computed.
Therefore, in the following derivation we denote the size of the
dataset by n. We also need to define a bound on the values that
the attribute can have (i.e, bound the domain). For example,
assume the values for attribute Xj must lie in the range [lj , uj].

Now, we show how to compute the sensitivity of the mean.
Given, mean = µj , the sum of all of the record values for
attribute Xj is µj ∗ n. Now, when we consider a neighboring
dataset with one extra record, the sum of the attribute values
for the neighboring dataset is bounded by [µj ∗ n + lj , µj ∗
n+ uj]. Therefore, the mean µ′j of the neighboring dataset is
bounded by [(µj ∗ n + lj)/(n + 1), (µj ∗ n + uj)/(n + 1)].
Hence, sensitivity (s) is bounded by [(µj ∗ n+ lj)/(n+ 1)−
µj , (µj ∗n+uj)/(n+ 1)−µj]. Simplifying, the sensitivity is
bounded by [(lj − µj)/(n+ 1), (uj − µj)/(n+ 1)].

Note that the values of attribute Xj are bounded by [lj , uj],
which implies that µj is also bounded by [lj , uj]. Therefore
in the worst case, the difference in µj and µ′j is bounded by
(uj − lj)/(n+ 1). Therefore, the sensitivity for the mean is:

sensitivity = (uj − lj)/(n+ 1) (5)

Now, we compute the sensitivity of the standard deviation.
Given, mean = µj and standard deviation σj , Now, when
we consider a neighboring dataset with one extra record, as
derived earlier the mean µ′j of the neighboring dataset is
bounded by [(µj ∗n+ lj)/(n+1), (µj ∗n+uj)/(n+1)]. Note
that σ2 = 1/n ∗ (

∑
j(xj − µj)2). In the case of the standard

deviation, the maximum change can occur if all of the records
in the original dataset are at one extreme and the value of the
additional record is at the other extreme (i.e., all records in
the original dataset have value lj , and the additional record
has value uj]. In such a case the standard deviation σj of the

Algorithm 1 Computing differentially private parameters for
Naı̈ve Bayes
Require: ε, the privacy parameter for differential privacy
Require: Laplace(a, b) samples the Laplace distribution with

mean a and scale b
1: for each attribute Xj do
2: if Xj is categorical then
3: sensitivity, s← 1
4: scale factor, sf ← s/ε
5: ∀ counts nkj , n′kj = nkj+ Laplace(0, sf)
6: Use n′kj to compute P (xi|cj)
7: else if Xj is numeric then
8: compute sensitivity, s for mean µj as per equation 5
9: scale factor, sf ← s/ε

10: µ′j ← µj+ Laplace(0, sf)
11: compute sensitivity, s for standard deviation σj as

per equation 7
12: scale factor, sf ← s/ε
13: σ′j ← σj + Laplace(0, sf)
14: Use µ′j and σ′j to compute P (xi|cj)
15: end if
16: end for
17: for each class cj do
18: count nc′j ← ncj+ Laplace(0, 1)
19: Use nc′j to compute the prior P (cj)
20: end for
.

original dataset is 0. We now derive the standard deviation σ′j
of the neighboring dataset.

Note that in the worst case described above, µj = lj and
µ′j = (n ∗ lj + uj/n + 1). Now, the variance σ′j

2 is given in
equation 6.

Therefore, σ′j =
√

(n) ∗ (ui − li)/(n + 1). Since, σj = 0,
the sensitivity is:

sensitivity =
√

(n) ∗ (uj − lj)/(n+ 1) (7)

Note that in both cases, the sensitivity for the prior probabil-
ities P (cj) can be computed in a similar fashion. Specifically,
the sensitivity of the prior count is 1 (since an additional record
can simply be of that class).

B. Algorithm

Now that we have derived how to compute the sensitivity,
the actual differentially private Naı̈ve Bayes procedure is quite
simple. As described earlier, the key idea is to derive the
sensitivity for each attribute appropriately based on whether it
is categorical or numeric. Following this, Laplacian noise of
the appropriate scale (and mean 0) is added to the parameters
(the counts for categorical attributes, the means and standard
deviations for numeric attributes). This process is described
in Algorithm 1. The computed parameters are then used to
classify a new instance in the standard Naı̈ve Bayes fashion
as described in Section II-A.

σ′j
2

= 1/(n+ 1) ∗ (

n∑
i=1

(lj − (n ∗ lj + uj/n+ 1))2) + (uj − (n ∗ lj + uj/n+ 1))2

= 1/(n+ 1) ∗ ((n ∗ (lj − uj/n+ 1)2) + (n ∗ (uj − lj)/n+ 1)2)

= 1/(n+ 1) ∗ ((n ∗ (lj − uj)2/(n+ 1)2) + (n2 ∗ (uj − lj)2/(n+ 1)2))

= 1/(n+ 1) ∗ (uj − lj)2/(n+ 1)2 ∗ n(1 + n)

= n ∗ (uj − lj)2/(n+ 1)2 (6)

Alice

Bob

Identity anonymiser (e.g., NAT,
mixed network, onion routing)

Bayesian
classification

model

Platform-as-a-Service cloud

{2,5}

C, A_n

-{4,3}

C, A_1

{1,4}

...

... C, A_n-1C, A_2

{2,1}

- …

{4,5}

{2,2}

Alice

Pair-wise data for the class and one attribute is submitted
every time.

Bob

Pair-wise data for the class and one attribute is submitted
every time.

Cloud application adds noise
to the classification model.

Fig. 1: A typical deployment on a PaaS cloud

Time in seconds to complete 1 MiB request

The Tor Project − https://metrics.torproject.org/

0

10

20

30

40

Mar−2013 Apr−2013 May−2013

Measured times on all sources per day

Median

1st to 3rd quartile

Fig. 2: Tor latency for a 1MiB request.

While the above description is theoretically complete, there
are some implementation considerations. Specifically, when
Laplacian noise is added, since the noise can be negative as
well, it is possible for the mean, standard deviation, counts,
and class priors to become negative. While this is not a
problem for the mean, it is a problem for all of the rest. Instead
of choosing positive values from the Laplace distribution
(which would make it bounded), we instead resample the
Laplace distribution as many times as necessary to ensure that
the modified values are non-negative.

IV. DEPLOYMENT SCENARIO ON A CLOUD PLATFORM

Given the volume of the data involved, it is realistic to
assume that organisations will deploy such a privacy preserv-
ing classifier on the cloud. In figure 1, we present a typical
deployment scenario on a Platform-as-a-Service cloud, such

as the Google App Engine. Typically, during the training
phase, the training data is submitted (e.g., by Alice and Bob,
each owning a subset of the attributes) in attribute and target
class pairs, through some form of network anonymizer that
is sufficient to delink the identities of individual submissions
from their submitters. For example, if Alice submitted one
pair of such training data using the same wireless network
as Bob then to the cloud, the training data will appear to
come from one single WAN side IP even though there were
two different submissions from two different entities. This
identity anonymization step is necessary only if the submitted
training data is considered private, which may not always be
the case. Anonymizers, beyond the simple network address
translation mechanism may also be used, such as the Tor
network. However, some anonymizers may result in high
latencies during submitting large volumes of the training data
to the cloud thus slowing down the process of building the
classifier. For example, figure 2 shows the time it takes for
Tor to complete a 1MiB request as recorded in the period
between March and May, 2013.

While the training data is added, the application running on
the cloud adds Laplace noise and generates a compact model
according to algorithm 1. This model – the classifier, which
is used to make classifications is differentially private, and
therefore, resilient against privacy threats from the cloud itself.

We are yet to experiment with the scenario of cloud de-
ployment that we have presented here. It constitutes one of
our future work exercises.

V. EXPERIMENTAL EVALUATION

We implemented our differentially private Naı̈ve Bayes
algorithm on Weka [5], which is an open source collec-
tion of machine learning algorithms for data mining tasks
implemented in Java. Apart from providing algorithms, it
is a general implementation framework, along with support
classes and documentation. It is extensible and convenient for
prototyping purposes.

We have implemented a DiffPrivNaiveBayesSimple class
based on the NaiveBayesSimple class and integrated it into
Weka version 3.6. It is possible to set the value of ε and n for
differential privacy. We experimented with several real datasets
from the UCI repository [6]. The results are reported for the
Nursery, Mushroom, Adult, Skin, Optical Digit Recognition
datasets. These datasets have varying number of instances,
attributes and class values giving a realistic picture of the
performance of our algorithm.

Since the Differentially Privacy Naı̈ve Bayes adds random
(Laplacian) noise, in all the experiments, 5 iterations have been
run with 10-fold cross validation and averaged. The baseline
is the standard Naı̈ve Bayes classifier against which our
differentially private Naı̈ve Bayes classifier is compared for
varying values of n = {1000, 5000, 10000, 100000, 1000000}
and ε = {1.0, 0.1, 0.05, 0.01, 0.005, 0.001}.

Figures 3a – 3e depict the results of the experiments. It
is clear that with the decreasing value of ε, more noise is
added, resulting in degradation in the accuracy. Generally the
accuracy loss is quite steep beyond a specific value of ε which
is dependent on the dataset. For Mushroom and Nursery, the
accuracy loss is rather small for ε >= 0.005. To a much
smaller extent, the accuracy loss is also dependent on the value
of n. As n increases, the sensitivity decreases thus resulting
in less noise. This is more obvious for the Skin and Adult
datasets, while the results for the Mushroom, Nursery, and
Optical Digit Recognition do not vary much. We do not report
the time taken to construct the Differentially Private classifier,
since the additional time required beyond that for the standard
Naı̈ve Bayes is negligible.

VI. RELATED WORK

There has been significant work on developing privacy
models for centralized data release. Dwork et al. [2], [4],
[7] have proposed the rigorous privacy definition of differ-
ential privacy, which provides sufficient privacy protection
for users regardless of the prior knowledge possessed by
the adversaries. This has been extended to various contexts
of privacy-preserving data release and data analysis, e.g.,
user behavior recommender [8], graph based applications [9],
frequent pattern mining [10], [11], query log statistics [12]
and publishing [13]. Jagannathan et. al [14] propose ways
to construct a differentially private Random Decision Tree
(RDT) classifier from a centralized dataset. However, this
does not work for Naı̈ve Bayes Classification, as in our
case. Cormode [15] shows how a differentially private Naı̈ve
Bayes classifier can still be used to infer “private” attributes.
Thus, they show how to build the classifier. However, it only
works for categorical attributes. Our work also extends this to
numeric attributes, and has a detailed experimental evaluation
and integration into Weka.

There has also been significant work in the area of privacy-
preserving data mining. Several solution approaches have
been suggested. One approach is to add “noise” to the data
before the data mining process, and then use reconstruction
techniques that mitigate the impact of the noise from the data
mining results [16]. Indeed, the recent differentially private
algorithms follow the same line of research to build queries
or data analysis application by adding noise [7] or running
particular randomization mechanism [13], [17] to achieve
quantifiable notion of privacy. The work on protecting privacy
in the data mining process (especially for classification) can
be classified into two kinds. First, besides differentially private
approaches mentioned above, Mohammed et al. [18] proposed
an anonymization approach to generalize the raw data and then

add noise to guarantee differential privacy, where the output
data can be used to build a decision tree induction classifier.
An alternative approach is to use cryptographic techniques
to protect privacy, which was first used for the construction
of decision trees by [19]. This work closely followed the
secure multiparty computation approach, achieving “perfect”
privacy, i.e., nothing is learned that could not be deduced from
one’s own data and the resulting tree. The key insight was to
trade off computation and communication cost for accuracy,
improving efficiency over the generic secure multiparty com-
putation method. There has since been work to address other
classification tasks [20], [21], but the work in this paper is
orthogonal to all of these. The most closely related is the
work in [22] which develops privacy-preserving techniques
to compute the Naı̈ve Bayes classifier from both horizontally
and vertically partitioned data. However, since the current
work assumes centralized data as opposed to a distributed data
model, and develops a differentially private classifier, it is also
orthogonal to that work.

VII. CONCLUSION

In this paper we have developed a differentially private
Naı̈ve Bayes Classifier. We have implemented our algorithm
and integrated it into the Weka toolkit. Our experimental re-
sults show that the Differentially Private Naı̈ve Bayes performs
very well and is able to keep up with the baseline Naı̈ve Bayes
classifier even while providing very strong privacy. We have
also discussed how such a classifier could be deployed on
a PaaS cloud. In the future, we plan to look at how other
classification techniques can also be made differentially private
and integrated into Weka, and explore how differentially
private classification can be outsourced into the cloud.

REFERENCES

[1] J. Vaidya, C. Clifton, and M. Zhu, Privacy-Preserving Data Mining,
1st ed., ser. Advances in Information Security. Springer-Verlag, 2005,
vol. 19.

[2] C. Dwork, “Differential privacy,” in 33rd International Colloquium on
Automata, Languages and Programming (ICALP 2006), Venice, Italy,
Jul. 9-16 2006, pp. 1–12.

[3] T. Mitchell, Machine Learning, 1st ed. McGraw-Hill Sci-
ence/Engineering/Math, 1997.

[4] C. Dwork, F. McSherry, K. Nissim, and A. Smith, “Calibrating noise to
sensitivity in private data analysis,” in TCC, 2006, pp. 265–284.

[5] I. H. Witten and E. Frank, Data Mining: Practical Machine Learning
Tools and Techniques with Java Implementations. San Francisco:
Morgan Kaufmann, Oct. 1999.

[6] C. Blake and C. Merz, “UCI repository of machine learning databases,”
1998.

[7] C. Dwork, K. Kenthapadi, F. McSherry, I. Mironov, and M. Naor,
“Our data, ourselves: Privacy via distributed noise generation,” in
EUROCRYPT, 2006, pp. 486–503.

[8] F. McSherry and I. Mironov, “Differentially private recommender sys-
tems: building privacy into the net,” in KDD, 2009, pp. 627–636.

[9] M. Hay, C. Li, G. Miklau, and D. Jensen, “Accurate estimation of the
degree distribution of private networks,” in ICDM, 2009, pp. 169–178.

[10] R. Bhaskar, S. Laxman, A. Smith, and A. Thakurta, “Discovering
frequent patterns in sensitive data,” in KDD, 2010, pp. 503–512.

[11] N. Li, W. H. Qardaji, D. Su, and J. Cao, “Privbasis: Frequent itemset
mining with differential privacy,” PVLDB, vol. 5, no. 11, pp. 1340–1351,
2012.

[12] A. Korolova, K. Kenthapadi, N. Mishra, and A. Ntoulas, “Releasing
search queries and clicks privately,” in WWW, 2009, pp. 171–180.

0

20

40

60

80

100

10
-3

10
-2

10
-1

10
0

A
c
c
u
ra

c
y
 i
n
 p

e
rc

e
n
ta

g
e
 (

lin
e
a
r

s
c
a
le

)

Decreasing values of epsilon (log10 scale)

baseline
n=1k
n=5k

n=10k
n=100k

n=1m

(a) Mushroom dataset: 8K records, 22 attributes and 2 classes.

0

20

40

60

80

100

10
-3

10
-2

10
-1

10
0

A
c
c
u
ra

c
y
 i
n
 p

e
rc

e
n
ta

g
e
 (

lin
e
a
r

s
c
a
le

)

Decreasing values of epsilon (log10 scale)

baseline
n=1k
n=5k

n=10k
n=100k

n=1m

(b) Nursery dataset: 13K records, 8 attributes and 5 classes.

0

20

40

60

80

100

10
-3

10
-2

10
-1

10
0

A
c
c
u
ra

c
y
 i
n
 p

e
rc

e
n
ta

g
e
 (

lin
e
a
r

s
c
a
le

)

Decreasing values of epsilon (log10 scale)

baseline
n=1k
n=5k

n=10k
n=100k

n=1m

(c) Adult dataset: 48K records, 14 attributes and 2 classes.

0

20

40

60

80

100

10
-3

10
-2

10
-1

10
0

A
c
c
u
ra

c
y
 i
n
 p

e
rc

e
n
ta

g
e
 (

lin
e
a
r

s
c
a
le

)

Decreasing values of epsilon (log10 scale)

baseline
n=1k
n=5k

n=10k
n=100k

n=1m

(d) Skin dataset: 245K records, 3 attributes and 2 classes.

0

20

40

60

80

100

10
-3

10
-2

10
-1

10
0

A
c
c
u
ra

c
y
 i
n
 p

e
rc

e
n
ta

g
e
 (

lin
e
a
r

s
c
a
le

)

Decreasing values of epsilon (log10 scale)

baseline
n=1k
n=5k

n=10k
n=100k

n=1m

(e) Opt. Digit: 5.6K records, 64 attributes and 10 classes.

Fig. 3: Accuracy graphs for various datasets.

[13] Y. Hong, J. Vaidya, H. Lu, and M. Wu, “Differentially private search
log sanitization with optimal output utility,” in EDBT, 2012.

[14] G. Jagannathan, K. Pillaipakkamnatt, and R. N. Wright, “A practical
differentially private random decision tree classifier,” in Proceedings of
the 2009 IEEE ICDM Workshops, ser. ICDMW ’09. Washington, DC,
USA: IEEE Computer Society, 2009, pp. 114–121.

[15] G. Cormode, “Personal privacy vs population privacy: learning to
attack anonymization,” in Proceedings of the 17th ACM SIGKDD
international conference on Knowledge discovery and data mining, ser.
KDD ’11. New York, NY, USA: ACM, 2011, pp. 1253–1261.

[16] R. Agrawal and R. Srikant, “Privacy-preserving data mining,” in
Proceedings of the 2000 ACM SIGMOD Conference on Management
of Data, ACM. Dallas, TX: ACM, May 14-19 2000, pp. 439–450.

[17] Y. Duan, “Privacy without noise,” in CIKM, 2009, pp. 1517–1520.

[18] N. Mohammed, R. Chen, B. C. M. Fung, and P. S. Yu, “Differentially
private data release for data mining,” in KDD, 2011, pp. 493–501.

[19] Y. Lindell and B. Pinkas, “Privacy preserving data mining,” Journal of
Cryptology, vol. 15, no. 3, pp. 177–206, 2002.

[20] R. Wright and Z. Yang, “Privacy-preserving bayesian network structure
computation on distributed heterogeneous data,” in Proceedings of the
10th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining. Seattle, WA: ACM, Aug.22-25 2004.

[21] J. Vaidya, C. Clifton, M. Kantarcioglu, and A. S. Patterson, “Privacy-
preserving decision trees over vertically partitioned data,” ACM Trans.
Knowl. Discov. Data, vol. 2, no. 3, pp. 1–27, 2008.

[22] J. Vaidya, M. Kantarcioglu, and C. Clifton, “Privacy preserving naive
bayes classification,” International Journal on Very Large Data Bases,
vol. 17, no. 4, pp. 879–898, Jul. 2008.

