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ABSTRACT
Deep neural network (DNN) services have been widely deployed in
many different domains. For instance, a client may send its private
input data (e.g., images, texts and videos) to the cloud for accurate
inferences with pre-trained DNN models. However, significant
privacy concerns would emerge in such use cases due to data or
model sharing with the cloud. Secure inferences with cryptographic
techniques have been proposed to address such issues, and the
system can perform secure two-party inferences between each client
and cloud. However, most of existing cryptographic systems only
focus on DNNs for extracting 2D features for image inferences,
which havemajor limitations on latency and scalability for extracting
spatio-temporal (3D) features from videos for accurate inferences.
To address such critical deficiencies, we design and implement the
first cryptographic inference system, Crypto3D, which privately
infers videos on 3D features with rigorous privacy guarantees.
We evaluate Crypto3D and benchmark with the state-of-the-art
systems on privately inferring videos in UCF-101 and HMDB-51
datasets with C3D and I3D models. Our results demonstrate that
Crypto3D significantly outperforms existing systems (substantially
extended to inferences with 3D features): execution time: 186.89× vs.
CryptoDL (3D), 63.75× vs. HEANN (3D), 61.52× vs. MP-SPDZ (3D),
45× vs. E2DM (3D), 3.74× vs. Intel SGX (3D), and 3× vs. Gazelle
(3D); accuracy: 82.3% vs. below 70% for all of them.

1 INTRODUCTION
Recently deep neural networks (DNNs) have been increasingly
deployed by the cloud to provide services for object detection, image
and video classification, anomaly detection, etc. The client may send
its data to the cloud for accurate classification and prediction using
the pre-trained DNN models. However, severe privacy concerns
may occur between the client and cloud. In video inferences, the
users’ videos involve considerable amounts of sensitive information
(e.g., human face, identities, activities, and workspace). Directly
disclosing them to the cloud would compromise the privacy of users.
Indeed, the pre-trained DNN model should also be considered as
the proprietary information for the cloud, which cannot be shared.

To eliminate such privacy risks, cryptographic protocols [1,
8] are designed for secure inferences (as summarized in Table 1).
A secure inference protocol allows the client to send its private
input data (encrypted), and privately obtain the learning result
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3D Spatial Temporal
CryptoNets [3], CryptoDL[5] HE ✗ ✓ ✗

MiniONN [8], DeepSecure [12] GC ✗ ✓ ✗

PSA [16] SS ✗ ✓ ✗

MLCapsule[4] TEE ✗ ✓ ✗

Visor [11] TEE ✗ ✓ ✓

Gazelle [7], Delphi [9] Mix ✗ ✓ ✗

GALA [15], PPVC [10] Mix ✗ ✓ ✗

Crypto3D (Ours) Mix ✓ ✓ ✓

Table 1: Comparison of secure inferences (HE: Homomorphic
Encryption, GC: Garbled Circuits, SS: Secret Sharing, TEE:
Trusted Execution Environment, Mix: Mixed MPC).

from the cloud. Neither party can learn anything regarding the
model weights and private inputs from each other. Many existing
works [8] use one or more cryptographic techniques such as Fully
Homomorphic Encryption (FHE) [1], Garbled Circuits (GC) [14] and
Secret Sharing (SS) [8] to compose the protocols. FHE can provide
higher privacy guarantees, but it brings expensive computational
overheads. Moreover, some non-polynomial functionalities (e.g.,
Non-linear Activation Functions ReLU) cannot be supported. Garbled
circuits support arbitrary functionality, but it results in significant
computation and communication overheads. Trusted Execution
Environment (TEE) [4] provides secure enclave for the isolated
sensitive computation with attestation. It ensures data privacy and
integrity without provable guarantees. Moreover, current TEEs are
not scalable enough for processing large amounts of data. Thus,
directly using such systems are not ideal for secure DNN inferences.

The Delphi system [9] was recently proposed as one of the state-
of-the-art efficient cryptographic inference systems. It outperforms
other protocols in both latency and communication cost for image
DNN with a hybrid cryptographic protocol. Unfortunately, securely
inferring images based on 2D features by Delphi (the state-of-the-art)
is far from enough for video-based applications. Compared with
the 2D ConvNets, most 3D ConvNets have to infuse the temporal
information of the videos after each convolution/pooling operations.
Performing 3D convolution and pooling operations are supposed to
deliver temporal information across all the neural network layers
to the end. Integrated with both spatial and temporal information
in each feature, 3D ConvNets (e.g., C3D and I3D networks) have
proven to be more accurate on video inferences than 2D ConvNets
[2, 13]. However, to our best knowledge, cryptographic inferences
on 3D features for videoDNNs have not been studied yet in literature.1

To fill this gap, we design and implement the first cryptographic
inference system (namely “Crypto3D”) that privately infers videos
based on 3D spatial-temporal features (both C3D [13] and I3D [2]).

1Visor [11] provides confidentiality for analyzing video streams via a hybrid TEE
system. However, it still privately infers data (e.g., object detection and tracking) based
on 2D features. PPVC [10] preserves privacy in video classification based on MPC, but
it still utilizes the 2D ConvNets without fully preserving temporal information.
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It enables the client and cloud to privately perform the inferences
for video classification, action prediction, as well as visual anomaly
detection. Also, we further boost the system efficiencywith optimized
matrix operations and ciphertext packing technique.

2 3D NEURAL NETWORKS FOR VIDEO DNN
C3D. It is used to incorporate the spatio-temporal information in
videos. It directly encodes the temporal structurewith 3D convolutional
network instead of 2D. The involved 3D kernel is able to extract
information from both spatial and temporal dimensions [13]. Compared
with 2D ConvNet, 3D ConvNet provides a better model temporal
information with 3D convolution and 3D pooling operations for
more accurate video recognition. All video frames are resized to
128×171 and split into non-overlapped 16-frames clips. The network
includes 8 convolution layers, 5max-pooling layers, 2 fully connected
layers and followed by one softmax layer for predicting the label.
I3D. It uses 3D convolution to learn spatio-temporal information
directly from videos. With inflating from 2Dmodels, the I3Dmodels
are able to use the 2D models’ architecture (e.g., ResNet, Inception),
and also bootstrap the model weights from 2D pre-trained models.
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Figure 1: Crypto3D Framework

3 CRYPTOGRAPHIC PROTOCOL
ThreatModel. In Crypto3D, each client holds its video streams and
it expects not to disclose the content of video to the cloud or other
video analytics services. We assume that computing the 3D and
the DNN architecture are known to the public (i.e., dimensions and
type of each layer in the neural networks), except the parameter of
model weights. Since it is the proprietary information to the cloud
service provider, the model weights are not allowed to be revealed.
Based on the proposed cryptographic protocols, the privacy of input
video and model weights are guaranteed.
Ciphertext Packing. Our Crypto3D contains two phases: offline∏

SecureOFL and online inference/predication
∏

SecureONL phase.
Assume that the pre-trained DNN model from the server will
not be changed and updated. The offline phase is supposed to be
independent of the input data from the client. Once the offline∏

SecureOFL is completed, the input data given by the client will be
sent to the cryptographic protocol for executing the online phase.
However, the arithmetic operations of the encrypted matrices are
involved and it leads to the inefficiency for the high-dimensional
data tensors computation.

To mitigate this issue, Crypto3D utilized the optimized matrix
permutation [6] to efficiently perform the operation of matrix
computation with the ciphertext packing and parallelism. The
operation of the matrix multiplication can be considered as the
sum of component-wise products with the specific permutations
of the matrices themselves. Assume that there are two square

matrices with size 𝑛 ×𝑛, the 𝑛 permutations of the matrix 𝐴 via the
followings symmetric permutations: 𝜎 (𝐴)𝑖, 𝑗 = 𝐴𝑖,𝑖+𝑗 , 𝜏 (𝐴) = 𝐴𝑖+𝑗, 𝑗
and 𝜙 (𝐴) 𝑗, 𝑗 = 𝐴𝑖, 𝑗+1, 𝜓 (𝐴) = 𝐴𝑖+1, 𝑗 , where 𝜙 and 𝜓 are denoted
as the shifting functions for column and row, respectively. Then,
the multiplication of two matrices (we denote 𝐴 and 𝐵) with the
order 𝑑 can be computed as: 𝐴 · 𝐵 =

∑𝑑−1
𝑘=1 (𝜙

𝑘 ⊙ 𝜎 (𝐴)) × (𝜓𝑘 ⊙
𝜏 (𝐵))where ⊙ refers to the component-wise product and 𝑘 is used
to represent the number of times for perturbation. As such, we can
efficiently compute the two matrix multiplications. In Crypto3D,
we utilize the function Permu(·) to represent the computation of
the𝑛 permutation operations. To boost the efficiency, we also utilize
the vectorable homomorphic encryption “Ciphetext packing”. We
use the Encode(·) to refer to the matrix transformations, which
transforms a matrix into a plaintext vector with encoding map
functions. Similarly, Decode(·) is used for the plaintext vector
transformations to the matrix. Our Crypto3D uses the optimized
matrix multiplication and ciphertext packing [6] for the efficiency
improvement. Sincewe can pack all the inputs into a single ciphertext
and perform layer computation (e.g., convolutions) in parallel, we
can enable the SIMD parallelism with the ciphertext packing.

3.1 Protocol Design
As shown in Figure 1, Crypto3D secures the two-party inference
between the client and the cloud service provider. Once given the
input data from the client, the cloud service provider provides
inference results securelywith the storedweightmodel. The Crypto3D
by extending the design in DELPHI [9]: the neural network is
processed with linear and non-linear layer one after the other, and
the output will be delivered as input for the next layer.
Offline Phase (

∏
SecureOFL). Our Crypto3D provides the offline

phase execution, which can be executed before the input is known.
First, (pk, sk) can be fetched via the KGen algorithm for the client.
The input value x is independent of the offlinePhase() execution.
We denote J𝑟𝑖K ← R𝑛, 𝑖 ∈ [1, .., 𝑙] and J𝑠𝑖K ← R𝑛, 𝑖 ∈ [1, .., 𝑙] as
the random masking vectors for the 𝑖-th layer. In the linear layer,
the encrypted ciphertext E(pk, J𝑟𝑖K) is sent to the server by the
client. With the Eval procedure, the server computes the E(𝑝𝑘, (𝒫𝑖 ·
J𝑟𝑖K − J𝑠𝑖K)) and send its ciphertext back to the client. Then, the
client decrypts and obtains decrypted value for all layers. Thus, the
additive secret sharing of 𝒫𝑖 · J𝑟𝑖K is held by both the client and
the server before the online phase execution. Regarding the non-
linear layer execution, the execution of activation function depends
on what type of function. The garbled circuit 𝐶 is constructed via
GC schemes. It helps to solve the ReLu function by exchanging
the labels for input wires with J𝑟𝑖+1K and 𝒫𝑖 · J𝑟𝑖K − J𝑠𝑖K. On the
other hand, the Beaver’s triples protocol is used for the polynomial
approximation functions. Beaver’s multiplicative triples are a two-
party protocol with the secret shares of a triples output (𝑎, 𝑏, 𝑐).
Online Phase (

∏
SecureONL). Given the input x, the server receives

x− J𝑟1K. At this time, the additive secret shares of x are held by the
client and server, respectively. At the beginning of the 𝑖-th layer
evaluation, x𝑖 can be fetched from the first (𝑖−1) layers of the neural
network. The client holds J𝑟𝑖K while server holds 𝑥𝑖 − J𝑟𝑖K. For the
evaluation of the linear layer(s), the server computes𝒫𝑖 · (x𝑖 − J𝑟𝑖K),
which ensures that the additive shared secrets of 𝒫𝑖 · x𝑖 are held
by the client and server, respectively. Once the linear layer is



System Method Library Network Runtime w. GPU (Sec) Speedup (×) Amortized (Sec) Accuracy

Gazelle (3D) HE, GC, SS PALISADE C3D 1916.48 3.00× 2.48 > 49.4%
Intel SGX (3D) TEE - C3D 2387.77 3.74× 3.08 49.4%
PPVC [10] MPC, SS MP-SPDZ 2D CNN 511.64 (from [10]) - - 56%

MP-SPDZ (3D) MPC, SS MP-SPDZ C3D 39303.72 61.52× 50.78 > 56%
CryptoDL (3D) HE HELIB C3D 119388.28 186.89× 154.25 > 62%
HEANN (3D) HE HEANN C3D 40725.29 63.75× 52.62 > 62%
E2DM (3D) HE HEANN C3D 28747.26 45.00× 37.14 > 62%

Crypto3D (Ours) HE, GC, SS SEAL C3D 638.83 - 0.83 82.3%

Table 2: Comparison with the state-of-the-art systems (significantly extended from 2D to 3D) on action recognition dataset
UCF101 with Sports-1M pre-trained C3D model. Crypto3D is significantly more efficient than other systems, The execution
time of Crypto3D is over 186.89×, 63.75×, 61.52×, 45× 3.74× and 3× faster than CrytoDL (3D), HEANN (3D), MP-SPDZ (3D), E2DM
(3D), Intel SGX (3D) and Gazelle (3D), respectively. PPVC [10] is proposed for video inferences, but with 2D CNN Network.

completed, 𝒫𝑖 · (x𝑖 − J𝑟𝑖K) + J𝑠𝑖K and 𝒫𝑖 · J𝑟𝑖K− J𝑠𝑖K are held by the
server and client, respectively. Similarly, as the offline phase, we
use the garbled circuits and Beaver’s multiplication for evaluating
the non-linear layers. For the Garbled Circuits evaluation, the client
receives the garbled labels from the server, which is corresponding
to the 𝒫𝑖 · (x𝑖 − J𝑟𝑖K) + J𝑠𝑖K. With these labels, the garbled circuit𝐶
is evaluated to return the output of one-time pad (OTP) ciphertext
𝑂𝑇𝑃 (𝑥𝑖+1 − J𝑟𝑖+1K) to the server. The 𝑥𝑖+1 − J𝑟𝑖+1K is obtained by
the server with one-time pad key. On the other hand, the Beaver’s
multiplication procedure is executed for the polynomial approximation
evaluation. The client and sever will hold the [𝑥𝑖+1]1 and [𝑥𝑖+1]2,
separately after the Beaver’s multiplication procedure. At this time,
the client sends the results of the [𝑥𝑖+1]1 − J𝑟𝑖+1K to the server. The
𝑥𝑖+1 − J𝑟𝑖+1K will be obtained by adding the [𝑥𝑖+1]2. Finally, the
client learns the 𝑥𝑙 from the received 𝑥𝑙 − J𝑟𝑙 K.

4 EVALUATION
Setting and Datasets. Our Crypto3D is implemented with Rust,
Python and C++. All the experiments are evaluated on a Ubuntu
20.04.2 LTS server with the NVIDIA-SMI 460.80 GPU. We evaluate
C3D and I3D features on the UCF-101 and HMDB-51 datasets. The
UCF-101 consists of the 13,320 videos from YouTube, with over 101
categories of human actions. HMDB-51 contains 6,849 video clips
from 51 distinct action classes.
Comparison with Existing Systems. To demonstrate the high
performance of Crypto3D, we provide the performance comparison
of Crypto3D and other privacy-preserving frameworks with 3D
model structure. As discussed in Section 1, all the benchmark
systems cannot be directly applied to for video inferences based
on the C3D model. We significantly extend them by modifying the
2D CNN network to embed with 3D architecture (i.e., C3D and
I3D). With the 3D filters, the spatio-temporal features are able to
be extracted. We re-implement the following systems on the C3D
model: Gazelle (3D), Intel SGX (3D), MP-SPDZ (3D), CryptoDL (3D),
HEANN (3D) and E2DM (3D). However, Delphi and GALA cannot
be extended due to the 2D structure or lack of source codes. Table 2
summarizes the cryptographic method, library, total execution time,
speedup and amortized time. Crypto3D significantly outperforms
all other benchmarks. The execution time of Crypto3D is over
186.89×, 63.75×, 61.52×, 45× 3.74× and 3× faster than CrytoDL
(3D), HEANN (3D), MP-SPDZ (3D), E2DM (3D), Intel SGX (3D)
and Gazelle (3D), respectively. These results show that Crypto3D is
much more efficient in 3D privacy-preserving video input inference.
Additionally, Crypto3D only takes 0.83 sec on average to process the
secure inference for each frame, while other HE-based frameworks

take much longer time because of the computational overhead. Note
that the accuracy of the all other benchmarks is only less than 70%
while Crypto3D can achieve the accuracy of 82.3%.

5 CONCLUSION
Our Crypto3D achieves significant performance by (i) privately
inferring videos on 3D spatial-temporal features with the C3D and
I3D DNN models; (ii) involving an optimized matrix operations and
ciphertext packing technique in Crypto3D for efficiency boosting. In
addition, we substantially modify the state-of-the-art secure DNNs
systems (CryptoDL, HEANN, MP-SPDZ, E2DM, Intel SGX, and
Gazelle) to privately infer videos with 3D features as benchmarks.
Crypto3D is significantly more efficient than them on private video
inferences, e.g., over 186.89× vs. CryptoDL (3D), 63.75× vs. HEANN
(3D), 61.52× vs. MPSPDZ (3D), 45× vs. E2DM (3D), 3.74× vs. Intel
SGX (3D), and 3× vs. Gazelle (3D). Finally, it can also guarantee
82.3% accuracy on inferring videos with 3D features, which is also
significantly more accurate than all of other benchmarks.
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