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ABSTRACT
Location-based services (LBS) have been significantly developed

and widely deployed in mobile devices. It is also well-known that

LBS applications may result in severe privacy concerns by collect-

ing sensitive locations. A strong privacy model “local differential

privacy” (LDP) has been recently deployed in many different ap-

plications (e.g., Google RAPPOR, iOS, and Microsoft Telemetry)

but not effective for LBS applications due to the low utility of ex-

isting LDP mechanisms. To address such deficiency, we propose

the first LDP framework for a variety of location-based services

(namely “L-SRR”), which privately collects and analyzes user loca-

tions with high utility. Specifically, we design a novel randomization

mechanism “Staircase Randomized Response” (SRR) and extend

the empirical estimation to significantly boost the utility for SRR
in different LBS applications (e.g., traffic density estimation, and

k-nearest neighbors). We have conducted extensive experiments on

four real LBS datasets by benchmarking with other LDP schemes in

practical applications. The experimental results demonstrate that

L-SRR significantly outperforms them.

CCS CONCEPTS
• Security and privacy→ Privacy-preserving protocols; Data
anonymization and sanitization.
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1 INTRODUCTION
Location-based services (LBS) are widely deployed inmobile devices

to provide useful and timely location-based information to users.

For instance, WeatherBug provides weather information based on

users’ regions; Google Map not only navigates the routes with real-

time traffic conditions but also responds to queries such as nearby

restaurants or gas stations; Waze is similar to Google Map but ac-

tively collects extra information (e.g., accidents, road construction,

and police) from users and shares them to other users.

All of these LBS applications highly rely on the personal loca-

tions collected from millions of users. Such locations should be

protected, e.g., per the General Data Protection Regulation (GDPR)

since visited places can be sensitive (e.g., hospital) or used to re-

identify users from the data (e.g., a sequence of them can be unique).

To mitigate such risks, location anonymization models [8] were

first proposed to achieve 𝑘-anonymity via location generalization.

However, 𝑘-anonymity can only provide a weak privacy guarantee

(e.g., vulnerable to the background knowledge attacks [46]). As a

rigorous privacy model against arbitrary prior knowledge known

to the adversaries, differential privacy (DP) has been extensively

studied to address location privacy risks (e.g., [27]). It ensures that

adding or removing any user’s location or trajectory still generates

indistinguishable results. For instance, AdaTrace [27], a differen-

tially private location trace synthesizer was proposed to ensure

provable privacy, deterministic attack resilience, and strong utility.

However, in the DP scenario setting [36, 50, 68], it requires an au-

thorized data center to collect user’s location. Unfortunately, in the

2011 Microsoft survey, 87% of participants reported that they care

about who accesses their location information; over 78% workers

of Amazon interviewed in 2014 still do not trust these LBS appli-

cations on collecting their locations and believed apps accessing

to their locations can pose significant privacy threats [11]. Thus,

it is highly desirable to explore private location collection by an

untrusted server.

Recently, local differential privacy (LDP) techniques [6, 15, 24,

62, 69] have been successfully deployed in industry (e.g., Google

[24], Apple [1], and Microsoft [17]) to privately aggregate locally

perturbed data. It provides stronger privacy against attackers with

arbitrary background knowledge (not only the downstream analysts

but also the data aggregator can be untrusted). To date, existing LDP
schemes such as RAPPOR and generalized randomized response
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have been extended to privately aggregate different types of data,

e.g., set-valued data [17], numerical data [43], video [69], and graphs

[57]. However, existing LDP schemes are not very effective on

private location data collection and analysis due to either limited

utility or relaxed privacy protection. To our best knowledge, only

[40, 74] applied existing LDP schemes to locations but the utility

is still poor. Moreover, PLDP [12] relaxed LDP to personalized

LDP (not every user can be protected with 𝜖-LDP) in the location

collection for spatial density estimation.

Furthermore, some other privacy-enhancing techniques [4, 12]

privately collect locations for LBS that provides services to in-

dividual users (e.g., GPS navigation [75], and nearest point-of-

interest (POI) search [42]) without a trusted server. For instance,
geo-indistinguishability [4] adds Laplace noise to the user’s loca-

tion for ensuring privacy in LBS. However, it cannot strictly satisfy

LDP (the locations are indistinguishable only within a radius), and

the Laplace mechanism has been shown to be worse than random-

ized response for local perturbation [67].

To address such limitations, we propose the first strict LDP frame-

work (namely, “L-SRR”) to support a variety of LBS applications.

First, we design a novel LDP mechanism “staircase randomized
response (SRR)” and revise the empirical estimation to privately ag-

gregate locations with significantly improved utility and strictly sat-

isfied 𝜖-LDP. Second, different from all existing works [4, 12, 40, 74],

we design additional components (e.g., private matching [42], and

private information retrieval [25]) into L-SRR to ensure 𝜖-LDP for

a variety of LBS applications such as 𝑘 nearest neighbors search

[72], origin-destination analysis [7], and traffic-aware GPS naviga-

tion [75], which may collect user trajectories or perform individual

services with the aggregated locations/trajectories.

The utility of L-SRR is significantly enhanced by the proposed

new SRR mechanism and estimation method. Specifically, SRR
perturbs input locations with staircase probabilities for different
possible output locations. The probability of perturbing any input

𝑥 in the domain D to each possible location 𝑦 ∈ D is optimally

pre-computed. Then, users can locally perturb their locations with

the optimal probabilities. Different from relaxed privacy notions

(e.g., PLDP and geo-indistinguishability), every user is still strictly

protected by 𝜖-LDP. At the server end (data aggregator), we extend

an empirical estimation [38] to further improve the utility for the

SRRmechanismwithout extra privacy leakage [22]. Thus, themajor

contributions of this paper are summarized as below:

• To our best knowledge, we design the first LDP mechanism

(SRR) to make the strong privacy notion LDP practical (with

high utility) for many LBS applications.

• In SRR, we propose a novel hierarchical encoding scheme

and relevant algorithms to derive the optimal perturbation

probabilities independent of the input data. We also extend

the empirical estimation method to further improve utility.

• We design and integrate components in L-SRR to realize

SRR in a series of LBS applicationswith high accuracy, which

may collect locations (e.g., frequency estimation [55]) or

trajectories (e.g., origin-destination analysis [7], and traffic-

aware GPS navigation [75]).

• Besides theoretical studies on the privacy and utility, we

conduct extensive experiments on four real LBS datasets,

and benchmark with other LDP schemes, e.g., Generalized

Randomized Response (GRR)[62], Local Hash (OLH-H)[62],
PLDP (based on Unary Encoding)[12], and Hadamard Re-

sponse (HR) [38].L-SRR greatly outperforms them in almost

all the scenarios.

The remainder of this paper is organized as follows. Section 2

introduces some preliminaries. Section 3 illustrates the SRR mech-

anism, and Section 4 extends SRR to collect trajectories. Section 5

gives related discussions. Section 6 shows the experimental results.

Section 7 and 8 discuss the literature and conclude the paper.

2 PRELIMINARIES
2.1 LBS Applications
We first categorize two different types of LBS applications

1
:

Location-Input LBS: The locations from users are collected by

the LBS Apps, and the untrusted server privately analyzes the

aggregated data, e.g., identifying the top crowded areas [59], and

spatial density estimation [12]. In some LBS applications, the clients

may query the analysis results from the server (e.g., location-based

advertising [16], and 𝑘 nearest point of interests (POIs) for each

user [72]).

Trajectory-Input LBS: LBS App collects multiple sequential loca-

tions (trajectory) from each user [44], and the untrusted server pri-

vately analyzes the aggregated data, e.g., aggregating users’ origin-

destination (OD) pairs to learn the traffic flow [7, 60]. Similarly,

users may query the analysis results computed by the server, e.g.,

users query the real-time traffic for the GPS navigation [60].

2.2 Privacy Model
Users in L-SRR will locally randomize their location(s) [9] with al-

gorithmA and send the noisy results to the untrusted server. After

local perturbation, all the input locations can be indistinguishable

[24]. The privacy notion is formally defined as below:

Definition 2.1 (𝜖-LDP). A randomization algorithm A satisfies

𝜖-Local Differential Privacy, if and only if for any pair of input loca-

tions 𝑥, 𝑥 ′ ∈ D, and for any perturbed output𝑦 ∈ 𝑟𝑎𝑛𝑔𝑒 (A) sent to
the untrusted server, we have: 𝑃𝑟 [A(𝑥) = 𝑦] ≤ 𝑒𝜖 ·𝑃𝑟 [A(𝑥 ′) = 𝑦].

After each user locally perturbs its data, LDP can be ensured

for all the input locations [15, 24, 62], where the privacy bound 𝜖

reflects the degree of indistinguishability. The untrusted server will

aggregate and analyze the noisy data with estimation methods.

2.3 L-SRR Framework
As shown in Figure 1, we design three major components in L-SRR:
perturbation (by client), analysis (by server), and private retrieval

(by both client and server only when the user needs to privately

query the analysis results, e.g., traffic-aware GPS navigation):

(1) Perturbation (client): Each user’s location data (location

or trajectory) is locally perturbed by the client with 𝜖-LDP.

1
The discrete location domain is considered in these applications.
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Figure 1: The L-SRR framework

SRR optimizes the utility after hierarchically encoding the

location domainD. Encoding and optimal perturbation prob-

abilities are pre-computed by the server (only based on 𝜖

and D) to ensure 𝜖-LDP. See details in Section 3.2.

(2) Analysis (server): Before the perturbation, the server shares
the pre-computed perturbation probabilities with all the

clients. After receiving the perturbed user locations, the

server estimates the location distribution with a revised em-

pirical estimationmethod. Then, the server loads such results

into specific LBS (along with the required components) to

privately derive the analysis result. See details in Section 3.

(3) Private Retrieval (only for LBS with client queries): It
is an optional component of L-SRR. If requested in specific

LBS (with client queries), L-SRR first provides the server-

side LBS analysis (e.g., estimating the overall traffic density)

with LDP guarantees. At the client end, each user privately

queries his/her result (e.g., nearby traffic) from the analysis

results at the server side. This can be achieved with a private

information retrieval (PIR) protocol [5]. With the PIR for

client queries, server does not knowwhich result is delivered

to which user, and each user does not know other users’

results either.
2

User Requirements. L-SRR can be deployed as a privacy preserv-

ing API in each LBS App. Users only need to periodically update

the privacy bound 𝜖 with the server. In each LBS, users only need

to locally perturb their location(s) with the pre-computed pertur-

bation probabilities, and send the perturbed result to the server.

The integrated PIR [25] also requires very minor computation and

communication overheads without affecting the LDP guarantee

(see the discussion in Section 5).

LDP Protection. Similar to existing LDP models [24, 62], L-SRR
ensures strong privacy against inferences on users’ local data based

on arbitrary background knowledge, which is orthogonal to mitigat-

ing other types of risks (e.g., encryption [41] and defenses against

side-channel attacks [14]). Thus, L-SRR can be integrated with

them to further improve security and privacy if necessary.

2
If we directly design a cryptographic protocol for each LBS, it involves location

data encryption by the client, and the server should extend each LBS algorithm over

encrypted data to a cryptographic protocol, which would result in extremely high

computation and communication overheads. Compared to that, PIR establishes a

secure channel for privately retrieving the results, which can be independent of the

LBS algorithms and extensible to all the analyses on noisy data by the server.

3 L-SRR FOR LOCATION-INPUT LBS
In this section, we design the SRR mechanism to privately collect a

location from each user for analysis (standard LDP setting [12, 62]).

3.1 Staircase Randomized Response
We first review a family of LDP mechanisms. Randomized Response

(RR) based schemes, such as generalized randomized response (GRR)
[64] and unary encoding (UE) [62], satisfy 𝜖-LDP. For instance, in
GRR, given the domain size 𝑑 = |D|, privacy bound 𝜖 , and input

𝑥 ∈ D, the true value has a higher probability to be sampled (output

𝑦). The following perturbation probabilities 𝑞(𝑦 |𝑥) ensure 𝜖-LDP.

GRR : 𝑞(𝑦 |𝑥) =
{

𝑒𝜖

𝑑+𝑒𝜖−1 , if 𝑦 = 𝑥
1

𝑑+𝑒𝜖−1 , otherwise
(1)

Also, Hadamard Response (HR) [38] has a subset domain for

each value 𝑥 and a higher probability for values in the subset to be

sampled. Then, the remaining values in the domain are sampled

with a smaller probability. However, only two different perturbation
probabilities are defined in the existing LDP mechanisms (e.g., GRR
[64], UE [62], and HR [38]), not sufficiently fine-grained to optimize

the utility (since the perturbation probabilities simply treat all the

other output locations in the domain equally).

Thus, we propose a novel Staircase Randomized Response (SRR)
mechanism for locations and LBS. Intuitively, if the probabilities

for locations that are closer to the input location 𝑥 can be higher, it

is more possible for users that the query results of the LBS are the

same. To this end, SRR will first consider the location distances to

the input location 𝑥 . Then, a set of fine-grained probabilities should

be pre-computed for all the possible output locations 𝑦 ∈ D.

When pre-computing these probabilities, there are several issues

in practice. For instance, for each input location 𝑥 , if we compute

the probability 𝑞(𝑦 |𝑥) for each possible output 𝑦 ∈ D, the number

of probabilities is the domain size 𝑑 . Then, ∀𝑥 ∈ D, there are 𝑑

probabilities for each location 𝑥 and 𝑑 × 𝑑 different probabilities

for all the locations in the domain. Thus, there are 𝑑2 unknown

probabilities to be determined, which makes it time-consuming

to derive the optimal probabilities [30] and not extensible if the

domain is updated. Second, general objective function (e.g., the

variance) to optimize the perturbation probabilities is dependent

on the unknown true frequencies. To address this, output locations

can be partitioned into different groups in terms of their distances

to 𝑥 (the probabilities of all the output locations in the same group
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could be identical), and we can derive the perturbation probability

for each group to boost the utility while globally satisfying 𝜖-LDP.

PDF (𝑦)

𝑥 ∈ 𝐷

𝑥 𝑦

(a) GRR mechanism [64]

𝑦

𝑥 ∈ 𝐷

𝑥-𝐺1 𝐺1-𝐺2 𝐺2

… …

PDF (𝑦)

(b) SRR mechanism (for L-SRR)

Figure 2: Probability density function (PDF) for GRR and SRR

The probability density functions (PDFs) of GRR (w.l.o.g.) and

SRR are illustrated in Figure 2. It is worth noting that the Figure 2 is

the 1-D representation of the 2-D discrete locations in the domain.

In GRR, the probability that outputs the true value (the point in

Figure 2(a)) is higher than other values. On the contrary, since SRR
discretizes the perturbation probabilities for all the grouped possible

output locations, the PDF of SRR has a similar shape to the staircase

mechanism in differential privacy [29], which also has a staircase

PDF for different groups to satisfy 𝜖-DP.Motivated by that, we name

our new randomization mechanism as the “Staircase Randomized

Response” (SRR) in local differential privacy.We formally define the

perturbation probabilities from input 𝑥 to all the output locations

as follows.

Given the domain D, for any input 𝑥 ∈ D, all the possible

output locations can be partitioned into𝑚 groups𝐺1 (𝑥), ...,𝐺𝑚 (𝑥)
based on their distances to 𝑥 .3 Notice that, the partitioning𝐺 𝑗 (𝑥) is
dependent on the input location 𝑥 . For each input location 𝑥 , all its

𝑚 location groups and the perturbation probabilities (for perturbing

𝑥 to any output location 𝑦) will be efficiently computed as:

SRR : ∀𝑥 ∈ D, 𝑞(𝑦 |𝑥) =


𝛼1 (𝑥), if 𝑦 ∈ 𝐺1 (𝑥)
.
.
.

.

.

.
.
.
.

𝛼𝑚 (𝑥), if 𝑦 ∈ 𝐺𝑚 (𝑥)

(2)

where 𝛼1 (𝑥), ..., 𝛼𝑚 (𝑥) are the distance-based perturbation prob-

abilities for locations in𝑚 different groups perturbed from 𝑥 ∈ D,

and the gap between the perturbation probabilities in every adja-

cent groups is the same (“Staircase PDF”) in 𝛼1 (𝑥), ..., 𝛼𝑚 (𝑥).
Also, the sum of all the perturbation probabilities for each in-

put location 𝑥 should satisfy:

∑
𝑗∈[1,𝑚]

∑
𝑦∈𝐺 𝑗 (𝑥 ) 𝑞(𝑦 |𝑥) = 1. The

details for computing the probabilities will be given in Section

3.3. SRR generates more accurate locally perturbed locations than

the state-of-the-art LDP mechanisms with only two perturbation

probabilities (e.g., GRR [64] and HR [38]), as validated in Section 6.

3.2 Data Encoding and Domain Partitioning
Hierarchical Location Encoding. To encode the location data,

we use a hierarchical encoding scheme based on the Bing Map Tiles

System [2], which recursively partitions geo-coordinates into 4

blocks, and indexes all the locations to reach the desired resolution

[27]. Then, the locations are encoded into bit strings by hierarchi-

cally concatenating the indices of all the levels for every specific

3
W.l.o.g., the distances from 𝑥 to locations in 𝐺 𝑗 (𝑥 ) are farther if 𝑗 is larger. The

closest group is𝐺1 (𝑥 ) whereas the farthest group is𝐺𝑚 (𝑥 ) .

location. Figure 3 illustrates an example for the encoding. Specifi-

cally, starting from the root node, at each level ℎ, the 4 children of

each node (four sub-blocks) can be encoded by 00, 01, 10, 11 (2-bit),

and thus form 4
ℎ
blocks for indexing locations. Then, we can derive

the encoded bit string by concatenating the bits from the first level

to the leaf node level. For all the locations on the earth, ℎ can be as

large as 23 (46 bits for a location) to index each 4.7m×4.7m region.

As a result, all the locations can be encoded with the same length

of bits if the same precision (ℎ) is applied to all the locations.

0 0 0 1

1 0 1 1

0 0 0 1

1 0 1 1

0 0 0 1

1 0 1 1

0 0

1 0

root

00 01 10 11

0
0

0
1

1
0

1
1

0
0

0
1

1
0

1
1

0
0

0
1

1
0

1
1

0
0

0
1

1
0

1
1

…

0
0

0
1

1
0

1
1

0
0

0
1

1
0

1
1

0
0

0
1

1
0

1
1… …

ℎ = 1

…

ℎ = 2

ℎ = 23

Figure 3: Hierarchical encoding for locations

Example 3.1 (Encoding for “New York”). The coordinates of the
center of “New York” are (40.730610,−73.935242). Given ℎ = 23,

the location is encoded as “e1147b6afff” (hex of the bit string).

Location Groups. With hierarchical encoding for the location

domain D, the distance between any two locations 𝑥, 𝑥 ′ ∈ D can

be directly measured by the longest common prefixes (LCP) of their

encoded bit strings. Then, given a location 𝑥 and any of its output

groups 𝐺 𝑗 (𝑥), 𝑗 ∈ [1,𝑚], we define the LCP of the group.

Definition 3.2 (Group LCP). Given an input location 𝑥 and any

of its groups 𝐺 𝑗 (𝑥), 𝑗 ∈ [1,𝑚], the group LCP (aka. GLCP) is the

shortest LCP between the input location 𝑥 and ∀𝑦 ∈ 𝐺 𝑗 (𝑥). The
length of GLCP for group 𝐺 𝑗 (𝑥) is denoted as 𝛽 𝑗 (𝑥).

Thus, the distance between the input location 𝑥 and each location

group 𝐺 𝑗 (𝑥), 𝑗 ∈ [1,𝑚] can be measured by the length of its GLCP

𝛽 𝑗 (𝑥): the larger, the closer. Then, we can partition all the output

locations into groups using the GLCP lengths. In each group𝐺 𝑗 (𝑥),
all the locations share a prefix with at least 𝛽 𝑗 (𝑥) bits with location

𝑥 (applying such rule for partitioning could reduce the complexity

of partitioning to 𝑂 (𝑑) though not optimal). For the group with a

longer GLCP shared with the input location 𝑥 , higher probabilities

will be assigned to them (for perturbing 𝑥 ).4

Location Partitioning. We next partition the locations into 𝑚

groups for each input 𝑥 ∈ D, and assign the same perturbation

probability to all the locations in the same group. Specifically, for

𝑚 groups, we define a GLCP length vector {𝛽1 (𝑥), . . . , 𝛽𝑚 (𝑥)}. All
the encoded locations in group 𝐺 𝑗 (𝑥), 1 ≤ 𝑗 ≤ 𝑚 share at least
𝛽 𝑗 (𝑥)-bit prefix with 𝑥 . Then, 𝛽1 (𝑥) > 𝛽2 (𝑥) > · · · > 𝛽𝑚 (𝑥) since
𝐺1 (𝑥) is the closest group to the input location 𝑥 .

Figure 4 shows an example for partitioning the location do-

main. Given the input location 𝑥 , all the locations are partitioned

into three groups with the GLCP lengths {𝛽1 (𝑥) = 6, 𝛽2 (𝑥) =

4, 𝛽3 (𝑥) = 2} where 𝑚 = 3. In 𝐺1 (𝑥), 𝐺2 (𝑥) and 𝐺3 (𝑥), all the
locations share at least 6-bit, 4-bit and 2-bit prefix with 𝑥 , respec-

tively. Thus, given any GLCP length vector 𝛽1 (𝑥), . . . , 𝛽𝑚 (𝑥), the𝑚
4
In SRR, every input location 𝑥 will be only perturbed to another location 𝑦 in the

domain D (rather than an arbitrary location on the map).
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Figure 4: Example of location domain partitioning

groups 𝐺1 (𝑥), . . . ,𝐺𝑚 (𝑥) for the input location 𝑥 can be efficiently

generated with complexity 𝑂 (𝑑). Then, denoting the LCP between

input 𝑥 and output 𝑦 as 𝐿𝐶𝑃 (𝑥,𝑦), the optimal {𝛽1 (𝑥), . . . , 𝛽𝑚 (𝑥)}
and the𝑚 groups that maximizes

∑
∀𝑦∈D 𝐿𝐶𝑃 (𝑥,𝑦) can be derived.

More specifically, if𝑚 is not large, we can traverse all the GLCP

lengths {𝛽1 (𝑥), . . . , 𝛽𝑚 (𝑥)} where 𝛽1 (𝑥) > 𝛽2 (𝑥) > · · · > 𝛽𝑚 (𝑥)
to find the optimal result. Otherwise, the server can apply a meta-

heuristic algorithm (e.g., simulated annealing [45]) to derive a near-

optimal {𝛽1 (𝑥), . . . , 𝛽𝑚 (𝑥)} for partitioning. Next, the location

domain D can be efficiently partitioned by the optimal {𝛽1 (𝑥),
. . . , 𝛽𝑚 (𝑥)}. First, locations sharing a 𝛽1 (𝑥)-bit or longer prefix
with 𝑥 will be assigned to 𝐺1 (𝑥); second, the locations sharing a

prefix (length between 𝛽2 (𝑥)-bit and (𝛽1 (𝑥) − 1)-bit) with 𝑥 will

be assigned to 𝐺2 (𝑥); repeat the above until 𝐺𝑚 (𝑥) is formed.

Offline Computation. Since the optimization and partitioning

are solely based on the domainD, they can be executed offline and

periodically updated withD by the server in L-SRR. In general, the
location domain is stored in the server of companies and released as

public knowledge for users (e.g., Google Maps) and these companies

will take about several days to update the domains since these

companies have to verify locations before making the changes

available to the public. Then, for each 𝑥 ∈ D, the perturbation

probabilities for all the𝑚 output location groups 𝛼1 (𝑥), . . . , 𝛼𝑚 (𝑥)
can also be derived offline (see Section 3.3). This is consistent with

other LDP schemes [17, 24, 62].

3.3 Optimal Staircase Perturbation Probabilities
Recall that the possible output locations can be partitioned into𝑚

groups based on their distances to input and the PDF similar to

the staircase mechanism [29] in differential privacy. We define the

perturbation probabilities from input 𝑥 to all the output locations

as follows. Given any two output locations 𝑦 and 𝑦′ in any two

neighboring groups 𝑦 ∈ 𝐺 𝑗 (𝑥) and 𝑦′ ∈ 𝐺 𝑗+1 (𝑥), we have proba-
bility 𝑞(𝑦 |𝑥) = 𝑞(𝑦′ |𝑥) + Δ(𝑥) where the step Δ(𝑥) ∈ [0, 1) is the
constant probability difference for any two neighboring groups of

input 𝑥 . Compared to the staircase mechanism in differential pri-

vacy which aims to the unbounded domain (entire real line or the

set of all integers) and these probabilities are geometric sequence to

maintain 𝜖-DP, for the bounded location domain, the probabilities

in the L-SRR follow a linear sequence. Note that the perturbation

probability from the given input location 𝑥 to output location 𝑦

decreases as 𝑦 moves to further groups (larger 𝑗 ).

Denoting 𝛼𝑚𝑎𝑥 (𝑥) and 𝛼𝑚𝑖𝑛 (𝑥) as the max and min probabili-

ties in 𝛼1 (𝑥), ..., 𝛼𝑚 (𝑥), we have 𝛼𝑚𝑎𝑥 (𝑥) = 𝛼1 (𝑥) and 𝛼𝑚𝑖𝑛 (𝑥) =
𝛼𝑚 (𝑥). In SRR, for all the input locations 𝑥 ∈ D, we specify a

constant 𝑐 ≥ 1 as the ratio
𝛼𝑚𝑎𝑥 (𝑥 )
𝛼𝑚𝑖𝑛 (𝑥 ) . Thus, we have:

Δ(𝑥) = 𝛼𝑚𝑎𝑥 (𝑥) − 𝛼𝑚𝑖𝑛 (𝑥)
𝑚 − 1 =

𝛼𝑚𝑖𝑛 (𝑥) · (𝑐 − 1)
𝑚 − 1 (3)

For each 𝑥 ∈ D, the sum of the perturbation probabilities of all

the output locations is 1. Given the differences of perturbation prob-

abilities for output locations in different groups in Equation 3 and

the number of output locations in each group, all the perturbation

probabilities can be derived, including 𝛼𝑚𝑎𝑥 (𝑥) and 𝛼𝑚𝑖𝑛 (𝑥):
𝛼𝑚𝑖𝑛 (𝑥) =

𝑚 − 1
(𝑚 − 1)𝑑 · 𝑐 − (𝑐 − 1)∑𝑚𝑗=2 [( 𝑗 − 1) · |𝐺 𝑗 (𝑥) |]

𝛼𝑚𝑎𝑥 (𝑥) =𝛼𝑚𝑖𝑛 (𝑥) · 𝑐 (4)

where 𝑑 is the location domain size and |𝐺 𝑗 (𝑥) | is the size of
group 𝐺 𝑗 (𝑥). Notice that, different 𝛼1 (𝑥), . . . , 𝛼𝑚 (𝑥) will be de-

rived for different input location 𝑥 since the group sizes ∀𝑗 ∈
[1,𝑚], |𝐺 𝑗 (𝑥) | might be different for different 𝑥 . Thus, the pri-

vacy upper bound 𝜖 can be computed (for any two input locations

𝑥, 𝑥 ′ ∈ D).

Theorem 3.3. Staircase randomized response (SRR) satisfies 𝜖-
local differential privacy, where

𝜖 = max

𝑥,𝑥 ′∈D
log(𝑐 ·

(𝑚 − 1)𝑑 · 𝑐 − (𝑐 − 1) ∑𝑚−1𝑗=2 [ ( 𝑗 − 1) · |𝐺 𝑗 (𝑥 ) | ]
(𝑚 − 1)𝑑 · 𝑐 − (𝑐 − 1) ∑𝑚−1𝑗=2 [ ( 𝑗 − 1) · |𝐺 𝑗 (𝑥 ′ ) | ]

)

Proof. Please see the proof detail in Appendix B.1. □

For each input location 𝑥 ∈ D, the groups 𝐺1 (𝑥), . . . , 𝐺𝑚 (𝑥)
are constants if𝑚 and D are specified (as discussed in Section 3.2).

Thus, given the value of 𝑐 , we can derive a constant 𝜖 as a strict

privacy upper bound for the LDP guarantee.

Selecting 𝑐 for 𝜖-LDP. Since 𝜖 is positively correlated to 𝑐 , for any

desired 𝜖-LDP, the required 𝑐 can be uniquely calculated using 𝜖 ,D
and𝑚 (see the relationship between 𝜖 and 𝑐 in Figure 5(a)). Then,

all the perturbation probabilities 𝛼1 (𝑥), . . . , 𝛼𝑚 (𝑥) for all the input
locations 𝑥 ∈ D can be derived and made available to the users.

Optimal𝑚withMutual Information. In practice, both the server
and clients do not know the data distribution before collecting them.

Hence, it is critical to learn that the optimal𝑚 is also independent
of input data and ensure good utility for all possible location data

distributions in the SRR mechanism. To this end, we will optimize

𝑚 for location domain partitioning with the mutual information

[49, 65] between the input 𝑥 and output 𝑦, which can measure the

mutual dependence between them. Asmutual information varies for

different distributions, the maximum mutual information can cover

all the cases (since the mutual dependence of any case would not

violate such dependence [43]). Thus, the optimal𝑚 can be derived

by the upper bound of mutual information for all the distributions

[20, 43]. Specifically, the mutual information between 𝑥 and 𝑦 is

expressed by the difference between the differential entropy and

conditional differential entropy of 𝑥 and 𝑦 [43]:

𝐼 (𝑋,𝑌 ) = 𝐻 (𝑋 ) − 𝐻 (𝑋 |𝑌 ) = 𝐻 (𝑌 ) − 𝐻 (𝑌 |𝑋 ) (5)
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where 𝐻 (·) is the entropy function. 𝑋 and 𝑌 are the input and

output random variables representing the input and output, respec-

tively. Since no prior knowledge on the input data, it considers

the distribution of 𝑦 as uniform distribution 𝑈 to maximize the

mutual information (the output 𝑦 is the random sampling result)

[51]. 𝐻 (𝑈 ) is an upper bound for any possible input distribution

[49]. Thus, we have:

𝐼 (𝑋,𝑌 ) ≤ 𝐻 (𝑈 ) − 𝐻 (𝑌 |𝑋 ) (6)

where𝐻 (𝑈 ) = log𝑑 . The conditional differential entropy𝐻 (𝑌 |𝑋 )
can be computed as below:

𝐻 (𝑌 |𝑋 ) = −[
𝑚∑︁
𝑗=1

|𝐺 𝑗 (𝑥 ) | · 𝛼 𝑗 (𝑥 ) · log𝛼 𝑗 (𝑥 ) ]

≥ −𝑑 · 𝛼𝑚𝑖𝑛 (𝑥 ) log𝛼𝑚𝑎𝑥 (𝑥 )

Thus,𝐻 (𝑌 |𝑋 ) is lower bounded by −𝑑 ·𝛼𝑚𝑖𝑛 (𝑥) log𝛼𝑚𝑎𝑥 (𝑥) for
𝛼1 (𝑥), . . . , 𝛼𝑚 (𝑥). Finally, the upper bound of mutual information

can be expressed with the number of groups𝑚:

𝐼 (𝑋,𝑌 ) ≤ log𝑑 − 𝐻 (𝑌 |𝑋 ) ≤ log𝑑 + 𝑑 · 𝛼𝑚𝑖𝑛 (𝑥 ) log𝛼𝑚𝑎𝑥 (𝑥 )

We then explore the optimal𝑚 based on the mutual information

metric. Since the smaller mutual information between two vari-

ables indicates more independence between them, and the mutual

information on𝑚 for LDP is convex (as proven in Appendix A), the

optimal𝑚 can be computed by making the derivation of the upper

bound to 0 which is equal to minimize the mutual information

bound.

Lemma 3.4. The optimal𝑚 to minimize the mutual information

bound is𝑚 =
2· (𝑐 ·𝑑−𝑒1+log𝑐 )
(𝑐−1) ·𝑑 .

Proof. The mutual information bound is log𝑑+𝑑 · 𝑚−1
(𝑚−1) ·𝑐 ·𝑑−𝑅 ·

log
𝑐 (𝑚−1)

(𝑚−1) ·𝑐 ·𝑑−𝑅 where 𝑅 = (∑𝑚𝑗=2{( 𝑗 − 1) · |𝐺 𝑗 |}) · (𝑐 − 1) is a part
of 𝛼𝑚𝑖𝑛 (𝑥) (see Equation 4). We can see that 𝑅 is also determined

by𝑚. If |𝐺1 | ≠ |𝐺2 | ≠ · · · ≠ |𝐺𝑚 |, 𝑅 non-differentiable (discrete).

To solve this, we consider the worst case: assuming group size 𝑑

and 𝑅 is replaced with 𝑅𝑚𝑎𝑥 = (∑𝑚𝑗=2{( 𝑗 − 1) ·𝑑}) · (𝑐 − 1) (relaxed).
The mutual information bound can be derived as below:

[ 𝑚 − 1

(𝑚 − 1) · 𝑐 · 𝑑 − 𝑅𝑚𝑎𝑥
· log 𝑐 (𝑚 − 1)

(𝑚 − 1) · 𝑐 · 𝑑 − 𝑅𝑚𝑎𝑥
]′

= (log 𝑚 − 1

(𝑚 − 1) · 𝑐 · 𝑑 − 𝑅𝑚𝑎𝑥
+ log𝑐 + 1) · (𝑚 − 1) · 𝑅′𝑚𝑎𝑥 − 𝑅𝑚𝑎𝑥

[ (𝑚 − 1) · 𝑐 · 𝑑 − 𝑅𝑚𝑎𝑥 ]2

Due to 𝑅𝑚𝑎𝑥 = (∑𝑚𝑗=2 ( 𝑗 − 1) · 𝑑) · (𝑐 − 1), we have:
𝑅𝑚𝑎𝑥 = (𝑐 − 1) · 𝑑 · 𝑚

2 −𝑚
2

, 𝑅′𝑚𝑎𝑥 = (𝑐 − 1) · 𝑑 · (𝑚 − 1

2

) (7)

Then, we replace the derivative of mutual information with 𝑅𝑚𝑎𝑥
and 𝑅′𝑚𝑎𝑥 . Since (𝑚−1) · (𝑅′𝑚𝑎𝑥 ) < 𝑅𝑚𝑎𝑥 , the second part of the de-
rivative cannot be 0. Thus,𝑚 is optimal when log

𝑚−1
(𝑚−1) ·𝑐 ·𝑑−𝑅𝑚𝑎𝑥 +

log 𝑐 + 1 = 0, and we have𝑚 =
2· (𝑐 ·𝑑−𝑒 log𝑐+1 )
(𝑐−1) ·𝑑 . □

Specifying 𝜖 for LDP. In our setting, there are three parameters

𝜖 , 𝑐 and𝑚. With the given privacy requirement 𝜖 , the server can

calculate the𝑚 and the corresponding 𝑐 with Lemma 3.4 and Theo-

rem 3.3 to make the privacy meet the requirement 𝜖 . Specifically,

we can set a value 𝑐 and get the corresponding𝑚 with Lemma 3.4.

Since the location domain can be partitioned into𝑚 groups and

∀𝑗 ∈ [2,𝑚 − 1], |𝐺 𝑗 (𝑥) | are fixed for all 𝑥 , we can then calculate

the privacy bound by Theorem 3.3 to see if it meets the privacy

requirement 𝜖 . Per Theorem 3.3, the 𝜖 is positively correlated to

𝑐 with the fixed 𝑚 and partition groups. Thus, there should be

many values 𝑐 that make the privacy requirement satisfy 𝜖 . For

example, if the 𝑐 value equals to 5 to meet the privacy require-

ment 𝜖 = 6, the value less than 5 would make 𝜖 smaller which

also meets the privacy requirement. However, to fully utilize the

privacy that can make the utility maximize, it should only take the

maximum of 𝑐 with the fixed domain. Figure 5 shows the numeric

results for 𝑐 =
𝛼𝑚𝑎𝑥 (𝑥 )
𝛼𝑚𝑖𝑛 (𝑥 ) ,∀𝑥 ∈ D and the optimal𝑚 versus a varying

𝜖 ∈ [0.01, 20] (given four different domains in our experimental

datasets). The plots confirm that 𝜖 is positively correlated to 𝑐 (given

any domain D), and 𝑐 is extremely close to 𝑒𝜖 (slightly smaller).

In the experiment, with the given 𝜖 value and the domain D, we

search the maximum value 𝑐 to satisfy the 𝜖-LDP by the binary

search method. In Figure 5(b), the optimal𝑚 is mainly determined

by 𝜖 . The optimal𝑚 (rounded to its floor or ceiling) is a small integer,

e.g., 2-6 for all the four different domains.
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(a) log𝑐 vs 𝜖 (baseline curve 𝜖 = log𝑐)
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(b) Optimal𝑚 vs 𝜖

Figure 5: log 𝑐 and optimal𝑚 vs 𝜖 with various domain size 𝑑 ;
domain size 𝑑 is 374, 566, 1738, and 3202 in datasets Portcabs
[52], Geolife [75], Gowalla [3], and Foursquare [71], respec-
tively

3.4 Perturbation Algorithm
For each location 𝑥 ∈ D, the server partitions𝑚 groups𝐺1 (𝑥), . . . ,
𝐺𝑚 (𝑥) and derives the perturbation probabilities for all the out-

put locations in𝑚 groups 𝛼1 (𝑥), . . . , 𝛼𝑚 (𝑥). After receiving such

information from the server, each client perturbs its location 𝑥 by

sampling the output location 𝑦. See details in Algorithm 1.

3.5 Distribution Estimation
Similar to other LDP mechanisms, the expectation of the aggre-

gated random location counts would be biased [62]. Given samples

from unknown data distribution 𝑝 , estimating the distribution 𝑝 of

𝑝 has been extensively studied [38, 43]. In L-SRR, we extend the

empirical estimation method with two perturbation probabilities

[38] to estimate the location distribution from the perturbed loca-

tions using staircase perturbation probabilities. In our experiment,

we also compare the performance of [38] (named HR) with L-SRR.
In the GRR, the estimation counts of location 𝑥 is only related

to the sampled counts of location 𝑥 . Then, users try to send more

information by the perturbation mechanism to have more accurate

estimation results. Specifically, in the empirical estimation, for each

𝑥 ∈ D, the server creates a candidate location set 𝐶𝑥 for input 𝑥

to estimate the item distribution 𝑝 from the observed noisy distri-

bution 𝑝 . Each set 𝐶𝑥 which contains
𝑑
2
locations is a subset of the
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Input :user location 𝑥 , privacy budget 𝜖 , and domain D
Output :perturbed location 𝑦

1 server pre-computes the optimal𝑚 and 𝛽 𝑗 (𝑥 ), 𝑗 ∈ [1,𝑚]
2 foreach location 𝑥 ∈ D do
3 foreach group 𝑗 ∈ [1,𝑚] do
4 foreach location 𝑧 ∈ D do
5 if 𝑙𝑒𝑛𝑔𝑡ℎ (𝐿𝐶𝑃 (𝑧, 𝑥 ) ) ≥ 𝛽 𝑗 (𝑥 ) then
6 𝐺 𝑗 (𝑥 ) ← 𝑧; D ← D \ 𝑧
7 end
8 end
9 end

10 foreach 𝑗 ∈ [1,𝑚] do
11 compute the perturbation probability 𝛼 𝑗 (𝑥 ) for

locations in𝐺 𝑗 (𝑥 )
12 end
13 end
14 client samples an output location 𝑦 from all the locations in

𝐺1 (𝑥 ), · · · ,𝐺𝑚 (𝑥 ) (per Equation 2) and submit it to the server

Algorithm 1: Staircase Randomized Response

domain
5
. The server will estimate the 𝑝 (𝑥) by the 𝐶𝑥 . In L-SRR,

the server generates a candidate location set 𝐶𝑥 for each 𝑥 with a

Hadamard matrix (a square matrix with either +1 or −1 entries and
mutually orthogonal rows). GivenH1 = 1, for anyH𝐾 , we have:

H𝐾 =

(
H𝐾/2 H𝐾/2
H𝐾/2 −H𝐾/2

)
(8)

The server then applies a recursion algorithm [38] to gener-

ate such Hadamard matrix with size 𝐾 × 𝐾 (denoting it as H𝐾 ∈
{−1, +1}𝐾×𝐾 ) where 𝐾 = 2

⌈log
2
(𝑑+1) ⌉

and 𝑑 is the domain size [38].

Then, each row ofH𝐾 except the 1st row (the 1st row includes only

“1” andH𝐾 includes 𝑑 + 1 rows) can be mapped into a unique loca-

tion in domain D. Specifically, given location 𝑥 ∈ D, its candidate

set will be derived using the (𝑖+1)th row inH𝐾 where 𝑖 is the index

of 𝑥 in D. Then, ∀𝑥 ∈ D, we can generate the candidate set 𝐶𝑥 for

each user’s input 𝑥 as the locations related to the column indices

with a “+1” in the mapping row of matrixH𝐾 [38]. We denote the

candidate set of all the locations in D asH𝐾 ◦ D.

Let 𝑝 (𝐶𝑥 ) be the probability for sampling 𝑦 ∈ 𝐶𝑥 . Then, we can
derive 𝑝 (𝐶𝑥 ) with the output 𝑦 in the corresponding candidate set

in case of inputs 𝑥 and 𝑥 ′ (𝑥 differs from 𝑥 ′ and 𝐶𝑥 also differs

from 𝐶𝑥 ′ ). Thus, we have ∀𝑥 ∈ D, 𝑝 (𝐶𝑥 ) = 𝑝 (𝑥)
∑
𝑦∈𝐶𝑥 𝑞(𝑦 |𝑥) +∑

𝑥 ′
𝑖
≠𝑥 𝑝 (𝑥 ′)·[

∑
𝑦∈𝐶𝑥 \𝐶𝑥 ′ 𝑞(𝑦 |𝑥

′)+∑𝑦∈𝐶𝑥∩𝐶𝑥 ′ 𝑞(𝑦 |𝑥
′)], where 𝑝 (𝑥)

is the distribution of 𝑥 (to be estimated).

All the perturbation probabilities 𝑞(𝑦 |𝑥) are known in Equation

2. Thus, for each 𝑥 ∈ D, there exists one equation as above. Given

𝑑 independent linear equations (due to random coefficients), the 𝑑

variables ∀𝑥 ∈ D, 𝑝 (𝑥) can always be solvable. Specifically, ∀𝑥 ∈
D, 𝑝 (𝐶𝑥 ) are the observed distribution of all the locations from the

aggregated noisy data. Each user sends its perturbed location to

the server, which derives the total frequency of all the locations

in the pre-computed candidate set of location 𝑥 . Then, the above

𝑑 equations can be constructed for estimating the distribution of

all the locations ∀𝑥 ∈ D, 𝑝 (𝑥). We apply the lower-upper (𝐿𝑈 )
decomposition algorithm [10, 54] to solve these independent linear

5
We follow the generation of𝐶𝑥 in [38].

equations. Moreover, if the domain 𝐷 is too large, we can make the

heuristic decision using the sampled counts of 𝑥 ′ in place of the

true count of 𝑥 ′ [31]. Algorithm 2 presents the details.

Input :perturbed locations 𝑦1, ..., 𝑦𝑛

Output :estimated location distribution ∀𝑥 ∈ D, �̃� (𝑥 )
1 server generates the candidate location set H𝐾 ◦ D for all the

locations in D
// I returns 1 if 𝑦 ∈ 𝐶𝑥; otherwise, 0

2 foreach 𝑥 ∈ D do
3 calculate the 𝑝 (𝐶𝑥 ) with 𝑦1, ..., 𝑦𝑛 :

𝑝 (𝐶𝑥 ) :=
∑𝑛
𝑗=1

I{𝑦 𝑗 ∈𝐶𝑥 }
𝑛

4 construct a linear equation for 𝑥 with 𝑝 (𝐶𝑥 ) and
perturbation probabilities

5 end
6 solve linear equations with the 𝐿𝑈 decomposition to derive

∀𝑥 ∈ D, 𝑝 (𝑥 )
7 return the estimated location distribution ∀𝑥 ∈ D, 𝑝 (𝑥 ) = 𝑝 (𝑥 )
Algorithm 2: Location Distribution Estimation

3.6 Private Retrieval for Client Queries
Recall that the client may need to query the estimated location

distribution with its true location, e.g., 𝑘 nearest users [72] (see

Section 6.3), and traffic-aware GPS navigation [60] (see Section

4.2). In L-SRR, users can retrieve the results from the server using

the Private Information Retrieval (PIR) protocol [5, 25, 37] (when

needed), which enables any user to privately retrieve information

from a database server without letting the server know which

record has been retrieved. In the PIR, the database server has an

𝑛-bit string 𝑉 = {𝑣1, ...., 𝑣𝑛}, and the client would like to know 𝑣𝑖 .

The client first sends an encrypted request 𝐸 (𝑖) for the 𝑖-th value

to the server, where 𝐸 (·) denotes encryption function. The server

also responds with an encrypted value 𝑟 (𝑣𝑖 , 𝐸 (𝑖)) (e.g., by quadratic
residuosity). Finally, the client can retrieve the record 𝑣𝑖 privately

based on the server’s encrypted response.

Most of the off-the-shelf PIR algorithms can work as a post-

processing component (e.g., [25] takes only a few seconds in our

experiments). Moreover, the local perturbation and distribution

estimation require only ∼ 0.014 second for the client and a few sec-

onds for the server (see Section 6.5). Thus, the system performance

of L-SRR would be very efficient for real-time LBS deployment.

3.7 Privacy and Utility Analysis
Privacy Analysis. 𝜖-LDP has been proven for the SRRmechanism

in Theorem 3.3. The server cannot distinguish users’ true locations

from the noisy data. Moreover, as post-processing procedures ap-

plied on the results of LDP scheme, the empirical estimation and

PIR (if needed) do not leak any extra information [22].

Error Bounds. Error bounds for the estimation methods in LDP

schemes can be derived to understand the expectation of the ran-

domized noise. Then, we derive the error bounds (based on the

expectation of the 𝐿1 and 𝐿2-distance) for the estimated distribu-

tion of all the locations 𝑝 deviated from the true distribution 𝑝 .

Theorem 3.5. In SRR, E[𝐿1 (𝑝, 𝑝)] ≤ 2𝑑√
𝑛· (2𝛾−𝑑 ·𝜇 ) , where 𝛾 =

min{∑𝑦∈𝐶𝑥 𝑞(𝑦 |𝑥), 𝑥 ∈ D} and 𝜇 = min{𝛼𝑚𝑖𝑛 (𝑥), 𝑥 ∈ D}.
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Figure 6: Extending SRR to collect and aggregate origin-destination pairs with 𝜖-LDP

Theorem 3.6. in SRR, E[𝐿2 (𝑝, 𝑝)] ≤ 2

√
𝑑√

𝑛 (2𝛾−𝑑 ·𝜇 ) , where 𝛾 =

min{∑𝑦∈𝐶𝑥 𝑞(𝑦 |𝑥), 𝑥 ∈ D} and 𝜇 = min{𝛼𝑚𝑖𝑛 (𝑥), 𝑥 ∈ D}.
Both theorems are proven in Appendix B. Both error bounds

decline if increasing the privacy bound 𝜖 or the number of users 𝑛

(thus the error bound would be minor in real-world LBS due to a

large number of users). Notice that, the expected 𝐿1-distance for

the GRR mechanism is upper bounded by
𝑑
𝜖

√︃
2(𝑑−1)
𝑛𝜋 [51], which

can be

√
𝑑 times of the SRR error bound in the worst case.

4 L-SRR FOR TRAJECTORY-INPUT LBS
In this section, we extendSRR to support trajectory-input LBS using

two example applications: (1) collecting the origin and destination

(OD) of users for OD analysis [7], and (2) collecting a sequence of

user locations for traffic-aware GPS navigation [75].

4.1 Origin-Destination Analysis
OD analysis aggregates a pair of origin-destination from each user

to estimate the traffic flow [7]. In this case, the LDP notion (Defini-

tion 2.1) should be extended to protect each user’s OD pair.

Definition 4.1 (𝜖-Local Differential Privacy). A randomization al-

gorithm A satisfies 𝜖-LDP, if for any two different location pairs

(𝑥𝑜 , 𝑥𝑑 ), (𝑥 ′𝑜 , 𝑥 ′𝑑 ) ∈ D×D, and for any output location pair (𝑦𝑜 , 𝑦𝑑 ) ∈
𝑟𝑎𝑛𝑔𝑒 (A) sent to the untrusted server, we have 𝑃𝑟 [A(𝑥𝑜 , 𝑥𝑑 ) =
(𝑦𝑜 , 𝑦𝑑 )] ≤ 𝑒𝜖 · 𝑃𝑟 [A(𝑥 ′𝑜 , 𝑥 ′𝑑 ) = (𝑦𝑜 , 𝑦𝑑 )].

The LDP scheme for OD analysis should preserve the sequential

correlation from the origin to the destination (OD pair). Thus, the

domain has been greatly expanded to 𝑑2 OD pairs in D × D. To

avoid the bad utility resulted from a large domain, we extend the

Lasso regression [58] to a novel private matchingmethod to preserve
the OD sequence.

6
Then, we integrate the private matching into

L-SRR to ensure accurate OD distribution with 𝜖-LDP.

Specifically, users perturb their two locations with privacy bud-

get
𝜖
2
for each. The server receives a large number of noisy samples

of all users from specific distributions for origins and destinations,

respectively. The server may estimate the distribution from the

noisy sample space using the linear regression ®𝑦 = M ∗ ®𝑤 , where
matrix M includes the predictor variables, vector ®𝑦 includes the re-

sponse variables, and vector ®𝑤 includes the regression coefficients.

The predictor variables inM consist of all the combinations of trajec-

tories from each origin to each destination (𝑑2 pairs), which could

be known to the server and client beforehand. Moreover, the re-

sponse variables ®𝑦 can be estimated from the SRR perturbed values.

6
Lasso regression was used to generate the synthetic high-dimensional dataset with

LDP and preserve the correlation across dimensions [58].

Notice that, the frequencies of most combinations (𝑥𝑜 , 𝑥𝑑 ) ∈ D×D
are very small or even equal to zero in LBS. Thus, Lasso regression

[58] can effectively solve such sparse linear regression by encoding

the predictor variables M for all the OD pairs.

As shown in Figure 6, we have two steps in L-SRR: (1) perturb-
ing the origin and destination separately by each client, and (2)

estimating the joint distribution of OD pairs using Lasso regression

by the server. Each client first applies SRR to perturb the origin and

destination with privacy budget
𝜖
2
each. Then, the server estimates

the distribution of origin and destination to generate the vector ®𝑦.
Meanwhile, the server encodes the overall candidate set of OD pairs

M based on the location domain D. Finally, the server fits a Lasso

regression model to the vector ®𝑦 and the candidate matrix M to

learn ®𝑤 . Therefore, the non-zero coefficients in𝑤 will be considered

as the frequencies for the candidate OD pairs.

Privacy Bound. Although the origin and destination are correlated,
each user sends these two perturbed locations sequentially. The

sequential composition of releasing two locations would only result

in the total leakage (𝜖-LDP) even if they are highly correlated [22].

The Lasso regression is performed on the two sets of perturbed

data (one set of origins and another set of destinations) as post-

processing to retain the correlation, which would not consume

privacy budget [22]. Thus, the OD analysis still satisfies 𝜖-LDP.

4.2 Traffic-Aware GPS Navigation
In this App, users may seek the route with shortest time by avoid-

ing congested roads. At that moment, users may update and send

multiple locations to the server in sequence. Meanwhile, each user

will privately retrieve the real-time nearby traffic from the server

to help update the route in case of traffic congestion.

Specifically, the route recommendation algorithm can be de-

ployed in the client to compute the best route with the shortest

traveling time on an offline map (integrated with the real-time

traffic information from the server) [75]. For any route, the total

traveling time 𝑡 can be predicted with the historical dataset.
7
Also,

each user can send the current location 𝑥𝑖 to the server again and

learn the current traffic density. Then, the client may recompute

the best route and update the estimated traveling time. Intuitively,

if the suggested route does not have any traffic, it is unnecessary to

update the user’s location to learn the real-time traffic density (this

would avoid consuming more privacy budget). Thus, we follow this

idea to extend our SRR. In L-SRR, the client will identify these

“location updates” (similar to [48]). Let T denote a trajectory and

𝐴𝑔𝑔(𝑥𝑜 , 𝑥𝑖 ), 𝑥𝑖 ∈ T represent the actual traveling time from the

7
These historical datasets could be obtained from public traces and check-in datasets,

or datasets generated from LBS applications.
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origin 𝑥𝑜 to current location 𝑥𝑖 . In the meanwhile, the GPS can

predict the piece-wise traveling times between the origin 𝑥𝑜 and

any location 𝑥𝑖 ∈ T before the arrival. It is worth noting that the

time is treated as the condition for the update (as above). It can

be extended to update the location with other criterion in specific

applications (e.g., distance, and checkpoints).

Denoting such predicted time as 𝐴𝑔𝑔𝑝 (𝑥𝑜 , 𝑥𝑖 ), 𝑥𝑖 ∈ T, the client
will examine the difference between their actual traveling time

𝐴𝑔𝑔𝑡 (𝑥𝑜 , 𝑥𝑖 ) and the predicted time 𝐴𝑔𝑔𝑝 (𝑥𝑜 , 𝑥𝑖 ) at different lo-
cations 𝑥𝑖 ∈ T. If the client finds that the actual traveling time

𝐴𝑔𝑔𝑡 (𝑥𝑜 , 𝑥𝑖 ) is significantly more than predicted one 𝐴𝑔𝑔𝑝 (𝑥𝑜 , 𝑥𝑖 ),
e.g., delayed time exceeds a threshold:𝐴𝑔𝑔𝑡 (𝑥𝑜 , 𝑥𝑖 )−𝐴𝑔𝑔𝑝 (𝑥𝑜 , 𝑥𝑖 ) >
𝜃 , there is likely a traffic congestion. Then, the client requests a

“location update” to privately upload the perturbed location to the

server, and privately retrieve the current traffic density. Moreover,

the server will periodically estimate the traffic density using all

the perturbed locations collected from the clients in the past time

window (e.g., 5 minutes for each time window). Once a location

update is requested by any client, the server privately delivers the

traffic density to the client via the PIR protocol.

Privacy Bound. Since every perturbed location is individually

aggregated (based on individual locations) rather than as a com-

bination, such data collection can be done for all the locations

separately and simply follows sequential composition [30]. Thus,

SRR for such trajectory-input LBS satisfies 𝜆𝜖-LDP where 𝜆 is the

number of requested location updates from the origin to the desti-

nation. We have empirically evaluated that 𝜆 is small in practice

(e.g., 2 or 3). Finally, PIR may result in side-channel leakage (e.g.,

who requested the location update may be in the congested areas).

If necessary, this can be simply mitigated by an anonymizer (e.g.,

shuffler [23]), which also further amplifies the LDP protection [23].

5 DISCUSSION
Relaxed LDP. Some recent works [4, 30, 31] relaxed the LDP by

considering the input variants. For instance, ID-LDP [30] relaxes

the LDPwith different 𝜖 for different inputs; geo-indistinguishability

(GI) makes every pair of locations indistinguishable, but the “level"

of indistinguishability depends on their distance (locations that

are far apart are more distinguishable than locations that are close

together); CLDP [31] provides distance discriminative privacy, and

relaxes the protection for different pairs of inputs. Different from

L-SRR, all of them cannot strictly satisfy 𝜖-LDP. To validate their

limitations on rigorous LDP guarantee, we present some numeric

analysis with the same setting (by converting them to 𝜖-LDP).PLDP
[12] is experimentally compared in Section 6 since it focuses on LBS.

First, we generate a synthetic dataset including items with uni-

formly distributed frequencies (the distance between inputs can also

be directlymeasured). ForID-LDP, we randomly assign the privacy

bound from {0.5𝜖, 0.8𝜖, 𝜖} to each distinct item. Since {0.5𝜖, 0.8𝜖, 𝜖}-
ID-LDP satisfies min{{𝜖}, 2 × {0.5𝜖}}-LDP, it can guarantee 𝜖-LDP

for all the items. For GI, we sample the output 𝑦 with the Laplace-

based PDF centered at input 𝑥 . For CLDP, we adopt the conversion
between 𝜖 and 𝛼 [31]. Table 1 shows the 𝐿1-distance of the outputs

on different 𝜖 . The utility of L-SRR significantly outperforms all

the relaxed LDP with the same LDP guarantees.

Table 1: Average 𝐿1-distance
Privacy Bound 𝜖 0.5 1 2 3 4

ID-LDP 2.14 1.97 1.64 1.45 1.18

GI 2.21 1.84 1.75 1.43 1.21

CLDP 0.93 0.90 0.84 0.72 0.70

L-SRR 0.65 0.62 0.51 0.44 0.36

Generalization. L-SRR can be potentially extended to other data

types if the distances between values/items can be measured (e.g.,

numerical data). In such contexts, the data items can also be parti-

tioned and staircase perturbation probabilities can be derived and

allocated to values/items in different groups. We will evaluate its

performance in other domains and benchmark with the correspond-

ing LDP schemes (e.g., Piecewise [66]) in the future.

Encoding and Precision. The precision of the encoded locations

can be tuned by the level of the bit string hierarchy. Although larger

ℎ more accurately encodes locations, the domain size will grow

and thus the perturbation probability (for the true location) may

decline for the same privacy. Thus, larger ℎ does not necessarily

make the staircase perturbation scheme more accurate (thus we use

the standard ℎ = 23 as Bing Map). In the experiment, every location

can only be possibly flipped to other locations in the domain not

every pixel on the map. There are two benefits for such encoding

and design: (1) locations will not be perturbed to an unrealistic

location (e.g., in the ocean), and (2) it is more efficient to compute

the perturbation probabilities offline (due to reduced domain size).

Larger and Worldwide Domain In this paper, we evaluated our

scheme within each city (four datasets) by following the same

settings as other LBS since each experimental dataset is collected

within a city. If all the locations on the planet are considered, the

domain size would be much larger and the utility might be degraded

since the error bound is related to the domain size 𝑑 . To see the

utility for larger domain, we are working on a set of experiments

by comparing the LDP schemes on 1 city, 2 cities, and more merged

cities (merging the domain/data). See the details in Appendix C.4.

System Deployment. L-SRR can be deployed as an application

or integrated with the existing LBS applications in the server and

clients (e.g., mobile devices). Given the privacy bound 𝜖 and a loca-

tion domainD, the server will pre-compute the required 𝑐 , the opti-

mal𝑚, the GLCP for group partitioning ∀𝑥 ∈ D, 𝛽1 (𝑥), . . . , 𝛽𝑚 (𝑥),
and the perturbation probabilities ∀𝑥 ∈ D, 𝛼1 (𝑥), . . . , 𝛼𝑚 (𝑥) for
SRR, and then share them to all the clients. In L-SRR, the loca-
tion domain is updated periodically by the server rather than per

users’ requests. It would not cause any privacy leakage, and it is

very efficient to update the domain. If a user is at a location not in

the domain before the update, the client will approximate it to the

nearest location in the domain. Each client only needs to perturb

their locations based on the stored𝑚𝑑 perturbation probabilities

𝑞(𝑦 |𝑥), and then directly send the output to the server. Even if the

client may privately retrieve the analysis result related to his/her

location from the server, the PIR protocol can be efficiently exe-

cuted without many overheads. Thus, the clients do not need to

be equipped with strong computing capabilities (mobile devices

suffice). Each client should download an offline map if required in

certain LBS applications, e.g., traffic-aware GPS navigation.
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Figure 7: Location frequencies in experimental datasets

Provable Privacy for PIR and LDP. The PIR protocol is applied

as the post-processing to the query results that guarantees 𝜖-LDP.

The index (w.r.t. the domain) can be public knowledge and shared to

users. The PIR protocol does not cause any additional information

leakage since the query results are retrieved based on the encrypted

location by employing the provably secure cryptographic technique.

From the viewpoint of the server, the PIR request might be origi-

nated from any user. Therefore, the probability to identify every

user as the querying user is exactly
1

𝑛 (for all the users). Thus, it

does not cause additional leakage from such random guess either

(after the private data collection with 𝜖-LDP).

Complex Applications. The staircase randomized response can

generate more accurate location distribution than existing LDP

mechanisms. As a key building block of LBS applications, such

high accurate location frequency/distribution estimation by the

proposed SRR mechanism could universally support different LBS

applications, including complex LBS such as traffic-aware GPS nav-

igation. In our experiments, we simulate the route recommendation

by the GPS, which shows better performance of SRR (see the details

in Appendix C). In practice, as the LBS application becomes more

complicated (e.g., more data collection), SRR would outperform the

state-of-the-art LDP schemes more.

6 EXPERIMENTS
6.1 Experimental Setting
Experimental Datasets. We conduct our experiments on four

real-world location datasets.

• Gowalla Dataset [3] collects 6, 442, 890 check-ins records of
196, 591 users in Austin, USA via the social network app

Gowalla between 02/2009 and 10/2010.

• Geolife Dataset [75] collects 17,621 GPS trajectories of 182
users in Beijing between 04/2007 and 08/2012.

• Portocabs Dataset [52] collects the GPS trajectories of 441

taxis in Porto between 07/2013 and 06/2014.

• Foursquare Dataset [71] collects 90, 048, 627 check-in loca-

tions of 2, 733, 324 users in New York City, USA.

Since each of the four datasets is collected from locations within

a city, we focus on a large geographical region covering a 40×30km2

area for each dataset. Only the reported locations in this area are

considered as the domain. Since the encoded bit strings for all the lo-

cations in each dataset share a 20-bit common prefix, the last 26 bits

(out of 46 bits for ℎ = 23) could sufficiently index all the locations

with high accuracy for all the 4.7m×4.7m regions (removing the

common prefixes does not affect the accuracy due to fixed domain

size and groups). All the experiments were performed on the NSF

Chameleon Cluster with Intel(R) Xeon(R)Gold 6126 2.60GHz CPUs

and 192G RAM [39]. Docker is used to start containers to emulate

the server/clients with system and network setup.

Dataset Characteristics. Table 2 presents the number of locations

and users in four datasets. The total user number can vary from

30, 000 to 1M. As we know, infrequent locations in the LDP can

cause more utility loss than frequent locations [62]. So, we use four

dataset that have different densities of users. Figure 7 presents the

original frequencies of all the locations in four datasets.

Table 2: Characteristics of datasets (after pre-processing)

Dataset Location # User #
Gowalla 1,738 1,120,147

Geolife 566 104,488

Portcabs 374 34,438

Foursquare 3,202 701,528

6.2 Distribution Estimation (Location-Input)
We first evaluate the utility of L-SRR for the distribution estima-

tion while benchmarking with the state-of-the-art LDP schemes,

including Generalized Randomized Response [64] (GRR), Optimal

Local Hash with hierarchy structure [63] (OLH-H), the Location
Data Aggregation [12] (PLDP), and the Hadamard Response (HR)
[38]. We follow the original perturbation and estimation method in

each benchmark. Here, we choose the OLH mechanism since it has

better utility than unary encoding (UE), and choose the existing

location LDP framework PLDP instead of existing location frame-

work in [40, 74] since PLDP is an optimized framework that boosts

the utility. For fair comparisons, in OLH-H, we randomly sample a

hierarchical level for each location. Then, we adapt the constrained

inference [33] to adjust the frequencies of parent and leaf nodes for

consistency. In PLDP, we assign the same protection region level

for all the users as other LDP schemes to satisfy the strict 𝜖-LDP.

The server derives the spatial density for many LBS applications,

e.g., urban traffic density [55], and crowd density for events [59].

In most existing LDP settings, the 𝜖 is in the range between 0.5

to 10 for privacy protection. Too large 𝜖 value can’t protect user’s

location well. Similar to that, we set 𝜖 between 1 and 8 with a step

of 0.5 (covering both strong and weak privacy regime).

Figure 8 shows the average 𝐿1-distance and KL-divergence be-

tween the true and estimated distributions of all the locations. Both

𝐿1-distance and KL-divergence decrease as 𝜖 increases. Especially

for the GRR, the error dramatically decreases (e.g., Figure 8(e)) since
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Figure 8: Average 𝐿1-distance and KL-divergence for the distribution estimation on four datasets using different LDP schemes
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Figure 9: MSE of all the locations’ 𝑘-NN lists on four datasets using different LDP schemes (𝑘 = 25)

the probability grows exponentially. However, L-SRR still greatly

outperforms other LDP schemes on all the four datasets.

6.3 Case Study I: 𝑘-NN Query (Location-Input)
We first evaluate the performance of SRR in specific applications

on recommendations based on the location distribution. 𝑘-nearest

neighbors (𝑘-NNs) is a typical application in which queries can be

made for the nearest point-of-interests or users. We next show the

results for querying the 𝑘-NN users [72], which can be extended

from the distribution estimation. The 𝑘-NN lists for any user (with

a location) are the other 𝑘 closest users, measured by the MSE of

their coordinates. Then, given the estimated location distribution,

the server can directly derive each location’s list of 𝑘-NNs.

𝑘-NN Lists Computed by Server. Figure 9 shows the normalized

MSE between the true and estimated coordinates of all the users’

𝑘-NN lists. The normalized MSE also decreases while 𝜖 increases. In

Figure 9(a), 9(b), 9(c), and 9(d), L-SRR outperforms GRR, OLH-H,
PLDP, and HR, which is consistent with the previous results.

We also present the precision and recall of all the users’ estimated

𝑘-NN lists in Table 3. Again, L-SRR can produce more accurate

𝑘-NN lists than all the other LDP schemes. Note that 𝜖 might be

relatively large for very high accuracy (e.g., 𝜖 = 5 similar to the

privacy setting by Apple [1]). If involvingmore users in the practical

LBS App, 𝜖 can be much smaller for such very high accuracy.

6.4 Case Study II: Trajectory-Input LBS
We next evaluate the performance of L-SRR on collecting trajec-

tories for two example LBS applications: (1) origin and destination

(OD) analysis which estimates the OD pairs frequencies with the

Lasso regression, and (2) traffic-aware GPS navigation.

ODAnalysis. The true number of distinct OD pairs in four datasets

are 2, 315, 876, 1, 034, and 5, 634, respectively. We apply the same

Lasso regression algorithm to all the LDP schemes. Figure 10 presents

the average 𝐿1-distance between the true and estimated OD pair

distribution. As 𝜖 increases, 𝐿1-distance decreases. L-SRR again

shows the smallest 𝐿1-distance of L-SRR in all the experiments.

Moreover, we also observe that the 𝐿1-distance is smaller than LBS

with single-location input (see Figure 8).

Traffic-Aware GPS Navigation. To test the performance of the

traffic-aware GPS navigation, we make the simulation the experi-

ment of recommendation for the fastest route. We can also draw
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Table 3: Precision and recall for the derived 𝑘-NNs of all the users (𝑘=25)

Dataset 𝜖
GRR OLH-H PLDP HR L-SRR

Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall

1 31.9% 47.6% 27.1% 35.6% 38.1% 46.4% 53.2% 63.1% 60.7% 69.4%
3 55.5% 54.1% 30.6% 38.9% 50.1% 56.9% 66.8% 74.7% 68.7% 77.4%

Gowalla 5 63.5% 66.2% 51.0% 57.2% 67.6% 74.3% 68.3% 75.8% 73.6% 78.1%
7 78.4% 81.2% 68.8% 73.3% 73.9% 79.5% 75.4% 80.9% 80.1% 81.9%
9 86.1% 87.2% 69.2% 74.4% 80.3% 85.3% 82.1% 84.1% 87.7% 89.3%
1 17.8% 26.4% 30.1% 34.2% 33.4% 34.2% 30.8% 35.3% 35.2% 39.9%
3 35.0% 43.6% 42.4% 49.1% 48.7% 54.5% 50.4% 53.1% 51.6% 58.7%

Geolife 5 53.4% 60.3% 60.5% 65.9% 69.9% 74.9% 67.1% 68.8% 78.3% 83.3%
7 78.6% 82.9% 73.1% 76.5% 77.0% 80.7% 76.4% 78.1% 85.9% 88.9%
9 91.4% 93.0% 89.8% 90.8% 90.2% 93.8% 90.8% 92.2% 92.7% 94.2%
1 41.9% 50.7% 30.4% 40.4% 48.8% 58.4% 51.2% 58.4% 56.2% 64.1%
3 63.8% 72.6% 43.6% 50.6% 55.6% 63.3% 57.7% 63.1% 68.3% 75.8%

Portocabs 5 70.5% 78.2% 61.9% 66.9% 70.6% 76.1% 59.7% 65.0% 77.4% 83.8%
7 87.8% 93.3% 66.0% 69.4% 76.2% 81.3% 84.9% 88.2% 92.7% 98.1%
9 93.4% 98.7% 86.5% 89.5% 86.7% 89.2% 91.6% 93.3% 95.9% 98.9%
1 32.2% 40.9% 42.2% 52.1% 46.6% 56.1% 52.2% 60.7% 55.7% 65.3%
3 58.8% 65.2% 50.1% 57.4% 50.1% 58.0% 59.1% 67.3% 67.1% 75.3%

Foursquare 5 80.7% 84.6% 64.6% 68.6% 68.1% 75.7% 80.6% 86.9% 83.9% 87.2%
7 87.1% 89.7% 65.4% 69.1% 68.7% 76.3% 85.4% 88.9% 87.2% 91.3%
9 88.1% 92.3% 76.1% 77.4% 82.6% 86.9% 86.1% 89.1% 91.3% 94.6%
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Figure 10: Average 𝐿1-distance for the OD pair frequency on four datasets using different LDP schemes
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Figure 11: Average 𝐿1-distance for frequency estimation using different combinations of perturbation and estimation methods

the conclusion that L-SRR outperforms other LDP schemes (see

the detailed results and discussions in Appendix C).

6.5 Ablation Study and Runtime
Ablation Study. We compare the results with different combi-

nations of perturbation mechanisms (GRR, HR and SRR) and esti-

mation methods. Since the standard estimation method cannot be

applied to SRR (more than two perturbation probabilities), we apply

the maximum likelihood estimation (MLE) instead. Moreover, the

GRR with empirical estimation (EM) is a special case of Hadamard

response (HR): |𝐶𝑥 | = 1. Figure 11 shows that SRR and the revised

EM (L-SRR) perform the best. Even with the MLE, SRR is better

than GRR in most cases. Also, the revised EM can further boost the

utility of SRR (compared to SRR and MLE).

Runtime. Since users only need to perturb their locations, the user-
side runtime is negligible. It takes only 0.014 second for each user
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Figure 12: Runtime for the server (vs. the number of users)

on average in the experiments, and thus we only report the server-

side runtime in Figure 12. We test 10% to 100% of each dataset with

a step of 10%. Similar to GRR, OLH-H, PLDP and HR, the runtime

of L-SRR only slightly increases as the number of users reaches

∼1M (e.g., 9 seconds for Gowalla dataset), which is acceptable.
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Figure 13: Offline runtime
Notice that, group partitioning dominates the offline costs𝑂 (𝑑2)

for L-SRR. Thus, we also present such offline partitioning time

w.r.t. the number of users and the number of locations, as shown in

Figure 13. We uniformly extract 25%, 50%, 75%, and 100% of users

and locations from each dataset as the test datasets. As shown in

Figure 13(a), the offline time (including the the preprocessing time

to get the sub-dataset) increases as the number of users increases

due to the growth of distinct locations. Since the group partitioning

that is related to the domain size dominates the offline costs. In

Figure 13(b), we also see that the offline runtime (excluding the

preprocessing time) grows on the number of locations, and the

offline time is around 30 seconds at most. However, the offline

execution is needed when the location domain is updated. Recall

that the domain is only updated periodically (e.g., every day). Thus,

such offline costs are efficient for real-world deployments.

7 RELATEDWORK
Many privacy preserving location-based services techniques have

been proposed (e.g., [8, 61]). 𝐾-anonymity was first defined to pro-

tect privacy for LBS. Dummy locations [61] and cloaking region

[8] have been utilized for anonymity. However, these methods are

highly vulnerable to background knowledge attacks. Another type

of techniques design cryptographic protocols [56] to securely per-

form LBS computations. However, both computational costs and

communication overheads might be very high. Differenital privacy

is a privacy notion that protects the privacy against arbitrary prior

knowledge known to the adversaries [36]. There are many differen-

tial privacy works to solve optimization problems and find optimal

mechanisms under different scenarios [28, 32, 50].

More recently, rigorous privacy notion differential privacy (DP)

has also been applied to LBS [34, 35, 47, 53, 73]. For instance, a

synthetic data generation method [47] was proposed to publish

statistics about commuting patterns (including locations) with DP

guarantee. Moreover, a quadtree spatial decomposition technique

[35] has been used to ensure DP in a database with location pattern

mining capabilities. However, the DP model may not be suitable to

real LBS applications in case that the users do not trust the server.

The emerging LDP models enable private data collection by un-

trusted server, which provides stronger protection than the central-

ized DP models. It has been extended to privately collect different

types of data (e.g., histogram [9, 24], social graphs [57], itemsets

[62]). Meanwhile, LDP has been successfully deployed in industry

(e.g., Google [24], Apple [1], and Microsoft [17]). Recall that two

works directly apply randomized response and unary encoding to

collect workload-aware indoor positioning data [40] and generate

synthetic locations [74] but result in poor utility. Moreover, several

relaxed LDP notions have been proposed to protect location privacy

[4, 12]. Andrés et al. [4] relaxes the protection for locations within

a radius via geo-indistinguishability. Chen et al. [12] relaxes LDP

to PLDP which allows users to specify personalized privacy bud-

gets for private location collection. However, they cannot ensure

rigorous LDP and are also less accurate than our SRR.

8 CONCLUSION
Severe privacy risks arise in LBS applications due to sensitive lo-

cation collection. To address the deficiency on privately collecting

locations with LDP guarantees and high utility, we propose a novel

LDP mechanism “Staircase Randomized Response” (SRR) and ex-

tend the empirical estimation for SRR to significantly improve the

accuracy of the LDP model for LBS applications. In addition, we

have also extended SRR to privately collect trajectories with 𝜖-LDP.

We have conducted extensive experiments on real datasets to show

that L-SRR drastically outperforms other LDP schemes.
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APPENDIX
A PROOF OF CONVEX PROPERTY W.R.T.𝑚

Proof. With the mutual information bound function 𝐻 , we can

take its second order derivative in𝑚 as follows:

𝜕2𝐻

𝜕𝑚2
=[ 1

𝑐 · 𝑑 − 𝑚 · (𝑐−1) ·𝑑
2

· log 𝑐

𝑐 − 𝑚 · (𝑐−1) ·𝑑
2

]′′

=
(𝑐 − 1)2𝑑2

4(𝑐 · 𝑑 − (𝑐−1)𝑑
2
·𝑚)3

· (2 log 𝑐

𝑐 · 𝑑 − (𝑐−1)𝑑
2
·𝑚
+ 3)

When the first order derivative is equal to zero, we have𝑚 =
2· (𝑐 ·𝑑−𝑒1+log𝑐 )
(𝑐−1) ·𝑑 . It is very straightforward to prove that the second

order derivative is greater than zero since (𝑐𝑑 − (𝑐−1)𝑑
2

𝑚) > 0 and

2 log
𝑐

𝑐𝑑− (𝑐−1)𝑑
2

𝑚
+ 3 > 0. Therefore, it is a convex function, and we

can derive its minimum value by the derivative. □

B PRIVACY AND UTILITY ANALYSIS
B.1 Proof of Theorem 3.3 (Privacy Analysis)

Proof. For any pair of input locations 𝑥 , 𝑥 ′ ∈ D and output 𝑦,

the maximum perturbation probability 𝑞(𝑦 |𝑥) for sampling loca-

tion 𝑦 based on input 𝑥 is 𝛼𝑚𝑎𝑥 (𝑥) when 𝑦 is in the same group

with 𝑥 (the first group 𝐺1 (𝑥)); the minimum perturbation probabil-

ity 𝑞(𝑦 |𝑥 ′) for sampling location 𝑦 based on input 𝑥 ′ is 𝛼𝑚𝑖𝑛 (𝑥 ′)
when 𝑦 in the furthest group for 𝑥 ′ (the last group𝐺𝑚 (𝑥 ′)). Thus,
the SRR mechanism in L-SRR satisfies 𝜖 = max𝑥,𝑥 ′∈D log(𝑐 ·
(𝑚−1)𝑑 ·𝑐−(𝑐−1) ∑𝑚−1𝑗=2 [ ( 𝑗−1) · |𝐺 𝑗 (𝑥 ) | ]
(𝑚−1)𝑑 ·𝑐−(𝑐−1) ∑𝑚−1𝑗=2 [ ( 𝑗−1) · |𝐺 𝑗 (𝑥 ′ ) | ]

)-LDP in all the cases, where 𝜖

is a strict constant privacy bound derived by 𝑐 and domain D. □

B.2 Proof of Theorem 3.6 (𝐿2 Error Bound)
Proof. With the estimation formula, we have 𝑝 (𝐶𝑥 ) = 𝑝 (𝑥) ·∑
𝑦∈𝐶𝑥 𝑞(𝑦 |𝑥)+

∑
𝑥 ′≠𝑥 𝑝 (𝑥 ′)·[

∑
𝑦∈𝐶𝑥 \𝐶𝑥 ′ 𝑞(𝑦 |𝑥

′)+∑𝑦∈𝐶𝑥∩𝐶𝑥 ′ 𝑞(𝑦 |𝑥
′)].

With the property of Hadamard matrix [38], the size of the set dif-

ference between any two location candidate sets is
𝑑
4
, and the size

of intersection between any two candidate sets of locations is also

𝑑
4
. We can integrate these into the equation. Then, we have:

𝑝 (𝐶𝑥 ) ≥ 𝑝 (𝑥 ) · [
∑︁
𝑦∈𝐶𝑥

𝑞 (𝑦 |𝑥 ) ] +
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𝑥 ′≠𝑥

𝑝 (𝑥 ′ ) · 𝑑 · min{𝑞 (𝑦 |𝑥 ′ ) }
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𝑑 ·𝛼𝑚𝑖𝑛 (𝑥 )
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]

Then, we can have the 𝐿2
2
-distance as below:
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where 𝜇 = min{𝛼𝑚𝑖𝑛 (𝑥)}. Since E[𝑝 (𝐶𝑥 )] = E[
I{𝑦 𝑗 ∈𝐶𝑥

𝑛 }]
= 𝑝 (𝐶𝑥 ), we have:
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Moreover, each 𝑦 is independently sampled and 𝑝 (𝐶𝑥 ) = 𝑝 (𝐶𝑥 )
is the mean of 𝑛 independent multinomial distributions.∑︁

𝑥 ∈D
𝑉𝑎𝑟 (�̃� (𝐶𝑥 ) ) ≤

∑︁
𝑥 ∈D
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𝑦∈𝐶𝑥 𝑞 (𝑦 |𝑥 )−

𝑑 ·𝜇
2

) ·
√︃
𝑑
𝑛 . □

B.3 Proof of Theorem 3.5 (𝐿1 Error Bound)
Proof. Since ∀𝑖, 𝑎𝑖 > 0, 𝑛 ·∑𝑛𝑖=1 (𝑎𝑛)2 ≥ [∑𝑛𝑖=1 (𝑎𝑛)]2 holds, we

have 𝑑 · 𝐿2
2
(𝑝, 𝑝) ≥ [𝐿1 (𝑝, 𝑝)]2. Then. we can derive:

(E[𝐿1 (𝑝, 𝑝)])2 ≤
𝑑2

𝑛 · (𝛾 − 𝑑 ·𝜇
2
)2

Thus, E[𝐿1 (𝑝, 𝑝)] ≤ 2𝑑√
𝑛· (2𝛾−𝑑 ·𝜇 ) completes the proof. □
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Figure 14: The total privacy bound of L-SRR for traffic-aware
GPS navigation by collecting trajectories

C ADDITIONAL EXPERIMENTS
C.1 Traffic-Aware GPS Navigation
We simulate many trajectories and predict the time 𝐴𝑔𝑔𝑝 (𝑥1,
𝑥2) between any two locations on the trajectory using the Markov

Chain [70]. Specifically, we generate multiple routes for each OD

pair (at client). For each route, we compute the predicted time 𝑡

based on historical datasets for any two locations. In our experiment,

we use the data collected earlier as the historical data (e.g., Geolife

dataset collected in 2009 as the historical data, and collected in 2010

as the test data). Furthermore, for locations on each route, such LBS

calculates the frequencies of users near the location within a range

(e.g., 4.7m). If the frequency exceeds a threshold (e.g., 50 users), a

3-second delay time will be added [21]. Finally, given the traffic

density, it may update the route to avoid heavy traffic. With L-SRR,
the route recalculation occurs if 𝐴𝑔𝑔𝑡 (𝑥𝑜 , 𝑥𝑖 ) − 𝐴𝑔𝑔𝑝 (𝑥𝑜 , 𝑥𝑖 ) > 𝜃

holds, where 𝑖 ∈ T and 𝜃 is the delay threshold (e.g., 30 seconds).

If yes, the client will submit its perturbed location, and privately

retrieve the traffic density at the current position to recalculate the

fastest route [21].

In the experiments, we first evaluate how the delay time thresh-

old 𝜃 affects the total privacy guarantee. The maximum numbers of

locations on the trajectories for four datasets are 140, 135, 127, and

150, respectively. In Figure 14, we set 𝜃 between 10 seconds and 55

seconds with a step of 5 seconds. As 𝜃 increases, the total privacy

bound 𝜖 decreases with a decreasing number of location updates.

As 𝜃 = 60 (updating the location once delay exceeds 1 minute), the

privacy bound is around 3𝜖 , which is very small for trajectories.

Second, to measure the route deviation, we apply Levenshtein

distance to measure the accuracy between true route and the route

recommended by L-SRR. It measures the difference by calculating

the minimum number of location edits (insertions, deletions, or

substitutions) required to change one route to the other. Figure 15

shows the relative Levenshtein distance over the total size of the

true routes (vs the total privacy bound 𝜖).L-SRR again outperforms

1 2 3 4 5 6 7 8
ε

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

Le
ve

ns
ht

ei
n 

D
is

ta
nc

e

GRR
OLH
PLDP
HR
L-SRR

(a) Gowalla

1 2 3 4 5 6 7 8
ε

0.0

0.2

0.4

0.6

0.8

1.0

Le
ve

ns
ht

ei
n 

D
is

ta
nc

e

GRR
OLH
PLDP
HR
L-SRR

(b) Geolife

1 2 3 4 5 6 7 8
ε

0.0

0.2

0.4

0.6

0.8

1.0

Le
ve

ns
ht

ei
n 

D
is

ta
nc

e

GRR
OLH
PLDP
HR
L-SRR

(c) Portocabs

1 2 3 4 5 6 7 8
ε

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Le
ve

ns
ht

ei
n 

D
is

ta
nc

e

GRR
OLH
PLDP
HR
L-SRR

(d) Foursquare

Figure 15: Relative levenshtein distance of trajectories in the
traffic-aware GPS navigation (𝜃 = 40 seconds)
other LDP schemes. In addition, we also measure the deviation of

the total trip time. Figure 16 shows that the trip time deviation

decreases as the privacy bound 𝜖 increases for all the LDP schemes,

and L-SRR results in the least trip time deviation.
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Figure 16: Average trip time deviation in the traffic-aware
GPS navigation (𝜃 = 40 seconds)

C.2 SRR and Differential Privacy
We discuss the utility of centralized differential privacy. A generic

solution is to add the Laplace noise to the frequency of each loca-

tion (after aggregation). Thus, 𝜖 should be equally allocated for 𝑑

locations. Table 4 presents the 𝐿1-distance for the distribution on

four datasets using Laplace mechanism. The results show that the

𝐿1-distance gets smaller as 𝜖 becomes larger. Compared to the LDP

mechanism, for Gowalla and Foursquare, the distance with SRR
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has smaller distance. For Geolife and Portocabs, the distance with

SRR has similar distance in case of a smaller domain. Note that the

privacy guarantees of LDP and DP are indeed incomparable even

for the same 𝜖 (since the trust model and indistinguishability are

defined in different ways).

Table 4: Average 𝐿1-distance for the location distribution on
four datasets using Laplace mechanism for centralized DP

Dataset 𝜖 = 1 𝜖 = 3 𝜖 = 5 𝜖 = 7

Gowalla 0.18 0.16 0.15 0.13

Geolife 0.29 0.11 0.08 0.04

Portocabs 0.43 0.26 0.15 0.07

Foursquare 13.87 4.69 2.78 1.91

C.3 Utility vs. Smaller 𝜖
To evaluate the performance with smaller 𝜖 , we vary the 𝜖 from

0.5 to 1 with a step of 0.1. Table 5-8 show the average 𝐿1-distance

for the location distribution on the Gowalla, Geolife, Portocabs,

and Foursquare datasets, respectively. Table 9-12 show the average

KL-divergence. It follows the same trend as results when 𝜖 ≥ 1.

Table 5: Average 𝐿1-distance for the location distribution on
the Gowalla dataset (𝜖 ≤ 1)

𝜖 = 0.5 𝜖 = 0.6 𝜖 = 0.7 𝜖 = 0.8 𝜖 = 0.9 𝜖 = 1

GRR 0.154 0.138 0.125 0.113 0.108 0.091

OLH-H 0.129 0.121 0.118 0.109 0.097 0.084

PLDP 0.125 0.119 0.115 0.107 0.094 0.086

HR 0.104 0.096 0.088 0.085 0.083 0.082

L-SRR 0.097 0.086 0.079 0.078 0.075 0.072

Table 6: Average 𝐿1-distance for the location distribution on
the Geolife dataset (𝜖 ≤ 1)

𝜖 = 0.5 𝜖 = 0.6 𝜖 = 0.7 𝜖 = 0.8 𝜖 = 0.9 𝜖 = 1

GRR 1.128 1.005 0.985 0.980 0.945 0.939

OLH-H 0.957 0.938 0.933 0.927 0.925 0.922

PLDP 0.941 0.930 0.916 0.897 0.874 0.852

HR 0.873 0.869 0.857 0.791 0.764 0.755

L-SRR 0.832 0.793 0.782 0.687 0.641 0.612

Table 7: Average 𝐿1-distance for the location distribution on
the Portocabs dataset (𝜖 ≤ 1)

𝜖 = 0.5 𝜖 = 0.6 𝜖 = 0.7 𝜖 = 0.8 𝜖 = 0.9 𝜖 = 1

GRR 2.358 2.216 2.195 2.193 2.185 2.164

OLH-H 1.972 1.961 1.958 1.905 1.878 1.845

PLDP 2.043 2.026 2.015 2.003 1.974 1.941

HR 1.978 1.969 1.885 1.871 1.869 1.861

L-SRR 1.887 1.869 1.797 1.751 1.705 1.635

Table 8: Average 𝐿1-distance for the location distribution on
the Foursquare dataset (𝜖 ≤ 1)

𝜖 = 0.5 𝜖 = 0.6 𝜖 = 0.7 𝜖 = 0.8 𝜖 = 0.9 𝜖 = 1

GRR 0.138 0.126 0.115 0.113 0.094 0.088

OLH-H 0.134 0.127 0.118 0.094 0.087 0.082

PLDP 0.123 0.119 0.105 0.097 0.085 0.079

HR 0.118 0.109 0.097 0.091 0.083 0.073

L-SRR 0.087 0.079 0.072 0.069 0.061 0.055

Table 9: Average KL-divergence for the location distribution
on the Gowalla dataset (𝜖 ≤ 1)

𝜖 = 0.5 𝜖 = 0.6 𝜖 = 0.7 𝜖 = 0.8 𝜖 = 0.9 𝜖 = 1

GRR 2.990 2.924 2.911 2.894 2.881 2.874

OLH-H 2.533 2.491 2.437 2.432 2.401 2.385

PLDP 2.713 2.680 2.649 2.614 2.582 2.413

HR 2.472 2.421 2.394 2.372 2.220 2.171

L-SRR 1.953 1.951 1.871 1.867 1.853 1.753

Table 10: Average KL-divergence for the location distribution
on the Geolife dataset (𝜖 ≤ 1)

𝜖 = 0.5 𝜖 = 0.6 𝜖 = 0.7 𝜖 = 0.8 𝜖 = 0.9 𝜖 = 1

GRR 1.330 1.292 1.285 1.201 1.137 1.069

OLH-H 1.292 1.113 1.082 1.044 0.940 0.939

PLDP 1.114 1.109 1.097 1.078 1.022 0.991

HR 0.973 0.897 0.892 0.815 0.787 0.643

L-SRR 0.895 0.887 0.775 0.713 0.693 0.623

Table 11: Average KL-divergence for the location distribution
on the Portocabs dataset (𝜖 ≤ 1)

𝜖 = 0.5 𝜖 = 0.6 𝜖 = 0.7 𝜖 = 0.8 𝜖 = 0.9 𝜖 = 1

GRR 1.384 1.257 1.154 1.033 0.957 0.905

OLH-H 1.292 1.121 1.087 0.848 0.833 0.749

PLDP 0.943 0.926 0.895 0.871 0.735 0.718

HR 1.070 1.039 0.978 0.841 0.748 0.662

L-SRR 0.899 0.841 0.838 0.775 0.619 0.606

Table 12: Average KL-divergence for the location distribution
on the Foursquare dataset (𝜖 ≤ 1)

𝜖 = 0.5 𝜖 = 0.6 𝜖 = 0.7 𝜖 = 0.8 𝜖 = 0.9 𝜖 = 1

GRR 2.251 2.163 2.155 2.134 2.019 1.952

OLH-H 2.112 2.091 2.084 2.052 1.974 1.946

PLDP 2.154 2.126 2.075 2.034 1.994 1.957

HR 2.020 1.989 1.978 1.952 1.912 1.832

L-SRR 1.917 1.898 1.883 1.871 1.807 1.782

C.4 Utility vs. Multiple Cities in The World
Four real-world LBS datasets in the experiments are collected from

four different cities worldwide: Gowalla (Austin, USA), Geolife (Bei-

jing, China), Portocabs (Porto, Portugal), and Foursquare (New York,

USA). Then, we present a new set of experiments by comparing the

LDP schemes on one dataset (1 city), two merged datasets (2 cities),

three merged datasets (3 cities), and four merged datasets (4 cities)

– merging both the location domain and data:
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• 1 City: Foursquare (New York, USA)

• 2 Cities: Foursquare (New York, USA), Gowalla (Austin, USA)

• 3 Cities: Foursquare (New York, USA), Gowalla (Austin, USA),

Geolife (Beijing, China)

• 4 Cities: Foursquare (New York, USA), Gowalla (Austin, USA),

Geolife (Beijing, China), Portocabs (Porto, Portugal)

Note that merging the datasets enlarges the domain of the lo-

cations as well as diversify the distribution of the locations in the

domain (e.g., the encoded bit strings of the locations in different

cities would share less prefixes since the cities are far away on the

map). Table 13 and 14 show the 𝐿1-distance and KL-divergence for

this group of experiments. As more cities are merged, the errors

(𝐿1-distance and KL-divergence) slightly increase and L-SRR still

works the best in all the cases. Thus, we have the following findings

(along with the experimental results):

(1) If locations are distributed on the worldwide map (e.g., loca-

tions in the US, China and Portugal) but the domain size is

reasonable (e.g., as above), L-SRR still works.

(2) If merging more worldwide cities with a large number of

locations inside each city (e.g., forming the domainwithmost

of the locations in thousands of cities all over the world), we

anticipate that L-SRR still outperforms other LDP schemes

but all the LDP schemes may have a limitation on retaining

good utility while ensuring strong privacy.

Table 13: Average 𝐿1-distance for the location distribution vs.
domain/datasets of multiple cities (𝜖 = 1)

City # 1 2 3 4

GRR 0.088 0.175 0.204 0.224

OLH-H 0.082 0.107 0.138 0.158

PLDP 0.079 0.095 0.092 0.114

HR 0.073 0.094 0.099 0.108

L-SRR 0.055 0.074 0.083 0.090

Table 14: Average KL-divergence for the location distribution
vs. domain/datasets of multiple cities (𝜖 = 1)

City # 1 2 3 4

GRR 1.952 2.087 2.115 2.158

OLH-H 1.946 2.065 2.109 2.128

PLDP 1.957 2.043 2.098 2.123

HR 1.832 1.957 2.034 2.115

L-SRR 1.782 1.893 1.983 2.085
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