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ABSTRACT

The widespread use of personal devices and dedicated recording facilities has

led to the generation of massive amounts of personal information or data. Some of

them are high-dimensional and unstructured data, such as video and location data.

Analyzing these data can provide significant benefits in real-world scenarios, such as

videos for monitoring and location data for traffic analysis. However, while provid-

ing benefits, these complicated data always raise serious privacy concerns since all of

them involve personal information. To address privacy issues, existing privacy pro-

tection methods often fail to provide adequate utility in practical applications due to

the complexity of high-dimensional and unstructured data. For example, most video

sanitization techniques merely obscure the video by detecting and blurring sensitive

regions, such as faces, vehicle plates, locations, and timestamps. Unfortunately, pri-

vacy breaches in blurred videos cannot be effectively contained, especially against

unknown background knowledge. In this thesis, we propose three different differ-

entially private frameworks to preserve the utility of video and location data (both

are high-dimensional and unstructured data) while meeting the privacy requirements,

under different well-known privacy settings. Specifically, to our best knowledge, we

propose the first differentially private video analytics platform (VideoDP) which flex-

ibly supports different video queries or query-based analyze with a rigorous privacy

guarantee. Given the input video, VideoDP randomly generates a utility-driven pri-

vate video in which adding or removing any sensitive visual element (e.g., human, and

object) does not significantly affect the output video. Then, different video analyses

requested by untrusted video analysts can be flexibly performed over the sanitized

video with differential privacy. Secondly, we define a novel privacy notion ϵ-Object

Indistinguishability for all the predefined sensitive objects (e.g., humans, vehicles) in

the video, and then propose a video sanitization technique Verro that randomly

generates utility-driven synthetic videos with indistinguishable objects. Therefore,

xi



all the objects can be well protected in the generated utility-driven synthetic videos

which can be disclosed to any untrusted video recipient. Third, we propose the first

strict local differential privacy (LDP) framework for location-based service (LBS)

(“L-SRR”) to privately collect and analyze user locations or trajectories with ϵ-LDP

guarantees. Specifically, we design a novel LDP mechanism “staircase randomized

response” (SRR) and extend the empirical estimation to further boost the utility for

a diverse set of LBS Apps (e.g., traffic density estimation, k nearest neighbors search,

origin-destination analysis, and traffic-aware GPS navigation). Finally, we conduct

experiments on real videos and location dataset, and the experimental results demon-

strate all frameworks can have good performance.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

The widespread use of personal devices and dedicated recording facilities has

led to the generation of massive amounts of personal information or data. Some of

them are high-dimensional and unstructured data, such as video and loacation data.

Analyzing such complex, unstructured and voluminous data [8] would be extremely

beneficial in real world. For instance, traffic monitoring videos can be analyzed by

traffic authorities, urban planning officials, and researchers [9] for learning urban

traffic and pedestrian behavior. The App Waze not only navigates the routes with

real-time traffic conditions but actively collects extra information (e.g., accidents,

road construction, and police) from users based on their locations and shares them

to other users.

However, privacy is a major concern in real-world applications where per-

sonal data is collected and analyzed for various purposes. The privacy issues arise

when data is not adequately protected, and sensitive information is exposed, lead-

ing to negative consequences for individuals, which highlights the need for robust

privacy protection techniques in real-world applications. Video data is a kind high-

dimensional and unstructured data that stores massive amount of personal informa-

tion. Directly releasing videos to the analysts may result in severe privacy concerns

due to the considerable amount of sensitive information involved in videos, such as

human faces, objects, identities and activities [10]. For instance, traffic monitoring

cameras can capture all the vehicles which may involve the make, model and color

of vehicles, moving speed and trajectories, and even the drivers’ faces. Not every

vehicle owner is willing to share the visual information, the extracted traveling data

(e.g., locations and driving speed) [11]. Another example is video surveillance sys-
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tems that are meant to monitor an area of interest with one or few of the following

goals: law enforcement, personal safety, traffic control and resource planning, and se-

curity of assets [12]. While ensuring safety and deterrence, it also easily compromises

the privacy of innocent individuals. Thus, privacy preserving solutions for videos

have attracted significant interests recently. Location and traffic data is another kind

high-dimensional and unstructured data. Location-based services (LBS) are widely

deployed in mobile devices to provide useful and timely location-based information

to users. All of these LBS Apps highly rely on the personal locations collected from

millions of users. Such locations should be protected, e.g., per the General Data

Protection Regulation (GDPR) since visited places can be sensitive (e.g., hospital) or

used to re-identify users from the data (e.g., a sequence of them can be unique).

The notion of differential privacy was first proposed by Dwork [13] which

provides a rigorous privacy guarantee for statistical databases [14] against arbitrary

background knowledge possessed by adversaries. Differential privacy incorporates a

central aggregator with access to the raw data of users and aims at bounding the risk

enhancement to one’s privacy when she/he contributes her/his data. Such privacy

notion has been extended to sanitize and release data for different applications, such

as classification [15], histograms [16], search logs [17], locations [18], trajectories [19],

and data synthesis [20,21]. Local differential privacy is a privacy notion that extends

from the differential privacy and also protects users’ privacy against any background

knowledge. However, even if an adversary has access to the personal responses of an

individual in the database, that adversary will still be unable to learn too much about

the user’s personal data, which provides stronger privacy protection than differential

privacy. As we know either the differential privacy or local differential privacy has

been widely used to sanitize and release data in many real database (e.g., statistical

databases [13], search logs [22], and graphs [23] [24]), to the best of our knowledge, no

attempt has yet been made to benefit from them in the high-dimensional unstructured
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databases, especially the video dataset and location dataset.

For instance, Fan [25] applied Laplace noise to obfuscate pixels in an image

to ensure DP for protecting specific regions of an image. However, the image quality

has been significantly reduced (protection for each single pixel without composition

may not work as well [26]). AdaTrace [27], a differentially private location trace syn-

thesizer was proposed to ensure provable privacy, deterministic attack resilience, and

strong utility. However, in the DP scenario setting [17], it requires an authorized data

center to collect user’s location. Unfortunately, in the 2011 Microsoft survey, 87% of

participants reported that they care about who accesses their location information;

over 78% workers of Amazon interviewed in 2014 still do not trust these LBS applica-

tions on collecting their locations and believed apps accessing to their locations can

pose significant privacy threats [28]. Thus, it is highly desirable to explore private

location collection by an untrusted server with differential privacy techniques.

1.2 Objective and Contributions

During my research, I have combined the development of practical differentially

private framework with rigorous theoretical analysis, and incorporated techniques

from various disciplines such as computer vision, privacy, and statistical analysis.

Specifically, we proposed three different frameworks for two type high-dimensional

and unstructured data in some well-known privacy settings in the following, shown

in Figure 1.1.

We first propose a novel platform (namely, VideoDP) that ensures differential

privacy [14] for any video analysis requested from untrusted data analysts, including

queries or query-based analyses over the input video. Notice that, as the state-of-the-

art privacy model, differential privacy (DP) [14] can ensure indistinguishable analysis

result derived from the input data with and without any single record (protecting any



4

Video Query with 
Differential Privacy

Objects in Video with 
Local Differential Privacy

Location in LBS with 
Local Differential Privacy

Data Analysis

Users’ Presence 
Indistinguishability

Objects (Content and 
Location) Indistinguishability

Location 
Indistinguishability

Privacy Protection

Chapter 3

Chapter 4

Chapter 5

Figure 1.1. Overview of the Proposed Frameworks

record against arbitrary background knowledge). Second, I apply the concept of the

emerging local differential privacy [29–31] (user-level indistinguishability) to video

data and propose a novel platform (namely, Verro) to generate an utility-driven

synthetic video object indistinguishability (object-level indistinguishability instead

of user-level indistinguishability), in which the content and trajectories of objects

in videos are indistinguishable. The Compared to VideoDP, Verro could release

the synthetic video without revealing any privacy of users. At last, we peopose the

first strict LDP framework (namely, “L-SRR”) to support general location/trajectory

aggregation and individual Location-based services to provide user-level privacy pro-

tection. We have conducted extensive experiments to validate the performance of

VideoDP, Verro and L-SRR on real-world datasets.

1.2.1 VideoDP. Specifically, we define a novel DP notion in which adding or re-

moving any sensitive visual element (e.g., human or object) into the input video does

not significantly affect the analysis result. Thus, the privacy risks can be strictly

bounded even if the adversaries possess arbitrary background knowledge (e.g., know-

ing the objects or humans). To our best knowledge, this is the first work proposed

to provide DP video analysis. Specifically, in VideoDP, we address the following

unique challenges (different from the existing DP schemes applied to other datasets,

e.g., [14, 16,18,32–34]).
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We consider the identification of sensitive visual element as the root cause of

privacy leakage in videos, and then seek for the protection that the untrusted ana-

lyst cannot distinguish if any sensitive visual element (e.g., an object or human) is

included in the video or not, even if the adversaries have arbitrary background knowl-

edge about the visual elements. Then, we first address the challenge on accurately

detecting and tagging all the sensitive visual elements in any video (by utilizing state-

of-the-art computer vision techniques [35]). For instance, given a video recorded on

the street, our objective is to protect sensitive objects (e.g., vehicles) and/or humans

(e.g., pedestrians) which are pre-specified by the video owner.

Given any input video for analysis, different from traditional differentially pri-

vate mechanisms (e.g., injecting noise into queries or analyses), we propose a novel

randomization scheme (via sampling) to generate a utility-driven private video while

ensuring the defined differential privacy. Specifically, our VideoDP involves three

phases. The first phase randomly samples pixels for the output video based on the

visual elements and background scene in the vidoe. Since videos are extremely large

scale and highly-dimensional (generally consisting of millions of pixels with very di-

verse RGBs [36]), it is extremely challenging to ensure good utility for video via pixel

sampling (e.g., many RGBs/pixels cannot be sampled). To further improve the out-

put utility, after executing pixel sampling in VideoDP, the second phase generates

a (random) utility-driven private video by interpolating the RGB values of unsam-

pled pixels and integrates such “estimated pixels” into the missing pixels. Note that

the addition of interpolation into the randomizaiton algorithm still ensures the same

indistinguishability (regardless of adding or removing any visual element in the in-

put video) since the interpolation can be considered as a post-processing procedure

performed on differentially private outputs [37].

In the first two phases, VideoDP generates the (probabilistic) utility-driven
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private video with differential privacy. Therefore, in the third phase, different video

analyses requested by untrusted data analysts (e.g., queries over the video for ana-

lytics) can be flexibly performed over the utility-driven private video, as analyzed in

Chapter 3. VideoDP significantly outperforms the PINQ platform [38] in the con-

text of video analytics with reduced perturbation and superior flexibility for different

video analyses as validated in the experiments (Chapter 3).

1.2.2 Verro. Although the VideoDP can make the query result of videos guar-

antee differential privacy, it cannot directly release the videos for users. To tackle

such critical limitation, we define a novel privacy notion for protecting the objects in

the video – “ϵ-Object Indistinguishability”, which is extended from the emerging dif-

ferential privacy in local setting [29–31]. Specifically, in the past decade, the notion

of differential privacy has emerged essentially as the de facto privacy standard for

bounding the privacy risks while sanitizing different data [13, 18, 22, 39]. Adversaries

cannot infer if a certain individual is included in the input or not from the noisy

aggregated result (perturbed by a trusted aggregator) regardless of their background

knowledge [13]. More recently, local differential privacy (LDP) models have been pro-

posed to privately perturb data by each individual such that the collected (random)

data from different individuals can be indistinguishable. Inspired by the LDP mod-

els, our privacy notion also ensures indistinguishability for all the objects (ϵ-Object

Indistinguishability) in the randomized output video, and thus the perturbed video

can be safe to be disclosed to any untrusted video recipient.

With the privacy notion of ϵ-Object Indistinguishability, we propose a video

sanitization technique that randomly generates a synthetic video by the video owner

(i.e., the agency which captures the video) while ensuring ϵ-Object Indistinguishability

and good utility. More specifically, we design a novel random response scheme (by

optimizing the RAPPOR [29]) that randomly generates different objects in the video
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by maximizing the utility of random response [29] applied to the objects. As a result,

we boost the utility of Verro in two folds: (1) for each object, optimizing its random

response in different frames, and (2) interpolating the trajectories of objects in the

video [40] (without additional privacy leakage [37], as analyzed in Chapter 4). Thus,

the synthetic video can be disclosed to any untrusted recipient.

1.2.3 L-SRR. To mitigate privacy risks in location data, location anonymization

models [41] were first proposed to achieve k-anonymity via location generalization.

However, k-anonymity can only provide a weak privacy guarantee (e.g., vulnerable

to the background knowledge attacks). To address such limitations, we propose the

first strict LDP framework (namely, “L-SRR”) to support both location aggregation

and individual LBS. First, we design a novel LDP mechanism “staircase randomized

response (SRR)” and revised the empirical estimation to privately aggregate locations

with significantly improved utility and strictly satisfied ϵ-LDP. Second, different from

all existing works [42–45], we design and integrate additional components (e.g., private

matching [46] and private information retrieval [47]) into L-SRR to ensure ϵ-LDP for

a wide variety of LBS Apps such as k nearest neighbors search [48], origin-destination

analysis [49] and traffic-aware GPS navigation [5], which may collect user trajectories

or perform individual services with the aggregated locations/trajectories.

The utility of L-SRR is significantly enhanced by the proposed new SRR

mechanism and estimation method. Specifically, SRR perturbs input locations with

staircase probabilities for different possible output locations. The probability of

perturbing any input x in the domain D to each possible location y ∈ D is opti-

mally pre-computed. Then, users can locally perturb their locations with the opti-

mal probabilities. Different from relaxed privacy notions (e.g., PLDP [45] and geo-

indistinguishability [44]), every user is still strictly protected by ϵ-LDP. At the server

end (data aggregator), we extend an empirical estimation [50] to further improve the
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utility for the SRR mechanism without extra privacy leakage [37].

The remainder of this thesis is organized as follows. Chapter 2 introduces

the background knowledge of (local) differential privacy and related works. Chapter

3 firstly overviews the VideoDP framework, describes the privacy model, sampling

mechanisms, and then presents the performance evaluation results. Chapter 4 shows

the overview of Verro framework, describes the privacy model, perturbation mech-

anism, and then presents the performance evaluation results. Chapter 5 shows the

overview of L-SRR framework, describes the privacy model, perturbation mechanism,

and then presents the performance evaluation results. Chapter 6 concludes the report

and proposes future work.
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CHAPTER 2

RELATED WORK

2.1 Detect and Blur

In the context of privacy preserving video publishing, many solutions have been

proposed in literature (e.g., [12,51–54]). Saini et al. [51] have categorized such works

in terms of the sensitive attributes obfuscated in the sanitization. These sensitive

attributes include the evidence types bodies, what(activity), where (location where

the video is recorded) and when (time when the video is recorded). In general, most

of these works employ a detect and blur policy for only body attributes [12,52–54] and

some of them [51, 55–57] aims at preserving the privacy against other three implicit

inference channels.

Specifically, these techniques often leverage computer vision techniques [54,58]

to first detect faces and/or other sensitive regions in the video frames and then obscure

them. However, such detect-and-protect solutions have some limitations. For instance,

the detect-and-protect techniques cannot formally quantify and bound the privacy

leakage. In addition, blurred regions might still be reconstructed by deep learning

methods [59, 60]. Last but not least, these techniques often use naive measures for

quantifying the privacy loss in videos. For instance, in [54, 61], if faces are present,

then it is considered as complete privacy loss, otherwise no privacy loss is reported.

2.2 Privacy Protection for Image/Video with Differential Privacy

Although differential privacy has been widely used to sanitize and release data

in statistical databases [13, 62], histograms [16], location data [18], search logs [22],

and graphs [23], to the best of our knowledge, there are only several works that have

been made to benefit from differential privacy in image or video databases. Fan [25]

applied Laplace noise to obfuscate pixels in an image to ensure DP for protecting
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specific regions of an image. However, the image quality has been significantly reduced

(protection for each single pixel without composition may not work as well [26]).

Neither the privacy notion or the Laplace noise (generated with high sensitivity) can

be effectively applied to all the pixels for sanitizing full videos. VideoDP can address

these limitations with strong privacy protection against arbitrary prior knowledge.

Cangialosi [63] provided a new event-duration differential privacy (DP) notion for

video analytics queries, which protects all private information visible for less than a

particular duration.

2.3 Privacy Protection for LBS

Many privacy-preserving location-based services techniques have been pro-

posed (e.g., [41, 64]). K-anonymity was first defined to protect privacy for LBS.

Dummy locations [64] and cloaking region [41] have been utilized for anonymity.

However, these methods are highly vulnerable to background knowledge attacks. An-

other type of techniques design cryptographic protocols [65] to securely perform LBS

computations. However, both computational costs and communication overheads

might be very high. More recently, rigorous privacy notion differential privacy (DP)

has also been applied to LBS Apps [66–69]. For instance, a synthetic data genera-

tion technique [66] was proposed to publish statistical information about commuting

patterns (including locations) with DP guarantee. Moreover, a quadtree spatial de-

composition technique [67] has been used to ensure DP in a database with location

pattern mining capabilities. However, the DP model may not be suitable to real LBS

apps in case that the users do not trust the server.

The emerging LDP models [29–31] enable private data collection by the un-

trusted server, which provides stronger protection than the centralized DP models.

They have been utilized in a wide variety of applications (e.g., heavy hitters or his-

togram construction [29, 30], social graphs [24], and frequent itemset mining [70]).
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There are two works directly applying randomized response and unary encoding to col-

lect workload-aware indoor positioning data [42] and generate synthetic locations [43]

but result in poor utility. Moreover, several relaxed LDP notions have been proposed

to protect location privacy [44, 45]. Andrés et al. [44] relaxes the protection for lo-

cations within a radius via geo-indistinguishability. Chen et al. [45] relaxes LDP to

PLDP which allows users to specify personalized privacy budgets for private location

collection. However, they cannot ensure rigorous LDP and are also less accurate than

our SRR.
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CHAPTER 3

VIDEODP: A FLEXIBLE PLATFORM FOR VIDEO ANALYTICS WITH
DIFFERENTIAL PRIVACY

In this Chapter, I present the framework VideoDP in details, which includes

the introduction, preliminaries, privacy model, framework, discussion and experi-

ments [1].

3.1 Introduction

Massive amounts of video data are ubiquitously generated everyday from many

different sources such as personal cameras and smart phones, traffic monitoring and

video surveillance facilities, and many other video recording devices. Analyzing such

complex, unstructured and voluminous data [8] would be extremely beneficial in real

world. However, directly releasing videos to the analysts may result in severe privacy

concerns due to the considerable amount of sensitive information involved in videos,

such as human faces, objects, identities and activities [10]. For instance, traffic mon-

itoring cameras can capture all the vehicles which may involve the make, model and

color of vehicles, moving speed and trajectories, and even the drivers’ faces. Most of

the existing privacy preserving video sanitization techniques (including the YouTube

Blurring application [71]) obfuscate the video by detecting and then directly blurring

the region of interests, e.g., faces, vehicle plates, and locations [51,72]. Unfortunately,

the privacy leakage in the blurred videos cannot be effectively bounded, especially

against unknown background knowledge. Specifically, such approaches cannot quan-

tify and bound the privacy leakage in the outputs (e.g., limiting the probability of

identifying any individual from the sanitized video [14, 73, 74]). Although all the de-

tected sensitive information can be blurred with fully black/white boxes to address

the privacy leakage, the sanitized videos may result in very low utility (see Section

3.7). To address such deficiency, we propose a novel platform (namely, VideoDP)
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that ensures differential privacy [14] for any video analysis requested from untrusted

data analysts, including queries or query-based analyses over the input video.

3.2 Preliminaries

In this section, we present some preliminaries required for VidepDP. First,

Table 3.1 shows the frequently used notations in the following sections.

3.2.1 Video Processing. Referring to the RGB color model [36], video data

includes frame ID, pixel coordinates, red, green, blue (we focus on visual information

in this paper). Thus, we denote any pixel’s frame ID as t, its coordinates as (a,b),

and its RGB as a 3-dimensional vector θ(a, b, t) ∈ [0, 255]3 (16,581,375 distinct RGBs

in the universe).

VE Detection The state-of-the-art computer vision algorithms can be uti-

lized to accurately detect VEs (e.g., objects [75] and humans [76]) in videos. Specifi-

cally, all the VEs in a video (denoted as Υj, j ∈ [1, n]) are detected using the tracking

algorithm [35] in which the same human/object in different frames is assigned the

same unique identifier (see Section 3.7 for details). Notice that, each VE from dif-

ferent angles will be considered as the same VE for protection if they can be tracked

in multiple frames by the algorithm (in most cases). If they cannot be tracked in

multiple frames, they are also protected separately in VideoDP. In addition, the de-

tection/tracking accuracy can be as high as 90%+ on general videos [77] (which can

be further improved by integrating multiple algorithms and repeated detection; and

the accuracy is close to 100% in our experiments). These make our defined differential

privacy (for VEs) strong enough for protecting the entire video.

Notice that different VEs may have different sizes, and the same VE Υj may

also have different sizes and different RGB values (e.g., as a vehicle moves close to

the camera, its size visually grows). Then, VideoDP aims at protecting all the RGBs
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Table 3.1. Frequently Used Notations

Notation Description

VE visual element (e.g., object, human)

V,O orignal video and output synthetic video

|V |, |O| total pixel counts in V , O

m the number of distinct RGBs in V

θi the ith RGB in V where i ∈ [1,m]

n the number of distinct VEs in V

Υj the jth VE in V (all the frames), j ∈ [1, n]

|Υj | total number of pixels in |Υj |

Ψj set of RGBs in Υj with budgets

|Ψj | cardinality of Ψj

dj total pixel count in Υj

θ̃ij the ith RGB in Ψj

kj (optimal) number of distinct RGBs in Υj

Ψ, |Ψ|
⋃n

j=1 Ψj , cardinality of Ψ

θ̃i, θi the ith RGB in Ψ, the ith RGB in V

c̃i (or ci), c̃
j
i total pixel count for RGB θ̃i (or θi) in V , Υj

x̃i (or xi) total pixel count for RGB θ̃i (or θi) in O

(a, b, t) the pixel with coordinates (a, b) and frame t

θ(a, b, t) the RGB of pixel (a, b, t) in V

θ̂(a, b, t) the RGB of pixel (a, b, t) in O

Pr(a, b, t) probability that pixel (a, b, t) is sampled

σ0, . . . , σ4 probabilities that pixel (a, b, t) has 0, 1, . . . , 4

neighboring pixels after Phase I (sampling)

θ̂N simplified notation for θ̂(a− 1, b, t)

θ̂S simplified notation for θ̂(a+ 1, b, t)

θ̂W simplified notation for θ̂(a, b− 1, t)

θ̂E simplified notation for θ̂(a, b+ 1, t)
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of different VEs in all the frames. To break down the video into pixels with RGBs,

we denote the set of distinct RGBs in VE Υj (in all the frames) as Ψj where the

cardinality is written as |Ψj| (the number of distinct RGBs in Υj).

3.2.2 Privacy Model. To protect sensitive VEs in the video, we first consider two

input videos V and V ′ that differ in any visual element Υ (in all the frames) as two

neighboring inputs. Specifically, given a video V , after completely removing Υ in all

the frames of V , we can obtain V ′ (or vice-versa). Note that V and V ′ have identical

number of frames and background scene. Then, VideoDP ensures that adding any

VE into any number of frames in a video or completely removing any VE from the

video would not result in significant privacy risks in video analytics, assuming that

the adversary possesses arbitrary background knowledge on all the VEs. W.l.o.g.,

denoting V = V ′ ∪Υ, we have:

Definition 1 (ϵ-Differential Privacy). A randomization algorithm A satisfies ϵ-differen-

tial privacy if for any two input videos V and V ′ that differ in any visual element (e.g.,

object or human) Υ, and for any output O ∈ range(A), we have e−ϵ ≤ Pr[A(V )=O]
Pr[A(V ′)=O]

≤

eϵ.

Definition 1 protects all the sensitive VEs in the video (which are pre-defined

and accurately detected by the video owner, as discussed in Section 3.2.1). If neces-

sary, any part of the video can be specified as a sensitive VE for protection (including

the background scene), as discussed in Section 3.6 (see the “Background Scene(s) as

VE” mode in VideoDP).

Moreover, given two neighboring videos V and V ′, a possible output O ∈

range(A) may make any of Pr[A(V ) = O] and Pr[A(V ′) = O] equal to 0. For

instance, in case that the extra VE Υ is included in V but not in V ′, an output O
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involving Υ cannot be generated from V ′ (simply due to Υ∩V ′ = ∅). At this time, for

such output O, we have Pr[A(V ) = O] > 0 while Pr[A(V ′) = O] = 0. In such cases,

the multiplicative difference between Pr[A(V )=O]
Pr[A(V ′)=O]

and Pr[A(V ′)=O]
Pr[A(V )=O]

cannot be bounded

by eϵ (due to the zero denominator). Thus, a relaxed privacy notion [32, 78] can be

defined:

Definition 2 ((ϵ, δ)-Differential Privacy [32,78]). A randomization algorithm A sat-

isfies (ϵ, δ)-differential privacy if for all video V , we can divide the output space

range(A) into two sets Ω1,Ω2 such that (1) Pr[A(V ) ∈ Ω1] ≤ δ, and (2) for any

of V ’s neighboring video V ′ and for all O ∈ Ω2: (2) e−ϵ ≤ Pr[A(V )=O]
Pr[A(V ′)=O]

≤ eϵ.

This definition guarantees that algorithm A achieves ϵ-DP with a high proba-

bility (≥ 1− δ) [32,78]. The probability that generating the output with unbounded

multiplicative difference for V and V ′ is bounded by δ.

RGB1
…

detected VE 1
detected VE 2

RGB2RGB3RGB4 Phase I & II: 
(randomly generating video)RGBs for pixels 

(in different VEs)

(t, a, b, R, G, B)

Pixel Sampling
Pixel Interpolation

(sequential 
composition)

Video Analysis
(untrusted analysts)

Pedestrian
Analysis

…

Traffic
Analysis

Any queries over the video
(w.r.t. pixels, features, visual elements, etc.) 

Utility-driven Private 
Video: 

retrieving and 
responding the results

Queries

(random)
Results (random)

Queries

Results (random)

Phase III: responding to queries
for private video analytics

Figure 3.1. VideoDP Framework: ϵ-differential privacy for Phase I–III (which can be
relaxed to (ϵ, δ)-differential privacy)

3.2.3 VideoDP Framework.

Limitations of PINQ-based Video Analytics: Privacy Integrated Queries

(PINQ) [38] platform was proposed to facilitate data analytics by injecting Laplace

noise into the queries. Similarly, PINQ can be simply extended to function video

analytics. However, there are two major limitations of PINQ-based video analytics,
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which greatly limit the usability in practice.

Sensitivity: In PINQ-based video analytics, global sensitivity [14] can be

defined for some queries with small sensitivities such as “the count of vehicles in the

video” (sensitivity as 1). However, for queries with large sensitivities, the query result

would be overly obfuscated (see Section 3.7). For instance, in the query “the average

time each object stays in the video”, since an object can stay in the video for the

entire video or only 1 second (a few frames), global sensitivity would be too large and

difficult to define. Meanwhile, it might be also impractical to achieve (smooth) local

sensitivity [79] for all different queries in the analysis due to computational overheads.

Flexibility: PINQ is inflexibly adapted for different video analyses. For

each requested analysis, a specific DP scheme would be required for improving the

utility of the private analysis. The algorithm (e.g., budget allocation, composition of

queries [38]) has to be redesigned for any new analysis on the video.

Instead, we propose a novel flexible framework VideoDP for universally op-

timizing the utility of different video analysis, detailed as follows. Figure 5.1 shows

that VideoDP consists of three major phases (after detecting all the sensitive VEs):

1. Phase I: video (including detected VEs) can be represented as pixels, which

can be grouped by their RGBs (notice that, different from generating RGB

histograms, each pixel still keeps its original coordinates and frame ID). Rather

than injecting Laplace noise, this phase randomly samples a subset of pixels

(with its original features) for each RGB, where privacy budgets are allocated

for different RGBs (sequential composition [38]) to optimize the output utility.

Phase I in VideoDP satisfies ϵ-DP, which can be relaxed to (ϵ, δ)-DP. See details

in Section 3.3.

2. Phase II: after sampling all the pixels, the output video has numerous unsam-
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pled pixels (due to privacy constraints). This phase estimates the RGBs for

unsampled pixels via interpolation. We show that Phase II does not leak any

additional information (still ensuring indistinguishability). Thus, Phase II can

boost the video utility without additional privacy loss. See details in Section

3.4.

3. Phase III: VideoDP applies the requested queries (for video analysis, e.g.,

traffic and pedestrian analysis [80, 81]) to the random utility-driven private

video and directly returns the results (which are also random) to untrusted

analysts, where differential privacy is also guaranteed (as analyzed in Section

3.5).

3.3 Phase I: Mechanism of VideoDP

In this section, we present the sampling algorithms while ensuring differential

privacy.

3.3.1 Pixel Sampling Mechanism. Recall that Section 3.2.3 has briefly discussed

the pixel sampling. Since each sensitive VE involves a set of RGBs and the pixel

sampling for distinct RGBs (in all the VEs) is expected to satisfy differential privacy,

the privacy budget ϵ will be allocated for the individual pixel sampling w.r.t. distinct

RGBs (which follows sequential composition [38]). Specifically, for each RGB θi in

V , a number of xi pixels with such RGB (out of the original ci pixels in V ) will be

randomly selected (uniform distribution) to output with their original coordinates

and frame ID. A privacy budget ϵi will be allocated for sampling pixels for RGB θi

that is used to bound the probabilities for its differential privacy guarantee.

Since every video may involve millions of distinct RGBs, given a privacy budget

ϵ for pixel sampling, it is nearly impossible to allocate an equal budget to every unique

RGB (each share would be negligible). To address such challenge, we categorize all
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the RGBs i ∈ [1,m], θi for pixel sampling in different cases (some of which indeed do

not consume any privacy budget) and explore the optimal budget allocation as well

as the differential privacy guarantee in Section 3.3.2.

3.3.2 Privacy Budget Allocation. As the privacy budget ϵ is specified for pixel

sampling, our goal is to optimize the allocated budgets for RGBs towards their count

distributions in the original video. Given V and V ′ where V = V ′ ∪Υ (w.l.o.g.) and

Υ can be any VE, we have three types of RGBs:

• Case (1): RGB θi ∈ Υ \ V ′ (the RGB is included in the extra visual element Υ

but not V ′).

• Case (2): RGB θi ∈ V ′ \Υ (the RGB is included in V ′ but not the extra visual

element Υ).

• Case (3): RGB θi ∈ V ′ ∩ Υ (the RGB is included in both V ′ and the extra

visual element Υ).

Then, we investigate the budget and the privacy guarantee for these three

cases as below.

Case (1): RGB θi ∈ Υ \ V ′. Pixels in this case is the reason why we need

the relax in definition, which we will discuss this in the Section 3.6. Given xi as the

output count of θi and ci is the input count in V , we let xi = 0 (does not output pixels

with such RGB θi) since θi cannot be found in V ′, if generating any pixel with RGB

θi into the output video O (in Phase I). Extending it to an randomization algorithm

A applied to V (with n VEs Υ1, . . . ,Υn), w.l.o.g., considering V as the video with an

arbitrary extra VE Υ ∈ {Υ1, . . . ,Υn} (compared to V ′), we thus have: ∀j ∈ [1, n],Υj,

if RGB θi ∈ Υj \ (V −Υj), then xi = 0 (do not sample pixels with such RGB).
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Case (2): RGB θi ∈ V ′ \ Υ. Since all the pixels with such RGB θi in V

and V ′ are equivalent, we can let xi = ci (retaining all the pixels with such RGB θi)

without violating privacy. Then, for any xi > 0 (can be maximized to ci), sampling

pixels for this RGB θi does not consume any privacy budget.

Similarly, extending it to the randomization algorithm A (applied to V ),

w.l.o.g., considering V as the video with an arbitrary extra VE Υ ∈ {Υ1, . . . ,Υn}

(compared to V ′), since VideoDP should protect any arbitrary VE, we thus have:

∀j ∈ [1, n],Υj, if any RGB θi ∈ V ′ \ Υj, then xi = ci (retaining all the pixels with

such RGB in the utility-driven private video). This does not consume any privacy

budget since such RGBs do not exist in any of the VEs.

Case (3): RGB θi ∈ V ′ ∩ Υ. The pixel sampling for each RGB in this

case should satisfy ϵ-differential privacy where e−ϵ ≤ Pr[A(V )=O]
Pr[A(V ′)=O]

≤ eϵ holds. Thus,

we should allocate privacy budgets for different RGBs in this case. However, due to

the sequential composition [38], we cannot allocate a budget for every RGB in this

category (otherwise, given any ϵ, for a large number of distinct RGBs, each share of the

budget would be too extremely small). In other words, all the RGBs in this category

may have to be suppressed (not sampled in the output video). To improve the output

utility, our VideoDP has the following three procedures for budget allocation in pixel

sampling (Phase I):

1. Determine the RGBs selection rule (selecting the most representative RGBs in

each VE for generating the utility-driven private video).

2. Derive an optimal number of distinct RGBs within each VE (maximizing the

utility of the VEs in the utility-driven private video).

3. Allocate appropriate budgets for selected RGBs (per their RGB count distribu-

tion in the original video).



21

1) RGBs Selection Rule. Denoting the number of distinct RGBs in Υj, j ∈

[1, n] (which receive privacy budgets to output after Phase I) as kj, the remaining

RGBs in Υj will be suppressed (not sampled) during pixel sampling. Thus, this pro-

cedure ensures that the selected kj RGBs in Υj are most representative to reconstruct

the object (without compromising privacy).

An intuitive rule is to select the top frequent kj RGBs in Υj. However, it

might be biased to specific regions with intensive counts of similar RGBs in a VE.

To address such limitation, we adopt the multi-scale analysis [82] in computer vision

to partition each VE Υj into kj cells and select the top frequent RGB in each cell to

allocate privacy budgets (as the “representative RGBs”). Then, the sampled RGBs

can be effective to reconstruct the VE in the utility-driven private video.

2) Optimal kj in Each VE. This procedure is designed to maximize the

utility of the VEs in the utility-driven private video (after bilinear interpolation [83]

in Phase II). If the number of distinct RGBs in Υj that receive privacy budgets kj

is large, more distinct RGBs can be sampled in the VE but the budget allocated for

each RGB would be extremely small; if kj is small, the budget allocated for each RGB

would be large but less distinct RGBs can be sampled. We now seek for the optimal

kj for Υj that can minimize the MSE between the interpolated VE (after Phase II)

and the original VE.

Specifically, since every pixel in Υj can be sampled (with the original RGB) or

unsampled (with an estimated RGB), we minimize the expectation of MSE (referring

to Equation 3.2) after the Phase II bilinear interpolation [83]. The expectation of each

pixel’s RGB is determined by the probabilities of “sampled” (denoted as Pr(a, b, t))

and “unsampled but interpolated by its neighboring pixels” (4 neighbors for non-

border pixels, 3 neighbors for border-but-not-corner pixels, and 2 neighbors for corner

pixels, as shown in Figure 3.4). Denoting pixel (a, b, t)’s RGB in the output as
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θ̂(a, b, t), for simplicity of notations, we denote the RGBs of its neighboring pixels as

θ̂N , θ̂S, θ̂W and θ̂E, for pixels (a − 1, b, t), (a + 1, b, t), (a, b − 1, t) and (a, b + 1, t),

respectively. For a non-border pixel (4 neighbors), the expectation of its RGB1 can

be derived as:

E[θ̂(a, b, t)] = Pr(a, b, t) ∗ θ(a, b, t) + σ0(a, b, t) ∗ 0

+
σ1(a, b, t)[1− Pr(a, b, t)][E(θ̂N) + E(θ̂S) + E(θ̂W ) + E(θ̂E)]

4

+
σ2(a, b, t)[1− Pr(a, b, t)][3E(θ̂N) + 3E(θ̂S) + 3E(θ̂W ) + 3E(θ̂E)]]

6 ∗ 2

+
σ3(a, b, t)[1− Pr(a, b, t)][3E(θ̂N) + 3E(θ̂S) + 3E(θ̂W ) + 3E(θ̂E)]

4 ∗ 3

+
σ4(a, b, t)[1− Pr(a, b, t)][E(θ̂N) + E(θ̂S) + E(θ̂W ) + E(θ̂E)]

4
(3.1)

where θ(a, b, t) is the original RGB (a constant) and probability of “sampled”

Pr(a, b, t) is determined by kj (given V and kj, it is deterministic if the RGB selection

rule is decided previously). Probabilities σ0(a, b, t), σ1(a, b, t), σ2(a, b, t), σ3(a, b, t) and

σ4(a, b, t) are probabilities that pixel (a, b, t) has 0 neighbor, 1 neighbor, 2 neighbors,

3 neighbors and 4 neighbors after sampling (which are also constants if V , kj and

sampling mechanism are determined; note that σ0(a, b, t) + · · · + σ4(a, b, t) = 1). In

the equation, E[θ̂N ], E[θ̂S], E[θ̂W ] and E[θ̂E] are the RGB expectation of its four

neighbors in the same tth frame (Equation 3.1 presents the relation among the RGB

expectations of the five pixels, which are detailed in Appendix A.1.1). Similarly, we

can obtain two other equations for pixels with special coordinates (border-but-not-

corner or corner pixels of the frame, please see Equation A.1 and A.2 in Appendix

A.1.1).

1Although the RGBs of all the pixels in Υj are random (due to the sampling
in Phase I), the expectations of RGBs for its neighboring pixels in Υj always satisfy
a condition (ensured by bilinear interpolation [83]), e.g., Equation 3.1
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Thus, for each pixel in VE Υj (in all the frames), there exists exactly one

equation out of three cases in Equation 3.1, A.1 and A.2 (latter two are in Appendix

A.1.1). As kj is determined, θ(a, b, t) and Pr(a, b, t) are constants, then we can solve

all the equations to obtain ∀(a, b, t) ∈ Υj, E[θ̂(a, b, t)]. Thus, each kj value corresponds

to the solved ∀(a, b, t) ∈ Υj, E[θ̂(a, b, t)], and then we can efficiently derive the optimal

kj for Υj as:

argmin
kj

1

|Υj|
∑

∀(a,b,t)∈Υj

(
E[θ(a, b, t)]− E[θ̂(a, b, t)]

)2 (3.2)

where |Υj| denotes the total number of pixels in Υj. Solving the above problem

requires complexity O(n3 log(n)), which is much faster than executing pixel sampling

for all the possible kj and then comparing all the MSE results to get the optimal kj

(since iteratively sampling all the pixels is expensive). Details of the solver is given

in Appendix A.1.2. Notice that,

• Range for kj. The optimal kj is derived from a specified range of kj. It is

unnecessary to traverse kj to a extremely large number (otherwise, the allocated

budget for each RGB would be extremely small). The larger kj, more diverse

RGBs can be allocated with a privacy budget; the smaller kj, each RGB will

be allocated with a larger privacy budget. Thus, the lower/upper bounds for kj

can be selected according the requested diversity of RGBs in the visual elements

in practice (kj ≤ 20 can give good utility in our experiments).

• Approximation. As discussed before, since Υj in different frames may have

different sizes and different sets of RGBs (though the difference can be minor),

the most accurate kj can be obtained by solving the equations for all the pixels of

Υj in all the frames (with complexity O(n3 log(n)), as proven in Appendix A.1).

If more efficient solvers are desirable, we can randomly select a frame (including
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Υj) to solve the equations to obtain an approximated kj for Υj by assuming

the VE does not change much in the video. Another alternative solution is to

solve the optimal kj for each frame and average them (which is more efficient

but less accurate).

Thus, we can repeat the above procedure for all the VEs such that the optimal

kj, j ∈ [1, n] can be obtained to minimize the MSE of the VEs in the output video.

3) Budget Allocation. As the optimal kj for each visual element Υj, j ∈

[1, n] is derived, we denote the set of RGBs in Υj, j ∈ [1, n] to allocate budgets as Ψj

with the cardinality |Ψj| = kj. Then, we have the total number of RGBs to sample

in V (Case (3)) as the cardinality |Ψ| of the union Ψ =
⋃n

j=1 Ψj. We then present

how to allocate privacy budget ϵ in Phase I for |Ψ| different RGBs. The criterion for

allocating budget is to allocate the privacy budgets based on the count distributions

of RGBs in different VEs while fully utilizing the privacy budget ϵ. For each VE Υj,

all the RGBs in Ψj can fully enjoy the budget ϵ (since Ψj includes all the RGBs that

could generate visual element Υj in all the frames, and other RGBs would not be

sampled into the visual element Υj).2

Then, we denote the ith RGB in Ψj as θ̃ij where i ∈ [1, kj], and the count of

θ̃ij in Υj as dj(θ̃ij) and the overall pixel count in Υj (in all frames) as dj. Apparently,

we can allocate dj(θ̃ij)ϵ

dj
to RGB θ̃j(i), i ∈ [1, kj] and apply this criterion to all the VEs.

However, if any RGB θ̃ is included in multiple VEs (the intersections among the sets

∀j ∈ [1, n],Ψj), θ̃ will receive privacy budgets from different VEs (and should satisfy

differential privacy for all of them). At this time, its budget should be allocated as

2Any two VEs do not share pixels in the video since the front VE blocks a part
of the back VE if they overlap in any frame. In such complex scenario, both VEs can
be accurately detected in our experiments. The front VE includes all the pixels while
the back VE will be all the pixels that cameras can capture.
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the minimum one out of all (otherwise, not all the VEs in pixel sampling can be

protected with ϵ-differential privacy since the budget for some VEs may exceed ϵ).

…

RGBs in ϒ1, …, ϒn (all VEs)

RGBs in
ϒ1, ϒ2 , …, ϒn-1

RGBs in
ϒ1, …, ϒn-2, ϒn

RGBs in
ϒ1, ϒ3, …, ϒn

RGBs in
ϒ2, ϒ3, …, ϒn

…RGBs in
ϒ1, ϒ2 , …, ϒn-2

RGBs in
ϒ1, …, ϒn-3, ϒn-1

RGBs in
ϒ2, ϒ4, …, ϒn

RGBs in
ϒ3, ϒ4, …, ϒn

…

…RGBs in
ϒ1

RGBs in
ϒ2

RGBs in
ϒn-1

RGBs in
ϒn

RGBs 
only in 

(n-2) VEs

RGBs 
only in 

1 VE

…

RGBs 
only in 

(n-1) VEs

Figure 3.2. Prioritizing RGBs (for allocating budgets)

Nevertheless, if the minimum budget is adopted as above, some VEs cannot

fully enjoy ϵ (the gap between θ̃’s original budget in a specific VE and its minimum

budget among all the VEs would be wasted). To fully utilize the privacy budgets,

we propose a budget allocation algorithm for all the |Ψ| distinct RGBs by prioritizing

them in the RGB set Ψ =
⋃n

j=1Ψj.

Specifically, we prioritize |Ψ| different RGBs into n disjoint partitions: as

shown in Figure 3.2 (from top to down), RGBs in the first partition are included in

all the VEs, RGBs in the second partition are included in (n − 1) VEs, . . . , RGBs

in the nth partition are only included in a single VE. Then, our algorithm iteratively

allocates budgets for RGBs in n partitions (allocating budgets for all the RGBs in a

partition in each iteration).

Since all the RGBs within each VE follow sequential composition [38], after

allocating the budgets for all the RGBs in the ℓth partition, the allocation in the

(ℓ + 1)th partition will be based on the remaining budget for every VE. In the ℓth

iteration (for the ℓth partition), the budget for each RGB θ̃ is allocated based on its
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count distribution out of the remaining RGBs in each of the (n− ℓ+ 1) VEs (which

include θ̃). Then, the minimum budget derived from all the VEs is allocated to θ̃.

Iteration (2)

Υ1

20

B

55

O

Υ2

5030 50

GB P

Iteration (1) 
ε ε ε

Iteration (3)

(ε
ε
)= 

ε
(ε -

ε
-

ε
)= 

ε
(ε -

ε
-

ε
) 

ε

Υ3

15 35 30

GB R

ε ε

Figure 3.3. Example of Budget Allocation

Example 1. Figure 3.3 shows three VEs (Υ1,Υ2 and Υ3). Blue exists in all the

VEs Υ1,Υ2,Υ3 with counts 20, 30, 15. Green exists in Υ2 and Υ3 with counts 50 and

35. All the remaining RGBs only exist in only one VE (and the non-VE part of the

video): Orange in Υ1 with count 55, Purple in Υ2 with count 5, and Red in Υ3 with

count 30. Thus, five RGBs are prioritized to (three partitions):{B}, {G}, and {O, P,

R}.

In the 1st iteration (partition), Blue is first allocated with a privacy budget as

the min{20ϵ
75
, 30ϵ
130

, 15ϵ
70
} (the minimum budget from three different VEs). The remaining

budget for all the VEs is 55ϵ
70

. In the 2nd iteration, Green is allocated with a privacy

budget 55ϵ
70
·min{ 50

100
, 35
65
} = min{11ϵ

28
, 11ϵ

26
}. In the 3rd iteration, Orange is allocated with

budget 55
55
· (ϵ− 15ϵ

70
) = 55ϵ

70
, Purple is allocated with budget 5

5
· (ϵ− 15ϵ

70
− 11ϵ

28
) = 11ϵ

28
, and

Red is allocated with budget 30
30
· (ϵ− 15ϵ

70
− 11ϵ

28
) = 11ϵ

28
.

Since almost all the VEs have RGBs in the last partition (every VE in real

videos include numerous RGBs that are not included in other VEs), the budget can
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be fully allocated for all the RGBs. Thus, the budget sum of all the RGBs in any VE

equals ϵ, and the size of VEs does not result in additional leakage. Algorithm 6 in

Appendix A.2 presents the details of budget allocation.

3.3.3 Pixel Sampling Algorithm. To illustrate the algorithm for Phase I, we

again discuss the pixel sampling for three different cases of RGBs.

Recall that in Case (1), for all the RGBs θi ∈ Υ \ V ′, all the pixels with

such RGBs will not be sampled (ensuring that δ = 0). In Case (2), for all the

RGBs θi ∈ V ′ \ Υ, all the pixels with such RGBs will be sampled (with the original

coordinates and frame). Sampling pixels for all the RGBs in Case (2) satisfy 0-DP.

In Case (3), for all the RGBs θi ∈ V ′ ∩ Υ, as discussed in Section 3.3.2, we

sample pixels for |Ψ| distinct RGBs where |Ψ| ≤
∑n

j=1 kj (since different VEs may

have common RGBs). We denote the set Ψ =
⋃n

j=1Ψj = {θ̃1, . . . , θ̃|Ψ|} (the set of

RGBs which request privacy budgets), and its set of budgets {ϵ(θ̃1), . . . , ϵ(θ̃|Ψ|)}. It is

straightforward to show the sequential composition [38] of allocated privacy budgets

(by Algorithm 6) for all the RGBs:

∑
∀θ̃i∈Ψj

ϵ(θ̃i) = ϵ (3.3)

where θ̃i is denoted as the ith RGB in Ψ. Then, for any V and V ′ differing in

an arbitrary VE Υj, j ∈ [1, n],

∀θ̃i ∈ Ψj, e
−ϵ(θ̃i) ≤ Pr[A(V (θ̃i)) = O(θ̃i)]

Pr[A(V ′(θ̃i)) = O(θ̃i)]
≤ eϵ(θ̃i) (3.4)

where V (θ̃i) and V ′(θ̃i) are the pixels with RGB θ̃i in V and V ′. Deriving the

probability for randomly picking x̃i out of c̃i pixels with RGB θ̃i (pixel sampling using
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input V and V ′, differing in Υj), we have:

∀i ∈ [1, |Ψ|], P r[A(V (θ̃i)) = O(θ̃i)] = 1/

(
c̃i
x̃i

)
Pr[A(V ′(θ̃i)) = O(θ̃i)] = 1/

(
c̃i − c̃ji
x̃i

)

=⇒ e−ϵ(θ̃i) ≤
(
c̃i
x̃i

)/(c̃i − c̃ji
x̃i

)
≤ eϵ(θ̃i) (3.5)

where c̃i and x̃i are the input and output counts of RGB θ̃i while c̃ji denotes

the count of θ̃i in VE Υj.

Thus, we can derive a maximum output count for sampling pixels for each

RGB θ̃i, i ∈ [1, |Ψ|] and the maximum x̃i can be efficiently computed as below (the

only variable): ∀i ∈ [1, |Ψ|],

max{x̃i|∀j ∈ [1, n],

(
c̃i
x̃i

)/(c̃i − c̃ji
x̃i

)
≤ eϵ(θ̃i)} (3.6)

The maximum output count of the ith RGB x̃i, i ∈ [1, |Ψ|] can be efficiently

computed from Equation 3.6 (e.g., via binary search) since the left-side of the in-

equality is monotonic on x̃i. To sum up, Algorihtm 1 presents the details of Phase

I.

Theorem 1. The pixels sampling in VideoDP (Phase I) satisfies ϵ-differential pri-

vacy.

Proof. We can prove the differential privacy guarantee for three cases of pixel sampling

in the algorithm.
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Algorithm 1 Pixel Sampling (ϵ-DP)
Input: input video V , privacy budget ϵ

Output: sampled video O (pixels)

1: detect all the visual elements (Υ1, . . . ,Υn) in V

2: for each Υj, j ∈ [1, n] do

3: for each RGB θi ∈ Υj but /∈ (V \Υj) do

4: suppress all ci pixels with RGB θi in V

5: end for

6: end for

7: for each RGB θi ∈ V \
⋃n

j=1 Υj do

8: output all ci pixels with RGB θi in V (original coordinates and frame)

9: end for

10: for each Υj, j ∈ [1, n] do

11: compute the optimal number of distinct RGBs to sample in Υj (minimum

expectation of MSE): kj

12: execute Algorithm 6 (in Appendix A.2) to allocate budgets for all the RGBs in

Ψ = {θ̃1, . . . , θ̃|Ψ|}

13: end for

14: for each θ̃i, i ∈ [1, |Ψ|] do

15: compute the maximum x̃i: max{x̃i|∀j ∈ [1, n],
(
c̃i
x̃i

)/(
c̃i−c̃ji
x̃i

)
≤ eϵ(θ̃i)}

16: randomly pick x̃i pixels with RGB θ̃i in V to output (original coordinates and

frame)

17: end for

In Case (1), since all the pixels with such RGBs are suppressed, δ = 0 always

holds with Line 2-4 in Algorithm 1. In Case (2), since ∀θi, Pr[A(V (θi))=O(θi)]
Pr[A(V ′(θi))=O(θi)]

always

equals 1, Line 5-6 in Algorithm 1 does not result in privacy loss. In Line 7-12 of the

algorithm (Case (3)), we have ∀i ∈ [1, |Ψ|], e−ϵ(θ̃i) ≤ Pr[A(V (θ̃i))=O(θ̃i)]

Pr[A(V ′(θ̃i))=O(θ̃i)]
≤ eϵ(θ̃i) holds.
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Per the sequential composition of differential privacy [38], for all V and V ′ differing

in any VE Υj, j ∈ [1, n], we have:

∏
∀θ̃i∈Ψj

Pr[A(V (θ̃i)) = O(θ̃i)]

Pr[A(V ′(θ̃i)) = O(θ̃i)]
≤ exp[

∑
∀θ̃i∈Ψj

ϵ(θ̃i)]

∏
∀θ̃i∈Ψj

Pr[A(V (θ̃i)) = O(θ̃i)]

Pr[A(V ′(θ̃i)) = O(θ̃i)]
≥ exp[−

∑
∀θ̃i∈Ψj

ϵ(θ̃i)]

=⇒ e−ϵ ≤ Pr[A(V ) = O]

Pr[A(V ′) = O]
≤ eϵ (3.7)

Thus, this completes the proof.

Note that composing the sampled pixels would not result in additional leakage.

First, composing pixels with the same RGB is done within each individual sampling

(that satisfies differential privacy with the allocated budget for the RGB). Second,

composing pixels with different RGBs follows sequential composition. Thus, the sum

of the allocated budgets would be the privacy bound (total leakage), and there is no

additional leakage. Furthermore, in case of V ′ = V ∪ Υ, adding an arbitrary VE Υ

to V to generate V ′. Similarly, for all θ̃i, x̃i can also be derived from V ′ and V to

ensure differential privacy for pixel sampling.

3.4 Phase II: Video Generation

After sampling pixels in Phase I, the suppressed pixels in Case (1) and un-

sampled pixels in Case (3) do not have any RGB (see Figure 3.4). Then, Phase

II generates the utility-driven private video by estimating the RGBs for the miss-

ing pixels, and Phase III responds to the queries (over the private video) for video

analysis.
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sampled

in Case (3)

suppressed 

in Case (1) or

unsampled in 

Case (3)

retained

in Case (2)

frame t

Figure 3.4. Pixels after Sampling (Phase I)

For all the coordinates with a RGB value after sampling, the RGBs of such

pixels can be estimated using bilinear interpolation [83]. As discussed in Section

3.3.2, the allocated privacy budgets have been shown to optimize the utility of both

sampling and bilinear interpolation, e.g., the optimal number of RGBs selected in

each VE for sampling kj tends to minimize the expectation of MSE between the

utility-driven private video (after interpolation) and the original video. Thus, Phase

II can directly apply bilinear interpolation. For simplicity of notations, we consider

both retained pixels and sampled pixels as “sampled pixels”, and both suppressed

pixels and unsampled pixels as “unsampled pixels”. Specifically,

First, in the output video of Phase I, pixels (not on the border) have at most

4 neighbors in each frame; the pixels on the border of each frame (not corner) have

at most 3 neighbors; the pixels at the corner of each frame have at most 2 neighbors.

Second, the algorithm interpolates pixels in visual elements and the remaining pixels

(background), separately. For each interpolation, it traverses all the unsampled pixels

in all the frames (e.g., a specific visual element). If any unsampled pixel has any

sampled neighbor(s), the RGB for current unsampled pixel is estimated as the mean

of all its sampled neighbors. Third, if any unsampled pixel’s all the neighbors are

also unsampled, the algorithm skips such unsampled pixel in the current traversal.

The algorithm iteratively traverses all the skipped unsampled pixels. The algorithm
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terminates until every unsampled pixel is assigned with an interpolated RGB. In our

experiments, the interpolation terminates very quickly since the RGB of any pixel

can be readily estimated as long as it has at least one neighbor which is sampled

or previously interpolated. Finally, if any VE does not have a sampled pixel in any

frame, the interpolation of the pixels for the visual element in such frame will be

executed with the remaining pixels (background) V \
⋃n

j=1Υj.

3.5 Phase III: Video Analytics and Privacy Analysis

Similar to the framework of PINQ for data analytics [38], VideoDP can also

function most of the analyses performed on videos. If breaking down any video

analysis into queries, VideoDP (Phase III) directly applies the queries to the utility-

driven private video (which is randomly generated in Phase I and II) and return the

results to untrusted analysts. For any query created at the pixel, feature or visual

element level [84–86], VideoDP (Phase III) could efficiently respond the results with

differential privacy guarantee.

Theorem 2. VideoDP satisfies ϵ-differential privacy.

Proof. Recall that we have proven Phase I satisfies ϵ-differential privacy in Theorem

3. We now prove that Phase II and III do not result in additional privacy risks.

Since Phase I in VideoDP satisfies ϵ-DP, for any pair of neighboring videos

V and V ′, we have e−ϵ ≤ Pr[A(V )=O]
Pr[A(V )=O]

≤ eϵ. Such differential privacy satisfies ϵ-

probabilistic differential privacy [32,78], which also satisfies ϵ-indistinguishability dif-

ferential privacy [13,14] (bounding Pr[A(V ) ∈ S] and Pr[A(V ′) ∈ S] where S is any

set of possible outputs), as proven in [32,78].

Then, after applying VideoDP to inputs V and V ′, the outputs of Phase I are ϵ-

indistinguishable. Since the pixel interpolation (Phase II) and video queries/analysis
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(Phase III) are deterministic procedures applied to the output of Phase I (which

can be considered as post-processing differentially private results), the output O of

Phase II and the analysis/query results of Phase III derived from V and V ′ are also

ϵ-indistinguishable (“Differential privacy is immune to post-processing” was proven

in [37]). Thus, VideoDP also satisfies ϵ-DP.

The procedures and privacy guarantee in VideoDP can be interpreted as fol-

lows. Given any two videos V and V ′ that differ in any VE (e.g., a pedestrian), while

applying a randomization algorithm (i.e., Phase I-III in VideoDP) to V and V ′, re-

spectively, the possible outputs of sampling/obfuscating pixels (and post-processing)

from V and V ′ are guaranteed to be indistinguishable. Then, the adversaries cannot

identify if any VE (e.g., the pedestrian) is included in the input video or not (since

“including” or “not including” such VE does not result in significant difference in the

output). Such protection applies to any VE for any two neighboring videos V and V ′

(differing in a VE). Thus, all the sensitive VEs in any video can be protected by the

randomization (obfuscating the pixels in the video).

In the meanwhile, the utility-driven private video can maintain good utility to

allow useful computer vision algorithms to execute for the following reasons. First,

the sampling randomly generates a subset of pixels with the original coordinates

and RGBs in the output video, which are utilized for interpolating a video frame

by frame. Second, the pixels in the background scene but not in the sensitive VEs

are retained in the output video. Third, privacy budgets are allocated for different

RGBs to maximally preserve the utility in the output. For instance, VideoDP only

allocates budgets for the most representative RGBs in the VEs (given the privacy

bound). Then, computer vision algorithms may still recognize some objects (but not

the specific objects due to uncertainty) from the features extracted from the retained

pixels and interpolated pixels.
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3.6 Discussion

Relaxed Differential Privacy. Theorem 2 ensures that the analysis satisfies

ϵ-DP. Thus, similar to PINQ [38], all the aggregation-based queries (w.r.t. more than

one VE) could be protected with ϵ-DP in VideoDP. However, if querying on a specific

VE (e.g., a unique red car or license plate) which is not included in one of the two

neighboring videos, the protection requires another privacy bound δ to ensure (ϵ, δ)-

DP (Definition 2). Such additional privacy bound is also required in other contexts

(e.g., [32]). We will leave it for the future work.

Background Scene(s) as VE(s). If necessary, any part of the video can

be specified as a sensitive VE for protection, including the background scene(s). In

VideoDP, the failure of detection/tracking algorithms may occur (though the state-

of-the-art techniques could minimize such risks [87]). To avoid such risks, we can

consider the background scene as a VE (the “Background Scene(s) as VE” mode in

VideoDP). Specifically, in Phase I, the same sampling algorithm will be applied to

all the VEs by adding background VEs to Case (1), (2) and (3). Unique RGBs

in background VE(s) will be suppressed (same as other VEs), and budgets are also

allocated for non-unique RGBs in the background VE(s) using the same Algorithm

1 (same as other VEs). In Phase II and III, the same bilinear interpolation and

queries are applied. Thus, DP can be ensured for all the pixels in the video. We have

experimentally evaluated the performance of such strong protection in Section 3.7.

Defense against Correlations. Videos include a large number of sequential

frames, if protecting specific VEs in only one frame, the correlations in sequential

frames may also leak information to adversaries [88, 89]. Our VideoDP can address

such vulnerabilities since all the VEs in all the frames are protected using our privacy

notion – adding or removing any VE in any number of frames would not result in
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significant risks. From this perspective, the privacy notion is defined for the entire

period of the video, rather than a specific time. Thus, possible privacy leakage resulted

from correlations among multiple frames can be tackled.

System Usability. Similar to many smartphone Apps with face/object de-

tection, the detection/tracking algorithms for different types of VEs can be simply

integrated into VideoDP (in the preprocessing), and upgraded with newer algorithms

when necessary. Thus, both the video owner and the video analyst are not required

to be experts of computer vision. The video owner only needs to specify that what

types of visual elements (e.g., humans) should be protected. Then, the pre-processed

video can be sampled and interpolated (Phase I and II). After that, the utility-driven

private video will be generated and stored by the trusted server for external video

analyses (Phase III). The video analysts only need to submit the video name and

query (e.g.,<VEH, total vehicle#>), which may include additional parameters. The

trusted server will respond the query result with differential privacy.

3.7 Experiments

In VideoDP, we implement the VE detection/tracking algorithm in [35] through-

out the entire video. It first detects all the VEs in each frame, and then utilizes the

tensorflow training database to tag all the humans/objects, which are considered as

sensitive VEs. Each detected VE can be tracked with the same ID if their overlap

in multiple frames has exceeded a threshold. This method ensures a high detection/-

tracking accuracy [35]. We conduct our experiments on three video datasets in which

different VEs (with different sizes) are protected. Table 4.1 shows the characteristics

of the videos.

1. MOT [81]: 15 videos with different scenes. Sensitive VEs in these videos are

pedestrians and vehicles. We denote this dataset as “MOT”.
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Table 3.2. Characteristics of Experimental Datasets

Datasets Avg. Resolution Video # Avg. Frame #

MOT 1920× 1080 15 846

UAD 740× 480 24 180

BVD 2464× 2056 5 1200

2. UAD [90]: the UCSD anomaly detection dataset includes crowded pedestrians

as sensitive VEs. 24 different videos are captured at 2 different scenes. We

denote this dataset as “UAD”.

3. BVD [80, 91]: the Boxy [91] vehicle detection dataset includes over 200,000

sequential images at 5 different scenes such as sunny, rainy, and nighttime drive.

We take such sequential images (as videos) and a “highway” video [80]. We

denote them as “BVD”.

All the programs were implemented in Python 3.6.4 with OpenCV 3.4.0 library

[92] and tested on an HP PC with Intel Core i7-7700 CPU 3.60GHz and 32G RAM.

3.7.1 Evaluating Utility-driven Private Video.

Pixel Level Evaluation. We consider the RGB color model [36] by breaking

down the videos into pixels with RGBs at different coordinates (a, b) and frame t,

and then measure the differences between input V and output O. Specifically, we

evaluate two types of utility: (1) the difference between the count distributions of all

the RGBs in V and O, and (2) the difference between RGB values of all the pixels in

V and O.

First, considering the distributions of all the RGB counts ∀ci and ∀xi in the

input/output, we can measure the utility loss using their KL divergence. If the
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distribution of RGBs lie closes in the input and output, the performance of pixel

interpolation (estimating RGBs for unsampled pixels based on the RGBs of sampled

pixels) can be greatly improved [83]. For other measures, e.g., L1 norm, the output

counts of different RGBs might be biased towards certain RGBs with high counts

such that the interpolated RGBs might be significantly deviated.
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Figure 3.5. Pixel Level Utility Evaluation (three video datasets MOT, UAD and
BVD) – BG refers to “Background Scene(s) as VE(s)”

Second, after interpolating all the pixels in the Phase II of VideoDP, we mea-

sure the difference between all the pixel RGBs in V and O using the expectation of

mean squared error (MSE). The 3-dimensional RGBs are generally converted to gray

for measuring the MSE [93], which are normalized to values in [0, 1].
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Note that we will demonstrate the average of KL-divergence and MSE values in

different datasets, each of which includes multiple videos. Specifically, we conducted

two groups of experiments to test how ϵ influences the utility (ϵ=0.8,. . . , 2.8). As

discussed earlier, if necessary, VideoDP can define any part of the video including

the background scenes (pixel-level protection) as sensitive VEs. Then, we conduct

experiments for both cases (background scene(s) as sensitive VE(s) or not). Figure

3.5(a) and 3.5(b) present the KL divergence values for two cases, respectively. In all

the datasets, the results monotonically decrease while ϵ increases, and the results of

“background scene(s) as VE(s)” are larger than “background scene(s) not as VE(s)”

since more pixels can be preserved within background in the latter case.

In addition, we also evaluated the MSE of the output videos (after Phase

I, and after Phase II). Figure 3.5(c) and 3.5(d) show that the MSE (of the entire

video) declines as ϵ increases. This matches the fact that larger ϵ (with weaker

privacy protection) trades off less utility. Also, the MSE has been greatly reduced

after Phase II (comparing the results in Figure 3.5(c) and 3.5(d)), which greatly

improves the query accuracy for video analyses. We can also observe that the MSEs

of “background scene(s) as VE(s)” are larger since pixels in the background scenes are

sampled rather than fully retained.

Video Utility Evaluation. Detection and tracking accuracy (e.g., precision

and recall) is an important measure for utility evaluation. Considering the results ob-

tained from three original video datasets (MOT, UAD and BVD) as the benchmarks,

we test the precision and recall of detecting and tracking VEs in different outputs.

Precision returns the percent of true VEs out of all the detected/tracked results in

the videos. Recall returns the percent of detected/tracked true VEs out of all the

true VEs (the benchmarking results).

Specifically, we compare VideoDP with the method of blacking the detected
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VEs in the entire video (denoted as “Black”) in which the contours of VEs are detected

and pixels within the contours are assigned the black RGB (“000000”). Since the

classifiers in common detection algorithms (e.g., HOG [76], SIFT [94] and CNN [87])

primarily rely on the features rather than the contours, the detection accuracy is quite

close to 0. Then, we use the recent contour detection algorithm [95] in the experiments

instead, which can maintain a relatively good detection accuracy (i.e., around 80%).

However, the accuracy of tracking black contours across multiple frames is still quite

low (less than 20% of precision and recall in all the three video datasets MOT, UAD

and BVD) since the tracking algorithm cannot distinguish the VEs in multiple frames

(which are similar contours with black pixels). Figure 3.6 demonstrates the precision

and recall on a varying privacy budget ϵ (vs the low accuracy of “Black”). The

precision can always be high (close to 1), and the recall grows quickly as ϵ increases

(since a larger ϵ can generate more accurate random videos for analysis).
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Figure 3.6. Visual Elements Detection and Tracking

Based on the detection/tracking, we also empirically evaluate the utility of

queries over the VEs by benchmarking with Black and PINQ [38] in which the sen-

sitivity might be extremely large (e.g., queries involving the frames). The example

queries are set as “the number of frames with more than 15 pedestrians in each video of
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MOT, 10 pedestrians in each video of UAD, and 10 vehicles in each video of BVD, re-

spectively” where the results are averaged in each video dataset (similar performance

can be derived from other similar queries).

Figure 3.7 demonstrates the average counts of frames with 15+ pedestrians

in the MOT videos, 10+ vehicles in the BVD videos, and 10+ pedestrians in the

UAD videos, including the PINQ results, Black results, VideoDP results and original

results, respectively (different privacy budgets ϵ for PINQ and VideoDP). We can

observe that VideoDP returns more accurate results (also random) than PINQ, and

more accurate results than Black in general (only except the very small ϵ cases). Also,

in the Black results, the accuracy of counting the contours is highly reduced in the

videos in which VEs frequently overlap or there are more than one type of VEs (e.g.,

both pedestrians and vehicles are included in some videos in the MOT dataset).

3.7.2 Case Study: Video Queries/Analysis. The videos randomly generated

in VideoDP can function a wide variety of analyses (aggregation-based queries), such

as head counting, crowd density and traffic flow analysis [80, 81, 96]. We empirically

evaluate some representative queries for such analysis by benchmarking with the

PINQ platform [38] in specific videos (e.g., results in different frame) since different

VEs cannot be accurately tracked by the Black method these applications. We choose

three empirical videos (“MOT16-04” “MOT16-14” and “highway” [80]) from the MOT

and BVD datasets, with pedestrians, vehicles, and both. Then, the three videos are

denoted as “PED” “VEH” and “PV”, respectively. Note that all the queries satisfy

ϵ-DP in the following case study.

(1) VE Stay Time (Large Sensitivity). Besides the queries on counting,

VideoDP can also privately return query results based on detected/tracked VEs in

different applications. For instance, a query returns “how long each pedestrian/vehicle

stays in the video” (namely, stay time) which can be measured by the number of frames
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Figure 3.7. Average Frame Counts with 15+ VEs in MOT Videos, 10+ VEs in UAD
Videos, and 10+ VEs in BVD Videos
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involving each VE. Then, pedestrians/vehicles are detected/tracked in all the frames,

and then query results can be computed and returned for private analysis. Since too

many groups of fine-grained empirical results may mess up the plots (e.g., in Figure

3.8), we only show three groups of results for ϵ = 0.8, 1.6 and 2.4, which represent

small, medium and large ϵ, respectively. Other groups of results lie between them.

• Pedestrians. In PED, 83 pedestrians are walking on the street. How long

each pedestrian stays in the video can be utilized to learn the human behavior.

Figure 3.8 presents the original results, PINQ results and VideoDP results for

the PED. The 83 pedestrians in the PED (marked on the x axis), and the stay

time is ranked from short to long (see the red curve in two subfigures). In PINQ

(Figure 3.11(c)), the stay times of all the pedestrians are overly obfuscated even

if ϵ is large since sensitivity ∆ should be set as 60 (for even longer videos, ∆

should be larger). Nevertheless, VideoDP significantly outperforms PINQ. As

shown in Figure 3.11(d), in case of ϵ = 0.8 (small privacy budget), approxi-

mately 40 distinct pedestrians are detected in the result. Although not all the

pedestrians are sampled in VideoDP, the distribution of all the stay times (of

the pedestrians) still lies close to the original result. The results of ϵ = 0.8

show less pedestrians in the x-axis than other two groups of results (ϵ = 1.6

and 2.4) since many pedestrian cannot be detected for small ϵ. As ϵ increases

to 1.6, VideoDP results are close to the original results (however, PINQ results

are still fluctuated).
• Vehicles. In the VEH, there are 115 distinct vehicles driving on the highway.

We define the two-way moving directions as “upstream” and “downstream”. Fig-

ure 3.9 demonstrates the length of time the vehicles stay in the video (upstream

and downstream), which can be utilized to estimate the moving speed of ve-

hicles, queue length estimation, etc. We can draw similar observations for the

stay times of vehicles for both moving downstream and upstream directions in
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Figure 3.8. Pedestrian Stay Time in PED
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Figure 3.9. Vehicle Stay Time in VEH
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Figure 3.10. Pedestrian and Vehicle Stay Time in PV

the VEH. VideoDP also significantly outperforms PINQ.

• Pedestrians and Vehicles. In the PV, there are 157 distinct pedestrians and

7 vehicles. Figure 3.10 demonstrates the length of time the pedestrians and

vehicles stay in the video. It presents similar trends.

(2) VE Density (Small Sensitivity). We also conduct empirical studies to

compare VideoDP and PINQ on queries with a smaller sensitivity. For instance, the

vehicle density query returns the vehicle count in each frame of the video (sensitivity

∆ = 1), which can also facilitate the analyst to learn the traffic flow. Figure 3.11

shows the count of vehicles in each frame of VEH and pedestrians of PV, including
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Figure 3.11. VE Count in Each Frame

the original results, PINQ results and VideoDP results (where ϵ = 0.8, 1.6 and 2.4).

Note that every vehicle only appears in a few frames of the video in VEH (see Figure

3.11(a) and 3.11(b)). The noisy results are both acceptable in PINQ (∆ = 1) and

VideoDP. However, the counts of vehicles are more fluctuated in PINQ as ϵ is small.

We can draw similar observations in Figure 3.11(c) and 3.11(d).

3.7.3 Deep Learning Attack. We also perform the CNN based attacks [60] to

demonstrate VideoDP’s protection against deep learning, though VideoDP does not

directly reveal videos/frames to analysts (DP algorithms reveal the query results in

general). Assuming that the adversary has known everything about specific VE(s),
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and tries to re-identify such VE(s) in the output videos (notice that, for each output

video of VideoDP which is random, we generate 20 videos). We compare the perfor-

mance of VideoDP with the Mosaic blurring method against the CNN attack [60].

Mosaic blurring considers each square of pixels (a.k.a., “pixel box”) as the mosaic

window, computes the average color of every pixel in each square, and sets the entire

square as that color. In the experiments, we set privacy budget ϵ as 0.8, 1.2, 1.6 and

2.4 in VideoDP, and the sizes of pixel boxes as 2×2, 4×4, 8×8 and 16×16. Table 3.3

shows the average accuracy of successfully identifying such VE(s) from the random

outputs of VideoDP and the videos sanitized by Mosaic blurring. For all different ϵ,

the VE(s) cannot be identified with high confidence, compared to Mosaic blurring.

Table 3.3. Accuracy of the CNN Attack (%).

Video Mosaic (Pixel Box Sizes for Blurring)

Datasets 2× 2 4× 4 8× 8 16× 16

MOT 97.45 91.33 89.75 64.75

UAD 99.23 95.47 92.25 76.25

BVD 85.78 75.62 63.14 44.39

Video VideoDP (ϵ)

Datasets 0.8 1.2 1.6 2.4

MOT 3.62 5.96 12.96 16.47

UAD 4.93 11.27 16.22 19.78

BVD 5.34 7.54 18.77 21.41

3.7.4 Scalability. We also evaluate how video length affects the performance of

VideoDP (frames in UAD videos are repeated to synthesize longer videos). First, in
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Figure 3.12. Performance vs. Video Length (ϵ = 1.6)

Figure 3.12(a) and 3.12(b) (ϵ = 1.6), the KL and MSE values slightly change as the

length of three sets of videos increases. Second, as the number of frames increases,

the detection accuracy (recall) slightly increases for all the three videos (see Figure

3.12(c)). Third, we have also evaluated the runtime of VideoDP. Figure 3.12(d) shows

a linear runtime trend on the video length, which provides sufficient efficiency for ran-

domly generating longer high-resolution videos (e.g., 1920×1080). For longer videos,

we can split the input video into multiple fragments (e.g., 1 minute per fragment).

Then, we can still apply VideoDP to efficiently sanitize all the fragments which are

integrated later. In many videos (e.g., traffic monitoring videos), VEs move rapidly

and appear in the video for a few seconds. Then, fragmentation, generation and in-
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tegration would not affect the privacy. Finally, in each video, all the VEs may have

different sizes. While VEs are moving, the size of the same VE may also vary in

different frames. VideoDP protects all the VEs (including all the pixels of each VE

in all the frames). VideoDP generates good utility for all the videos with different

VE sizes.

3.8 Conclusion

In this paper, to our best knowledge, we take the first step to study the problem

of video analysis with differential privacy guarantee. Specifically, we have proposed a

new sampling based differentially private mechanism to generate utility-driven private

videos for any private analysis. The proposed VideoDP has also provided a flexible

platform for untrusted analysts to privately conduct any kind of query/analysis over

the randomly generated utility-driven private video. We have proven the differnetial

privacy guarantee, and conducted extensive experiments to validate the performance

of VideoDP by benchmarking the results with the PINQ-based video analyses. The

experimental results have demonstrated superior utility in different analyses.
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CHAPTER 4

PUBLISHING VIDEO DATA WITH INDISTINGUISHABLE OBJECTS

In this Chapter, I present the framework Verro which can release synthetic

videos instead of the query-based video platform in details, which includes the intro-

duction, preliminaries, privacy model, framework, discussion and experiments [2].

4.1 Introduction

Recall that, in today’s society, millions of videos are generated and shared ubiq-

uitously every day through various means such as dedicated facilities, traffic cameras,

and smartphones. The availability of such video data provides an unprecedented op-

portunity for enhancing human interactions and benefiting the community. However,

it also raises serious privacy concerns, as sharing these videos can potentially expose

personal information of individuals, which can lead to various privacy violations.

To address the issue of privacy in video data, several approaches have been

proposed. One such approach is the development of privacy-preserving video query

analytic platforms, such as VideoDP. The goal of such platform is to provide privacy

protection for video queries, which can be a useful tool for retrieving specific infor-

mation from video datasets. However, it is important to note that video queries may

not be suitable for all video analysis tasks, as the information they can provide by

queries is very limited.

For example, when analyzing a video dataset to detect anomalies or unusual

events, a video query may only return the number of unusual events in the video, but

may not provide any additional information about the nature of these events. In such

cases, releasing the video directly may be more appropriate. However, directly releas-

ing the video may involve privacy concerns related to the objects, such as pedestrians

and vehicles, within the video.
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To address the limitations of privacy-preserving video query analytic plat-

forms, such as VideoDP, a new framework called Verro has been proposed. Re-

call that videos differ from many other data (e.g., statistical databases [13], location

data [18], search logs [22]) - a local video may include numerous objects corresponding

to multiple different individuals, e.g., many pedestrians are recorded in a single video,

and many vehicles (w.r.t. different drivers) are recorded in the same video. A video

includes the “local data” of many individuals (e.g., humans) which will be shared to

the untrusted recipients via the video owner. Verro ensures ϵ-object indistinguisha-

bility for any video and generates synthetic videos for any untrusted recipients. thus

enhancing privacy protection in video data. Thus, the primary difference between

ϵ-Object Indistinguishability and the original definition of LDP [29–31] is that the

video owner locally perturbs data for all the objects rather than letting the objects

execute perturbation (as shown in Figure 4.1).

untrusted
recipientsVideo

- Object 
Indistinguishability

Object 1
Object 2

Object 3

…

Video Owner

All the objects’ local data (object contents and trajectories in 
the video) are locally perturbed (by the video owner)

Figure 4.1. Verro: Ensuring Object Indistinguishability in the Video Data Sanitiza-
tion

In conclusion, choosing the appropriate privacy-preserving video analysis tech-

nique will depend on the specific task and the characteristics of the video data.

While video queries can be a useful tool for retrieving specific information from video

datasets, they may not be suitable for all video analysis tasks. To address privacy

concerns related to video data, privacy-preserving video query analytic platforms and

synthetic video generation are both required.
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4.2 Preliminaries

In this section, we first describe the adversary model, then define our privacy

notion, and finally provide a general overview of our proposed approach Verro.

4.2.1 Adversary Model. Denote a video by V which is captured by a video owner

(e.g., a hospital or a company equipped with CCTV surveillance, an agency which

captures the video on the street). Video V (all the frames) includes a set of n sensitive

objects O = {O1, O2, · · · , On} (e.g., humans, vehicles). Assume that the video owner

would like to share V to an external party for analysis (viz. the adversary). To ensure

privacy, instead of directly sending V , our proposed Verro (randomly) generates a

synthetic video V∗ which is close to V , such that:

• Each sensitive object in all the frames satisfies ϵ-Object Indistinguishability –

the adversary cannot distinguish any two objects from the output synthetic

video V∗ with arbitrary background knowledge.

• The synthetic video V∗ retains good utility (close to V).

In Verro, we assume that the adversaries can possess arbitrary background

knowledge on each object at the scene (e.g., the object content, the trajectories, at-

scene times, gathering groups of objects). To retain the output utility, Verro does

not change the background scene(s) of the video, but the privacy model can break

the linkage between each object and the background scene(s) via indistinguishability.

With privacy guarantee for all the objects (making them indistinguishable),

Verro regularly generates synthetic videos for videos including sensitive objects

w.r.t. multiple individuals (e.g., pedestrians, vehicles). Even though the video in-

cludes only one sensitive object, the adversary still cannot re-identify the object (as

discussed in Section 3.6). In addition, Verro only addresses the visual privacy con-
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cerns, assuming that the adversary cannot identify objects from the audio or audio

is not captured (e.g., traffic monitoring, video surveillance).

…

…

Input Video (object detected)

Key Frames of Segments

……

Background Scene(s)

…

Frame 
Dimension 
Reduction 

Optimizing 
RAPPOR for 

Object Presence

Phase I Phase II

Interpolating Trajectories 
(using randomly assigned 

coordinates)

…

Synthetic Objects

Background Scene(s)

Figure 4.2. Verro for Utility-Driven Synthetic Video Generation with Object Indis-
tinguishability

4.2.2 Privacy Notion. Traditional Privacy Model: video V includes multiple

sensitive objects O1, . . . , On, each of which can be detected and marked using the

same object ID in all the frames. Specifically, we can detect objects (e.g., pedestrians,

vehicles) using the tracking algorithm [35,97]. It first detects all the sensitive objects

in each frame with the existing detection algorithm (e.g., HOG for human [98], SVM

for vehicles [99]). Each detected object can be tracked with the same ID if their

overlap in multiple frames has exceeded a threshold (it has a high detection/tracking

accuracy [35]).

The traditional privacy models are defined to blur all the detected objects

[52–54, 71, 72]. An alternative solution could be replacing the detected objects with

“synthetic objects” [100, 101]. Each object can be replaced by a unique synthetic

object: for instance, a red synthetic human and a purple synthetic human can be

used to represent two different pedestrians in all the frames involving them. Then,

the inferences and re-identification visually from the objects can be greatly mitigated

using such traditional privacy models.

ϵ-Object Indistinguishability for Sensitive Objects: Recall that only

replacing the objects with synthetic objects in the video cannot address the re-
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identification based on the adversaries’ background knowledge (as discussed in Chap-

ter 1). Thus, we need to ensure indistinguishability for not only objects themselves

(can be achieved by synthetic objects) but also their moving trajectories [102] in the

video.

To this end, inspired from the indistinguishability provided by the ϵ-LDP, we

define a novel privacy notion ϵ-Object Indistinguishability by considering each object’s

trajectory in the video (coordinates at different frames) as its “local data”. Specifically,

in the standard LDP definition [29–31], there are a set of users, each of which has

its own data. After each user locally perturbs its data, the obfuscated output can be

directly disclosed to any untrusted recipient/aggregator, where the randomized data

collected from any two different users are indistinguishable [29,31,103]. Migrating the

LDP model to the objects in any video V , we define the ϵ-Object Indistinguishability

as below:

Definition 3 (ϵ-Object Indistinguishability). A randomization algorithm A satisfies

ϵ-Object Indistinguishability, if and only if for any two input objects Oi, Oj ∈ O in

the input video V, and for any output object of A in the synthetic video V∗ (denoted

as y), we have Pr[A(Oi) = y] ≤ eϵ · Pr[A(Oj) = y].

Notice that, similar to ϵ-LDP [29], ϵ-Object Indistinguishability also focuses

on the indistinguishability of randomizing any two objects, rather than the indistin-

guishability of randomizing any two neighboring inputs (whether any object is in-

cluded or not included in the input) in traditional differential privacy setting [13].

Privacy budget ϵ decides the degree of indistinguishability (which is identical to

LDP [29]).

Definition 3 guarantees that the randomly perturbed output of any two ob-

jects in V (both the object contents and the trajectories in all the frames) are ϵ-
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indistinguishable in V∗. It also ensures plausible deniability for every object [104].

Since ϵ-Object Indistinguishability also requires all the objects to be visually indis-

tinguishable (object contents), Verro randomly assigns synthetic objects (e.g., the

same shape but different colors) to replace the original distinct objects while gen-

erating the synthetic video V∗. The synthetic objects are generated and placed by

considering the distance of the object to the camera (e.g., the size of the synthetic

object is larger if it is closer to the camera) [105].

4.2.3 Verro Framework. We now illustrate the major components of Verro:

1. Preprocesssing: all the objects are detected and tracked, and background

scene (for each frame) is extracted using computer vision techniques [35,97,106].

2. Phase I: for each object, its presence or absence in different frames/segments of

the video are randomly generated (by random response) to be indistinguishable.

Before executing random response, Verro reduces the frame dimension in the

video by detecting the key frames in the video. Then, the utility can be improved

by allocating optimal budgets for different dimensions. Furthermore, we also

formulate a utility maximizing random response problem (optimizing RAPPOR

[29]) to retain the optimal object presence information after Phase I. Note that

this phase satisfies ϵ-Object Indistinguishability : all the objects’ presence in all

the frames are indistinguishable. Details are given in Section 4.2.3.

3. Phase II: with the randomly generated presence/absence information for each

object, Verro generates the synthetic video by inserting the synthetic objects

into the video (background scene(s)). Specifically, the coordinates (where to

insert the synthetic objects) are assigned, and computer vision techniques are

applied to interpolate object moving trajectories between two assigned coor-

dinates in the synthetic video. We also shown that Phase II does not leak
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any additional information (as a post-processing step [37]), and then Verro

satisfies ϵ-Object Indistinguishability. Details are given in Section 4.4.

As the “local data” of each object (e.g., a pedestrian or vehicle) in the video

V , the object trajectory includes its presence or absence information in each frame

and the coordinates in the frame (if present). In this section, we illustrate the Phase

I of Verro that first generates indistinguishable object presence.

4.3 Phase I: Optimal Object Presence

4.3.1 Poor Utility with Random Response (i.e., RAPPOR [29]) for Object

Presence. We first define a bit vector for each object to indicate if such object is

included in different frames or not:

Definition 4 (Object Presence Vector). Given video V which includes m different

frames F1, . . . , Fm and n distinct objects O = {O1, ..., On}, whether each object Oi, i ∈

[1, n] is present in frame Fk, k ∈ [1,m] or not (all m frames) can form a bit vector:

Bi = (b1i , .., b
m
i ) ∈ {0, 1}m for object Oi.

It has been proven that a classic randomized response (RR) technique (e.g.,

RAPPOR [29,30]) can be adapted to ensure ϵ-LDP for locally randomizing bit vectors.

Similarly, a naive solution of ensuring ϵ-Object Indistinguishability for the object

presence vectors is to directly the random response mechanism (we will discuss how

to optimize the utility in Section 4.3.2 and 4.3.3). For each object Oi ∈ O, i ∈ [1, n],

if object Oi exists in frame Fk, we set bki = 1, k ∈ [1,m]. Otherwise, bki = 0 holds in

the vector Bi. Then, we flip one bit in vector Bi, i ∈ [1, n] with a certain probability

to report the true value. Then, all the perturbed bits in the object presence vector Bi

can be combined as the output object presence vector for object Oi. Thus, the vectors

B1, . . . , Bn (of all the objects) can be indistinguishable. Algorithm 2 [29] shows the

details.
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Algorithm 2 Random Response for Object Presence [29]
1: detect all the objects O = {O1, . . . , On} in V

2: for each Oi, i ∈ [1, n] do

3: collect the object presence vector Bi = (b1i , .., b
m
i ) in V

4: for each frame Fk, k ∈ [1,m] do

5: equally allocate budget ϵ/m to frame Fk

6: random response for bit bki with the probability eϵ/m

1+eϵ/m

7: end for

8: Bi ← (b1i , ..., b
m
i )

9: end for

10: Return ∀i ∈ [1, n], Bi

Theorem 3. Algorithm 2 randomly generates object presence vectors for objects with

ϵ-Object Indistinguishability.

Proof. ϵ-Object Indistinguishability can be proven by following the proof of ϵ-LDP

with random response [29]. Given the object presence vectors Bi = {b1i , . . . , bmi } and

Bj = {b1j , . . . , bmj } of any two objects Oi, Oj ∈ O, for any possible output m-bit vector

y = (y1, . . . , ym), we have:

Pr[A(Bi) = y]

Pr[A(Bj) = y]
=

Pr(b1i = y1)

Pr(b1j = y1)
· · · Pr(bmi = ym)

Pr(bmj = ym)
(4.1)

Since each bit is allocated with an equal privacy budget ϵ/m, the flipping

probability would be eϵ/m

1+eϵ/m
[29]. For k ∈ [1,m], if bki = bkj (either 0 or 1), then

Pr(bki =yk)

Pr(bkj=yk)
always equals 1. If bki ̸= bkj and bki = yk, thus we have:

Pr(bki = yk)

Pr(bkj = yk)
=

e
ϵ
m

1 + e
ϵ
m

· (1 + e
ϵ
m ) = e

ϵ
m (4.2)
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Similarly, if bki ̸= bkj and bkj = yk, we have Pr(bki =yk)

Pr(bkj=yk)
= e−ϵ/m. Then, we have

∀k ∈ [1,m],
Pr(bki =yk)

Pr(bkj=yk)
≤ eϵ/m (equals one of 1, eϵ/m and e−ϵ/m ). Combining all m bits,

we have:

Pr[A(Bi) = y]

Pr[A(Bj) = y]
≤ eϵ (4.3)

Thus, the generated presence bit vectors satisfy ϵ-Object Indistinguishability. This

completes the proof.

Poor Utility. Although Algorithm 2 satisfies ϵ-Object Indistinguishability,

the utility of synthetic video would be extremely low since the total number of frames

in a video m can be thousands or more, and then the allocated budget for each frame

would be negligible. It destroys the utility of random response (i.e., RAPPOR [29]).

For instance, a vehicle occurs in 100 frames out of a 1000-frame video, then the

privacy budget for each frame is ϵ/1000, which makes the flipping probability close to

0.5. Then, each of the 1000 frames would have 50% probability to include the vehicle

(and other vehicles), then the objects in the video are too random (extremely low

utility at this time). Thus, we explore an alternative solution for the video data in

Section 4.3.2 and 4.3.3.

4.3.2 Dimension Reduction in the Video. Recall that the limited utility in

Algorithm 2 results from the high dimensions in the video (considering each frame as

a dimension). Most existing LDP techniques (e.g., RAPPOR [29], succinct histogram

[30], LDPMiner [107], PLDP [45]) have reduced the dimension (e.g., bloom filter

reduces the bits dimension for RAPPOR, top k frequent items reduces the dimension

of items in LDPMiner [107], Johnson-Lindenstrauss transform reduces the dimension

of location data [45]). In videos, since difference between two consecutive frames is

very small, we extract the key frames [108–110] out of m frames from V to reduce
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dimension in Verro.

Key Frame Extraction. In computer vision, many existing shot detection

and key frame extraction algorithms have been proposed based on the boundary

method [108], motion analysis [109], clustering [110], among others. Since algorithms

based on clustering has been shown to generate more accurate results [110], we inte-

grate it into Verro for dimension reduction. The basic idea is to divide the video

into several groups and the frames in same group are similar. The algorithm [111]

first transforms each pixel RGB value to construct the HSV (hue, saturation, value)

histogram for each frame, and then calculates the pixel distribution in terms of hue,

saturation, value, respectively. Each cluster is initialized with a new frame, and ex-

panded by adding new consecutive frames which are similar to the existing frames

(measured by the HSV histograms). After the clustering, each cluster includes a group

of consecutive frames, which can be considered as a segment of the video. Finally, a

key frame can be extracted from each cluster/segment. The details are illustrated in

Algorithm 3.

As a result, the key frame can be utilized to represent every segment. Then,

the m-bit object presence vectors (for all the objects) can be reduced to ℓ-bit vectors.

For instance, key frames F1, . . . ,Fℓ (where ℓ denotes the number of key frames, and

ℓ ≪ m in general) are extracted from V . Object Oi’s presence vector Bi can be

reduced to B′
i = (kb1i , · · · , kbℓi).

Random Response. After dimension reduction, random response can be

implemented based on the RAPPOR framework [29] for each object. Each bit kbki in

ℓ-bit vector of object Oi is randomly flipped into 0 or 1 using the following rules:
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Algorithm 3 Segmentation and Key Frame Extraction
1: initialize the first segment S1 = F1, segment index i = 1

2: equally partition H, S, V value ranges to h, s and v parts

3: for each frame Fk, k ∈ [2,m] do

4: for each part ĥ, ŝ, v̂ in H, S, V do

5: construct the histograms H(ĥ), S(ŝ), V (v̂) in frame Fk

6: end for

7: SimH(Fk, Si) =
∑h

ĥ=1
min{H(ĥ), Si[H(ĥ)]}

8: SimS(Fk, Si) =
∑s

ŝ=1min{S(ŝ), Si[S(ŝ)]}

9: SimV (Fk, Si) =
∑v

v̂=1min{V (v̂), Si[V (v̂)]}

{α, β, γ: weights for H, S, V; similarity threshold: τ}

10: if (α · SIH + β · SIV + γ · SIS) ≥ τ then

11: Si ← Si ∪ Fk

12: else

13: i = i+ 1 and initialize a new segment Si

14: Si ← Si ∪ Fk

15: end if

16: end for

17: for each segment Si do

18: compute the maximum frame entropy Entropy(F ):

19: max {−α ·
∑h

ĥ=1
[H(ĥ) logH(ĥ)]− β ·

∑s
ŝ=1[S(ŝ) logS(ŝ)]− γ ·

∑v
v̂=1[V (v̂) log V (v̂)]}

20: extract the key frame with maximum entropy Fi in Si

21: end for

22: return all the segments and key frames

kbki =


kbki , with the probability of (1− f)

1, with the probability of f
2

0, with the probability of f
2

(4.4)
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Theorem 4. The random response (with rules in Equation 5.1) ℓ log(2−f
f
)-Object

Indistinguishability.

Proof. Again, object indistinguishability can be proven by following the proof of

LDP [29]. Specifically, the RAPPOR [29] satisfies 2h log(2−f
f
)-LDP with the output

size of the hash function in the bloom filter h and the flipping probability f . Maximum

difference sizes are 2h between two input values. Thus, the random response (with

rules in Equation 5.1) make ϵ equal to ℓ log(2−f
f
) since size difference in any two

presence vector is at most ℓ (by replacing the encoded bit vectors of bloom filter

as the object presence vectors in RAPPOR [29]), which satisfies ℓ log(2−f
f
)-Object

Indistinguishability.

4.3.3 Optimizing RAPPOR for Object Presence. Although ℓ is far less

than m, the number of key frames ℓ may still be large depending on the background

scene(s), activity motion and light density. To solve this, we can further reduce the

dimension by choosing a subset of key frames out of ℓ key frames to allocate the

privacy budget. Indeed, determining whether each key frame is picked for allocating

the privacy budget or not can be formulated as an optimization problem (maximizing

the utility of generating the synthetic video using the random object presence vectors

in Phase II ).

Optimization Problem. For each key frame Fk, k ∈ [1, ℓ], we define a

binary variable xk ∈ {0, 1}, k ∈ [1, ℓ] to represent if key frame Fk is picked for budget

allocation or not. Then, the total number of picked key frames is referred as
∑ℓ

k=1 xk.

Per the Theorem 4, we have the random response satisfies
∑ℓ

k=1 xk log(
2−f
f
)-Object

Indistinguishability.

An example for dimension reduction, utility maximization and random re-

sponse is given in Figure 4.3. Considering the n objects O1,. . . , On, after dimension
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Figure 4.3. Dimension Reduction, Utility Maximization and Random Response

reduction, all the n object presence vectors are reduced to n different ℓ-bit vectors.

Our goal is to accurately retain more objects in the video, thus we aim at minimizing

the distance between ∀i ∈ [1, n], B′
i (extracted from V) and ∀i ∈ [1, n], Ri (denoted as

the ℓ-bit vectors by applying random response to ∀i ∈ [1, n], B′
i).

Specifically, since ∀i ∈ [1, n], Ri are randomized bit vectors (the kth entry

in all the vectors are 0 if xk = 0), we should measure the difference between the

expectation ∀i ∈ [1, n], E(Ri) = E[(R1
i , . . . , R

ℓ
i)] and B′

i = (kb1i , . . . , kb
ℓ
i). We first

learn the expectation of Rk
i (the kth entry in Ri). If xk = 0, then ∀i ∈ [1, n], Rk

i = 0

hold. Thus, we have:

E(Rk
i ) = xk · [Pr(Rk

i = 1) · 1 + Pr(Rk
i = 0) · 0] (4.5)

There are two cases for Rk
i (in case of xk = 1):



62

1. If kbki = 1, per Equation 5.1, we have E[Rk
i ] = 1 · [(1− f) · 1 + f

2
· 0 + f

2
· 1].

2. If kbki = 0, we have E[Rk
i ] = 1 · [(1− f) · 0 + f

2
· 0 + f

2
· 1].

Thus, the expectation can be summarized as following:



E(Rk
i ) =

f
2 , if xk = 1 and kbki = 0

E(Rk
i ) = 1− f

2 , if xk = 1 and kbki = 1

E(Rk
i ) = 0, if xk = 0 and kbki = 0 or 1

(4.6)

The objective function can be formulated as:

min :
ℓ∑

k=1

n∑
i=1

|E(Rk
i )− kbki | (4.7)

Furthermore, for accurately interpolating the objects in different frames in

Phase II, the number of key frames picked for each object should be no less than 2.

Therefore, we formulate the optimization problem as below:

min :

ℓ∑
k=1

n∑
i=1

|E(Rk
i )− kbki |

s.t.


∀i ∈ [1, n], 2 ≤

∑ℓ
k=1R

k
i ≤ ℓ,

∀k ∈ [1, ℓ], xk ∈ {0, 1}

(4.8)

Detailing expectation E(Rk
i ) with the flipping probability, the optimization

problem can be converted to:
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min :

ℓ∑
k=1

n∑
i=1

|xk · |kbki −
f

2
| − kbki |

s.t.


∀i ∈ [1, n], 2 ≤

∑ℓ
k=1R

k
i ≤ ℓ,

∀k ∈ [1, ℓ], xk ∈ {0, 1}

(4.9)

Complexity and Solver. Since f and ∀k ∈ [1, ℓ],∀i ∈ [1, n], kbki are con-

stants, ∀k ∈ [1, ℓ], |kbki −
f
2
| are constants. Then, Equation 4.9 is a binary integer pro-

gramming (BIP) problem. Although solving the BIP problems can be NP-hard [112],

we can approximately solve Equation 4.9 using linear programming (LP) since the

objective function and the constraints are linear : (1) letting the binary variable

∀k ∈ [1, ℓ], xk be continuous in [0, 1], (2) solving the problem using standard LP

solvers (e.g., the Simplex algorithm), and (3) in the optimal solution of the LP prob-

lem, ∀k ∈ [1, ℓ], if xk ∈ [0, 0.5), we assign xk = 0; if xk ∈ [0.5, 1] we assign xk = 1 as

the approximated optimal solution of the BIP problem.

Addressing Possible Privacy Leakage in Optimization. Compared to

randomly picking a number of key frames for budget allocation, computing the opti-

mal frames for budget allocation may result in some minor privacy leakage since the

total number of objects in the kth key frame
∑n

i=1 kb
k
i , k ∈ [1, ℓ] (which is used in

the optimization) might be different. Such privacy leakage is generally minor due to

a small sensitivity ∆ of the object count in each frame (e.g., ∆ = 1 for protecting

the presence/absence of each object in every frame). Thus, it can be addressed by

injecting a small amount of generic Laplace noise Lap(∆
ϵ′
) into

∑n
i=1 kb

k
i , k ∈ [1, ℓ]

before formulating the optimization problem. Although adding such small amount

of noise may slightly deviate the optimality, this could guarantee end-to-end indis-

tinguishability (differential privacy). Since such privacy guarantee is well studied in

literature [13], we do not discuss it in this paper due to space limitation.
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4.3.4 Privacy Guarantee. After solving the optimization problem, as shown

in Figure 4.3, each of the picked key frames will be allocated with a privacy budget

ϵ/
∑ℓ

k=1 xk. In the meanwhile, Verro utilizes the optimal solution ∀k ∈ [1, ℓ], xk n to

derive the optimal presence vectors (
∑ℓ

k=1 xk-bit), denoted as B∗
1 , . . . , B

∗
n. Next, ran-

dom response is applied to B∗
1 , . . . , B

∗
n to generate output presence vectors R1, . . . , Rn.

Theorem 5. Phase I satisfies ϵ-Object Indistinguishability.

Proof. Phase I derives the presence bit vectors B∗
i and B∗

j for any two objects Oi

and Oj after the optimization. Then, random response is applied to B∗
i and B∗

j

and generate random vectors Ri and Rj. Per Theorem 4, Phase I satisfies ϵ-Object

Indistinguishability where ϵ =
∑ℓ

k=1 xk ln
2−f
f

(note that the privacy guarantee for

utility maximization has been discussed in Section 4.3.3).

It is worth noting that the presence of objects in the remaining (m−
∑ℓ

k=1 xk)

frames and the coordinates of the objects in all m frames in the synthetic video V∗

will be generated in Phase II.

4.4 Phase II: Video Generation

In this section, we illustrate the details of Phase II.

4.4.1 Background Scene(s). As discussed in Section 4.2, video preprocessing

includes detecting/tracking objects and background scene(s) extraction. While re-

moving objects from digital images (e.g., each frame of a video), the pixels within

the objects are missing in the frame and need to be reconstructed for the background

scene(s). In Verro, we utilize an efficient algorithm [106] to fill the blank area by

considering both texture and structure.

First, the quality of the output image/frame highly depends on the order of

filling different parts of the blank areas. The algorithm provides a filling strategy
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by prioritizing them using the combination of the continuation of strong edges and

high-confidence surrounded pixels. The priority is computed for every border patch,

with distinct patches for each pixel on the boundary of the blank areas. Then, we

always start filling at the border pixels with the highest priority.

Second, while filling the pixel p, the algorithm places it at the centroid of a

patch with certain size (e.g., 3× 3). Then, we traverse all the background pixels, and

the centroid pixel of the most similar patch from the source background region will

be filled in p, where the similarity is measured by the sum of squared errors. Some

reconstructed background scenes are demonstrated in Section 3.7.

4.4.2 Randomly Generating Object Coordinates. Phase I generates indis-

tinguishable presence information (in different frames) for all the objects. Next, we

need to insert synthetic objects into the background scene (each frame) to generate

the synthetic video V∗. Specifically, we denote all the frames in the synthetic video

V∗ as {F ∗
1 , . . . , F

∗
m}, and the frames in V∗ corresponding to the original key frames

as {F∗
1 , . . . ,F∗

ℓ }. We then discuss different cases of generating coordinates for the

objects in each frame.

(1) Ri = ∅. If all the entries in any object presence vector are 0, such random vector

output Ri would result in object loss (the synthetic video will lose one object), and

it is unnecessary to identify the coordinates for them in this case. We have evaluated

such utility loss in Section 3.7, and most of the objects can be retained by Verro in

practice.

(2) Ri ̸= ∅. If there exist at least one non zero entry in Ri, then an object will be

inserted to the synthetic video V∗. A critical and challenging question is that where

to insert the object. We employ the coordinates of all the objects in the original

video V as “Candidate Coordinates” to generate the coordinates in each frame of the
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synthetic video.

Specifically, in each key frame of the synthetic video ∀k ∈ [1, ℓ],F∗
k , the number

of objects inserted into key frame F∗
k is

∑n
i=1R

k
i (derived in Phase I). Denoting the

number of objects in the kth key frame of V as ck, k ∈ [1, ℓ] where ck = 0 if xk = 0,

we thus have:

• Sufficient candidate coordinates : if
∑n

i=1R
k
i ≤ ck, the number of required ob-

jects in F∗
k is no greater than the number of candidate coordinates in Fk. Then,

Verro randomly picks
∑n

i=1R
k
i out of ck candidate coordinates for

∑n
i=1 R

k
i

different objects in the background scene (frame F∗
k ). Please see the left example

in Figure 4.4.

• Insufficient candidate coordinates : if
∑n

i=1R
k
i > ck, the number of required

objects in F∗
k is greater than the number of candidate coordinates in Fk. For

instance, in the right example in Figure 4.4, we expand the set of candidate

coordinates by adding the candidate coordinates in Fk’s neighboring frames in

the same segment. Then, Verro randomly picks
∑n

i=1R
k
i out of c′k candidate

coordinates (c′k is expanded from ck where ck <
∑n

i=1 R
k
i ≤ c′k) to insert

∑n
i=1 R

k
i

different objects into the background scene (frame F∗
k ).

After assigning coordinates to the key frames (where Rk
i = 1), we obtain at

least 1 frame with the corresponding coordinates for any Oi (if the corresponding

object is retained in the synthetic video) – the retained object has been assigned

with coordinates in at least two frames in almost all the cases in our experiments

in Section 3.7. With such randomly assigned coordinates in some key frames, we

can interpolate the coordinates in other frames (out of m frames in total) between

such key frames. For instance, given coordinates in two key frames F1 and F10 for

object Oi, then its coordinates between F1 and F10 can be estimated. In literature,
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there are many interpolation methods for moving object trajectories data (e.g., linear

interpolation [113], nearest neighbor interpolation [114], Lagrange interpolation [40]).

In Verro, we adopt the Lagrange interpolation to estimate such trajectories.

Finally, after interpolation, we define the first frame in which any object first

occurs as “head” and the frame where such object last occurs as “end” in the interpo-

lated trajectory. The head and end generally involve such object on the border of the

frame. Thus, the interpolation terminates as each object’s head and end are identified

on the border of the frame (objects do not occur in all the frames in general).

Theorem 6. Verro (Phase I and Phase II) satisfies ϵ-Object Indistinguishability.

Proof. Given any two objects Oi and Oj, their randomly generated presence vectors

Ri and Rj are proven to be ϵ-Object Indistinguishable (after Phase I). We now ex-

amine the randomly assigned coordinates in the key frames and two full interpolated

trajectories in the synthetic video V∗.
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Specifically, given any output presence vector y and any output trajectory

t = {t1, . . . , tm} in V∗, for simplicity of notation, we also denote the trajectories of Oi

and Oj in V∗ as Oi = {T 1
i , . . . , T

m
i } and Oj = {T 1

j , . . . , T
m
j }, respectively.

Pr[A(Oi) = t]

Pr[A(Oj) = t]

=
Pr[A(B′

i) = y]

Pr[A(B′
j) = y]

· Pr[A(T 1
i ) = t1]

Pr[A(T 1
j ) = t1]

· · · Pr[A(Tm
i ) = tm]

Pr[A(Tm
j ) = tm]

On one hand, we have Pr[A(B′
i)=y]

Pr[A(B′
i)=y]]

≤ eϵ (Phase I). On the other hand, if

∀k ∈ [1,m], Rk
i = Rk

j = 1, two objects are present in the same frame Fk (and F ∗
k ). In

this case, since the same randomization is applied to Oi and Oj to pick the coordinates

from the same set of candidates, we have ∀k ∈ [1,m], P r[A(T k
i ) = tk] = Pr[A(T k

j ) =

tk]. If ∀k ∈ [1,m], Rk
i = Rk

j = 0 (the coordinates are interpolated from the coordinates

randomly assigned in the previous case [37]), we also have ∀k ∈ [1,m], P r[A(T k
i ) =

tk] = Pr[A(T k
j ) = tk].

To sum up the above three cases, we have:

Pr[A(Oi) = t]

Pr[A(Oj) = t]
≤ eϵ (4.10)

where ϵ =
∑ℓ

k=1 xk log(
2−f
f
), as analyzed in Theorem 4 and Section 4.3.3. This

completes the proof.

Therefore, we claim that any object in the input V can possibly generate

any object in the synthetic video V∗ (with random response in Phase I and random

coordinates assignment in Phase II). For instance, the trajectory (in V∗) closest to

object O1’s original trajectory might be generated by object O3.
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4.5 Discussion

Distributed Framework: LDP techniques [24, 29, 30, 103] are deployed in

distributed setting where each user perturbs its local data to share. Our object-

based privacy model ensures indistinguishability at the object level where all the

“distributed” local data can be perturbed by a “local agent” (aka. video owner) and

shared as V∗ to untrusted recipients.

Different video owners can also share their perturbed videos to any untrusted

recipient (all the objects in each video are still well protected). Note that Verro

does not ensure video level indistinguishability (all the videos are indistinguishable).

We will investigate the utility of the video level indistinguishability in practice and

explore the LDP solutions in the future.

Noise Cancellation: in Verro, objects and their trajectories are generated

in the sanitized video. Thus, the individual noises resulted from random response for

all the objects may not be directly canceled in the output video. Indeed, after random

response and random coordinates assignment, there exists trajectories in the sanitized

video which are close to the original trajectories (as shown in Figure 4.6-4.8 in our

experiments). Also, such noise can be cancelled in data aggregation applications [45]

(e.g., object counting, as shown in Figure 4.12 and 4.13).

Multiple Object Types: if any video includes multiple types of objects (e.g.,

pedestrians and vehicles), Verro can generate the synthetic video for different types

of objects, respectively. For instance, it first randomly generates pedestrians, and then

randomly generates the vehicles. All the pedestrians are ϵ-Object Indistinguishable

while all the vehicles are ϵ-Object Indistinguishable, assuming that it does not leak

additional information across different object types (as all the objects have been

replaced with random synthetic objects in the same type).
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Protection for One-Object Video: Verro can generate synthetic videos

in which all the objects are ϵ-indistinguishable. In case that the video includes only

one sensitive object, Verro can also protect such object against re-identification.

In existing LDP techniques [24, 29, 30, 103], if only one user perturbs its Object data

and discloses it to the untrusted aggregator, the original data cannot be identified

from its perturbed data. Similar to such works (e.g., RAPPOR [29], the objects and

the trajectories cannot be identified from the perturbed presence in the synthetic

video even if the adversary has arbitrary background knowledge on the presence of

individuals at specific times.

Imperfect Background Scene(s): as discussed in Section 4.4, background

scene(s) is extracted from the original video. The reconstructed scene may not be

as perfect as the original frame (e.g., human/vehicle silhouette or duplicated/blurred

region may occur). Thus, imperfect background scene(s) may leak some privacy about

“there exists some object in the silhouette or blurred regions in the original video”.

However, adversaries cannot infer that “who is in that region or which object is in

that region” since all the objects are indistinguishable from end to end.

System Deployment: the proposed Verro can be implemented as an ap-

plication, and deployed as a component to generate utility-driven synthetic videos by

processing the videos captured by each camera (e.g., in the surveillance system, inte-

grated with the traffic monitoring facilities, in smart phones or other mobile devices)

where ϵ-Object Indistinguishability can be guaranteed.

4.6 Experiments

In this section, we present the performance evaluations.

4.6.1 Experimental Setup. We conduct our experiments on three real videos in

the repository of multiple object tracking benchmark2. To benchmark the results, we
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choose three pedestrian videos, two videos are captured by static cameras while the

third video is recorded by a moving camera (where multiple background scenes are

extracted):

1. MOT16-01 (people walking around a large square, denoted as “MOT01”) [81]:

23 distinct pedestrians are sensitive objects in 450 frames (static camera).

2. MOT16-03 (pedestrians on the street at night, denoted as “MOT03”) [81]: 148

distinct pedestrians are sensitive objects in 1,500 frames (static camera).

3. MOT16-06 (street scene from a moving platform, denoted as “MOT06”) [81]:

221 distinct pedestrians are sensitive objects in 1,194 frames (moving camera).

Table 4.1. Characteristics of Experimental Videos

Video Resolution Frame # Objects Camera

MOT16-01 1920× 1080 450 23 static

MOT16-03 1920× 1080 1,500 148 static

MOT16-06 640× 480 1,194 221 moving

We implement the detecting/tracking algorithm [35, 97] to identify all the

objects (pedestrians). Objects are detected in each frame, and the same object is

marked with the same ID in the entire video. Computer vision technique [106] is also

utilized to extract/reconstruct the background scene(s) from the input video V . All

the programs are implemented in Python 3.6.4 with the OpenCV 3.4.0 library and

tested on an HP PC with Intel Core i7-7700 CPU 3.60GHz and 32G RAM.

2https://motchallenge.net/
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4.6.2 Generic Utility Evaluation. We first evaluate the utility of our synthetic

videos. The proposed Verro is a two-phase LDP approach. In Phase I, it randomly

generates the object presence in all the frames of the synthetic video (“1” or “0”). In

Phase II, we interpolate the trajectories. Thus, we evaluate two different types of

utility: (1) the retained utility after Phase I (Random Response), and (2) the utility

of synthetic video after Phase II.

Utility for Phase I. Phase I generates “presence bit vectors” for all the

objects with frame dimension reduction, optimization (“OPT”) and random response

(“RR”). Some objects might not be included in the key frames, and/or might not be

generated in the random response. Then, such objects cannot be generated in the

synthetic video (all the entries in the corresponding vectors are 0) since they cannot

be interpolated without any object presence in Phase I (also treated as noise). Thus,

we evaluate the count of distinct objects (pedestrians) in Phase I.

First, Table 4.2 shows some results after detecting key frames for frame dimen-

sion reduction. In video MOT01, there are 22 key frames, and 19 out of 23 objects

are present in the key frames. In video MOT03, 52 key frames are extracted, and

124 out of 148 objects are present in such key frames. In video MOT06, 191 out of

221 objects are captured in the identified 48 key frames. We can observe that frame

dimension reduction results in less utility loss (retaining ∼ 80% distinct objects).

Table 4.2. Distinct Objects after Key Frame Extraction

Video Frame # Objects # Key Frame # Remaining #

MOT01 450 23 22 19

MOT03 1,500 148 52 124

MOT06 1,194 221 48 191
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Figure 4.5(a), 4.5(c) and 4.5(e) present the count of distinct objects in original

video, after optimization (“OPT”), and random response (“RR”). We set the flipping

probability f from 0.1 to 0.9 for random response. In Figure 4.5(a), approximately 17

distinct objects can be retained in 10 key frames (optimized). f only slightly affects

the optimization: the count of distinct objects increases a little bit as f grows. To

evaluate how f affects the random response, we can observe that one or two objects

are not randomly generated in RR as f grows to a large flipping probability (e.g.,

0.8). This matches the fact that higher f results in worse utility in random response

(Theorem 3) – such utility loss is indeed minor in our experiments. In addition, we

can draw similar observations in Figure 4.5(c) and 4.5(e) where the utility loss of

random response is even less for videos MOT03 and MOT06. Thus, Phase I retains a

high percent of distinct objects via their random presence vectors, which means less

side effect introduced by RR (this facilitates the interpolation in Phase II for boosting

utility).

Utility for Phase II. Since the synthetic video generated in Phase II includes

the synthetic objects at the same scene, the corresponding synthetic object of each

original object (e.g., pedestrian) may have different coordinates in the same frame.

All the coordinates in different frames may form a trajectory in the synthetic video.

Thus, we also measure the deviation for the trajectories of all the objects in the

original video and synthetic video:
∑n

i=1

∑m
k=1

P (Oi,Fk)−P (Oi,F
∗
k )

P (Oi,Fk)
, where P (Oi, Fk) and

P (Oi, F
∗
k ) are the center coordinates of object Oi in the kth frame of the input video

and the synthetic video.

In Figure 4.5(b), 4.5(d) and 4.5(f), we can observe that the deviation before

Phase II is higher than 0.9, since each object is only generated in a few frames. The

deviation of trajectories increases as the flipping probability f gets larger since more

flips occur more frequently (e.g., “0” to “1”, or vice-versa). In such three figures,
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Figure 4.5. Utility Evaluation of Phase I & II of MOT01 (MOT03 and MOT06)
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(c) Object #9 (f=0.1)
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(d) Object #9 (f=0.9)

Figure 4.6. Trajectories of Two Randomly Selected Objects in MOT01

after Phase II, the deviation can be significantly reduced (e.g., in [0.1, 0.2] for video

MOT01, in [0.02, 0.2] for video MOT06).

More specifically, we randomly select two objects (e.g., pedestrians) from each

of the three videos, and extract their trajectories in the original video V . In addition,

we also extract their corresponding trajectories in the synthetic video V∗. Figure

4.6, 4.7 and 4.8 demonstrate the trajectories of those objects in the input videos and

synthetic videos, where 3-dimensional axes refer to the frame ID and coordinates
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(b) Object #35 (f=0.9)
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(c) Object #105 (f=0.1)
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(d) Object #105 (f=0.9)

Figure 4.7. Trajectories of Two Randomly Selected Objects in MOT03

(X, Y ) in videos. As f = 0.1, the trajectories of the objects lie closer to the original

ones (compared to f = 0.9). It is worth noting that any object (pedestrian) in

the original video can generate the corresponding trajectory of any object (e.g., the

plotted trajectories corresponding to Object #2 and Object #9 in Figure 4.6). This

is ensured by the ϵ-indistinguishable presence bit vectors randomly generated from

all the objects in Verro.

4.6.3 Visual & Aggregated Results. We also randomly pick a frame from each of
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(a) Object #5 (f=0.1)
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(b) Object #5 (f=0.9)
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(c) Object #165 (f=0.1)
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Figure 4.8. Trajectories of Two Randomly Selected Objects in MOT06

the three experimental videos, and present the generated background scenes and the

corresponding frames in the synthetic videos. For video MOT01, Figure 4.9(a) shows

the input frame and the detected objects in the frame. Also, we use a background

interpolation algorithm [106] to fill the missing pixels (after removing all the detected

objection), as shown in Figure 4.9(b). Similarly, a randomly picked frame (with the

detected objects) and the generated background scenes in MOT03 and MOT06 are

given in the first two subfigures of Figure 4.10 and 4.11. Some human silhouettes

still exist in the background scenes. Clearly, the silhouettes cannot be associated to
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(a) Frame 8 (b) Background Scene

(c) Synthetic Frame (f=0.1) (d) Synthetic Frame (f=0.9)

Figure 4.9. Representative Frames in MOT01 and the Generated Synthetic Video

any objects in the synthetic video (as shown in Figure 4.10(c), 4.10(d), 4.11(c) and

4.11(d)). This confirms the discussion for imperfect background scene in Section 3.6.

In the synthetic videos, we use different colors for different synthetic objects.

Compare to f = 0.1 (shown in Figure 4.9(c), 4.10(c) and 4.11(c)), f = 0.9 would

lead to more coordinates/trajectory deviation (as shown in Figure 4.9(d), 4.10(d)

and 4.11(d)). However, accurate count of objects (pedestrians) can be retained in the

synthetic frames even if the flipping probability f is specified as 0.9 (small privacy

bound). Thus, we can still use such synthetic videos to function specific application
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(a) Frame 134 (b) Background Scene

(c) Synthetic Frame (f=0.1) (d) Synthetic Frame (f=0.9)

Figure 4.10. Representative Frames in MOT03 and the Generated Synthetic Video

based on the count of objects, e.g., head counting and crowd density [34, 96]. To

confirm such observation, we also detect and count all the pedestrians in each frame

of the synthetic videos (f = 0.1 and f = 0.9).

Figure 4.12 shows the pedestrian counts in the (optimized) key frames (after

Phase I). The aggregated result lies very close to the original result when f is small.

When f goes larger, the aggregated result is slightly more fluctuated, and more ob-

jects are generated in the frames. Figure 4.13 demonstrates the aggregated counts of

pedestrians in each frame (after Phase II). Note that many objects (with the coordi-

nates outside the frames; not between the “head” and “end”) are suppressed in Phase
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(a) Frame 216 (b) Background Scene

(c) Synthetic Frame (f=0.1) (d) Synthetic Frame (f=0.9)

Figure 4.11. Representative Frames in MOT06 and the Generated Synthetic Video
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Figure 4.12. Object Counts in the Optimized Key Frames (by each frame)

II, making the object counts in different frames more accurate. Note that if multiple

cameras capture more videos (e.g., surveillance or traffic monitoring cameras for the

smart city) for joint analysis, the noise can be further cancelled in the applications.
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Figure 4.13. Object Counts in the Synthetic Videos (by each frame)

4.6.4 Overheads. We evaluate the overheads of Verro. Table 4.3 presents

the runtime of the two phases and the required bandwidth for sending the synthetic

videos to an untrusted recipient.

Table 4.3. Computational and Communication Overheads

Video Phase I (Sec) Phase II (Sec) Bandwidth (MB)

MOT01 0.89 34.78 9.58

MOT03 1.56 36.12 16.6

MOT06 1.57 43.12 19.4

The computational cost increases as the count of distinct objects increases

(MOT01 has the least pedestrians while MOT06 has the most pedestrians). The re-

sults reflect a sublinear increase trend, which enables Verro to be scaled to generate

synthetic videos for longer videos (with more frames). In addition, although MOT06

has a lower resolution (less pixels) than MOT01 and MOT03, it is captured by a

moving camera. Since more background scenes have to be interpolated, it requires

longer runtime (but still efficient). Note that the runtime for object detecting and

background scene(s) generation (1-2 minutes in our experiments) can be considered

as computational costs for preprocessing.

Finally, the communication overhead for sharing three synthetic videos is al-
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most identical to the original video size.

4.7 Conclusion

Privacy concerns arise in considerable number of real world videos (e.g., indi-

viduals might be re-identified by the video recipients with their background knowl-

edge). To the best of our knowledge, we take the first cut to pursue indistinguishability

for objects in the video by defining a novel privacy notion ϵ-Object Indistinguishability.

We propose a two-phase video sanitization technique Verro that locally perturbs all

the objects in the video and generates a utility-driven synthetic video with indistin-

guishable objects, which can be directly shared to any untrusted recipient.

In the synthetic videos, not only the object contents (e.g., different humans,

vehicle make/model/color), but also their moving trajectories in the video (e.g., a

series of coordinates) can be effectively protected since every synthetic object and

its trajectory can be possibly generated from any object in the original video. Ex-

periments performed on real videos have validated the effectiveness and efficiency of

Verro.
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CHAPTER 5

L-SRR: LOCAL DIFFERENTIAL PRIVACY FOR LOCATION-BASED
SERVICES WITH STAIRCASE RANDOMIZED RESPONSE

In the Chapter 4, I perturb the coordinates of objects in the video with the ex-

isting LDP mechanism to achieve object-level indistinguishability. In this Chapter, I

will propose a novel distance-based LDP mechanism for general locations of location-

based services to achieve user-level indistinguishable while preserving the utility. I

will present the framework L-SRR in details, which includes the introduction, pre-

liminaries, privacy model, framework, discussion and experiments [3].

5.1 Introduction

Location-based services (LBS) are widely deployed in mobile devices to pro-

vide useful and timely location-based information to users. For instance, WeatherBug

provides weather information based on users’ regions; Google Map not only navigates

the routes with real-time traffic conditions but also responds to queries such as nearby

restaurants or gas stations; Waze is similar to Google Map but actively collects ex-

tra information (e.g., accidents, road construction, and police) from users and shares

them to other users. All of these LBS applications highly rely on the personal loca-

tions collected from millions of users. Such locations should be protected since visited

places can be sensitive (e.g., hospital) or used to re-identify users from the data (e.g.,

a sequence of them can be unique). As a rigorous privacy model against arbitrary

prior knowledge known to the adversaries, differential privacy (DP) has been exten-

sively studied to address location privacy risks (e.g., [27]). It ensures that adding

or removing any user’s location or trajectory still generates indistinguishable results.

However, recall that 87% of participants reported that they care about who accesses

their location information in the 2011 Microsoft survey; over 78% workers of Amazon

interviewed in 2014 still do not trust these apps on collecting their locations and be-
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lieved apps accessing to their locations can pose significant privacy threats [28]. Thus,

it is highly desirable to explore private location collection by an untrusted server.

Recently, local differential privacy (LDP) techniques [29,31,103,115] have been

successfully deployed in industry (e.g., Google [29], Apple [116], and Microsoft [117])

to privately aggregate locally perturbed data. It provides stronger privacy against

attackers with arbitrary background knowledge (not only the downstream analysts

but also the data aggregator can be untrusted). To date, existing LDP schemes such

as RAPPOR and generalized randomized response have been extended to privately

aggregate different types of data, e.g., set-valued data [117], numerical data [118],

video [2], and graphs [24]. In my previous work Verro, I extended the existing

LDP framework to video data [2]. However, existing LDP schemes are not very

effective on private location data collection and analysis due to either limited utility

or relaxed privacy protection. To our best knowledge, only [42, 43] applied existing

LDP schemes to locations but the utility is still poor. Moreover, PLDP [45] relaxed

LDP to personalized LDP (not every user can be protected with ϵ-LDP) in the location

collection for spatial density estimation.

Furthermore, some other privacy-enhancing techniques [44,45] privately collect

locations for LBS that provides services to individual users (e.g., GPS navigation

[5], and nearest point-of-interest (POI) search [46]) without a trusted server. For

instance, geo-indistinguishability [44] adds Laplace noise to the user’s location for

ensuring privacy in LBS. However, it cannot strictly satisfy LDP (the locations are

indistinguishable only within a radius), and the Laplace mechanism has been shown

to be worse than randomized response for local perturbation [119].

To address such limitations, we propose the first strict LDP framework (namely,

“L-SRR”) to support a variety of LBS applications. First, we design a novel LDP

mechanism “staircase randomized response (SRR)” and revise the empirical estima-
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tion to privately aggregate locations with significantly improved utility and strictly

satisfied ϵ-LDP. Second, different from all existing works [42–45], we design additional

components (e.g., private matching [46], and private information retrieval [47]) into

L-SRR to ensure ϵ-LDP for a variety of LBS applications such as k nearest neigh-

bors search [48], origin-destination analysis [49], and traffic-aware GPS navigation [5],

which may collect user trajectories or perform individual services with the aggregated

locations/trajectories.

5.2 Preliminaries

5.2.1 LBS Applications. We first categorize two different types of LBS Apps:

Location-Input LBS: LBS App collects a single location from each user,

and the untrusted server privately analyzes the aggregated data, e.g., identifying the

top crowded areas [120], and spatial density estimation [45]. In some LBS Apps, the

clients may query the analysis results from the server (e.g., location-based advertising

[121], and k nearest point of interests (POIs) for each user [48]).

Trajectory-Input LBS: LBS App collects multiple sequential locations (tra-

jectory) from each user, and the untrusted server privately analyzes the aggregated

data, e.g., aggregating users’ origin-destination (OD) pairs to learn the traffic flow

[49,122]. Similarly, users may query the analysis results computed by the server, e.g.,

users query the real-time traffic for the GPS navigation [122].

5.2.2 Privacy Model. Users in L-SRR will locally randomize their location(s) [30]

with algorithm A and send the noisy results to the untrusted server. After local

perturbation, all the input locations can be indistinguishable [29]. The privacy notion

is formally defined as below:

Definition 5 (ϵ-LDP). A randomization algorithm A satisfies ϵ-Local Differential
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Privacy, if and only if for any pair of input locations x, x′ ∈ D, and for any perturbed

output y ∈ range(A) sent to the untrusted server, we have: Pr[A(x) = y] ≤ eϵ ·

Pr[A(x′) = y].

Input

Server
Distribution EstimationLocal Perturbation

SRR
Mechanism

Client

Perturbed 

Locations 
Results

Private Information Retrieval (PIR)

(Ι) Location Input
(ΙΙ) Trajectory Input
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(e.g., spatial density, 

and K-NNs)
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(e.g., OD analysis)
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Figure 5.1. The L-SRR framework

5.2.3 L-SRR Framework. As shown in Figure 5.1, we design three major

components in L-SRR: perturbation (by client), analysis (by server), and private

retrieval (by both client and server only when the user needs to privately query the

analysis results, e.g., traffic-aware GPS navigation):

1. Perturbation (client): Each user’s location data (location or trajectory) is

locally perturbed by the client with ϵ-LDP. DRR optimizes the utility after hier-

archically encoding the location domain D. Encoding and optimal perturbation

probabilities are pre-computed by the server (only based on ϵ and D) to ensure

ϵ-LDP. See details in Section 5.3.2.

2. Analysis (server): Before perturbations, the server share the pre-computed

perturbation probabilities with all the clients. After receiving the perturbed

user locations, the untrusted server estimates the location distribution with

a revised empirical estimation method. Then, the server loads such results

into specific LBS (along with the required components) to privately derive the

analysis result. See details in Section 3.3.
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3. Private Retrieval (only for LBS with client queries): Each user privately

queries his/her result (e.g., nearby traffic) from the analysis results at the server

side with a private information retrieval (PIR) protocol [123]. Server does not

know which result is delivered to which user, and each user does not know other

users’ results either.

User Requirements. L-SRR can be deployed as a privacy preserving API

in each LBS App. Users only need to periodically update the privacy bound ϵ and

the location domain D with the server. In each LBS, users only need to locally

perturb their location(s) with the pre-computed perturbation probabilities, and send

the result to the server. The integrated PIR [47] also requires very minor computation

and communication overheads.

LDP Protection. Similar to existing LDP models [29, 103], L-SRR ensures

strong privacy against inferences on users’ local data based on arbitrary background

knowledge, which is orthogonal to mitigating other types of risks (e.g., encryption

[124] and defenses against side-channel attacks [125]). Thus, L-SRR can be integrated

with them to further improve security and privacy if necessary.

5.3 L-SRR for Location-Input LBS

In this section, we design the SRR mechanism to privately collect a location

from each user for analysis (standard LDP setting [45,103]).

5.3.1 Staircase Randomized Response. We first review a family of LDP mech-

anisms. Randomized Response (RR) based schemes, such as generalized randomized

response (GRR) [126] and unary encoding (UE) [103], satisfy ϵ-LDP. For instance, in

GRR, given the domain size d = |D|, privacy bound ϵ, and input x ∈ D, the true

value has a higher probability to be sampled (output y). The following perturbation

probabilities q(y|x) ensure ϵ-LDP.
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GRR : q(y|x) =


eϵ

d+eϵ−1
, if y = x

1
d+eϵ−1

, otherwise
(5.1)

Also, Hadamard Response (HR) [50] has a subset domain for each value x and

a higher probability for values in the subset to be sampled. Then, the remaining

values in the domain are sampled with a smaller probability. However, only two

different perturbation probabilities are defined in the existing LDP mechanisms (e.g.,

GRR [126], UE [103], and HR [50]), not sufficiently fine-grained to optimize the utility

(since the perturbation probabilities simply treat all the other output locations in the

domain equally).

Thus, we propose a novel Staircase Randomized Response (SRR) mechanism

for locations and LBS. Intuitively, if the probabilities for locations that are closer to

the input location x can be higher, it is more possible for users that the query results

of the LBS are the same. To this end, SRR will first consider the location distances to

the input location x. Then, a set of fine-grained probabilities should be pre-computed

for all the possible output locations y ∈ D.

When pre-computing these probabilities, there are several issues in practice.

For instance, for each input location x, if we compute the probability q(y|x) for each

possible output y ∈ D, the number of probabilities is the domain size d. Then,

∀x ∈ D, there are d probabilities for each location x and d× d different probabilities

for all the locations in the domain. Thus, there are d2 unknown probabilities to be

determined, which makes it time-consuming to derive the optimal probabilities [127]

and not extensible if the domain is updated. Second, general objective function (e.g.,

the variance) to optimize the perturbation probabilities is dependent on the unknown

true frequencies. To address this, output locations can be partitioned into different

groups in terms of their distances to x (the probabilities of all the output locations in
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the same group could be identical), and we can derive the perturbation probability

for each group to boost the utility while globally satisfying ϵ-LDP.

PDF (𝑦)

𝑥 ∈ 𝐷

𝑥 𝑦

(a) GRR mechanism [126]

𝑦

𝑥 ∈ 𝐷

𝑥-𝐺1 𝐺1-𝐺2 𝐺2

… …

PDF (𝑦)

(b) SRR mechanism (for L-SRR)

Figure 5.2. Probability density function (PDF) for GRR and SRR

The probability density functions (PDFs) of GRR (w.l.o.g.) and SRR are illus-

trated in Figure 5.2. It is worth noting that the Figure 5.2 is the 1-D representation

of the 2-D discrete locations in the domain. In GRR, the probability that outputs

the true value (the point in Figure 5.2(a)) is higher than other values. On the con-

trary, since SRR discretizes the perturbation probabilities for all the grouped possible

output locations, the PDF of SRR has a similar shape to the staircase mechanism in

differential privacy [128], which also has a staircase PDF for different groups to satisfy

ϵ-DP. Motivated by that, we name our new randomization mechanism as the “Stair-

case Randomized Response” (SRR) in local differential privacy. We formally define

the perturbation probabilities from input x to all the output locations as follows.

Given the domain D, for any input x ∈ D, all the possible output locations

can be partitioned into m groups G1(x), ..., Gm(x) based on their distances to x.3

Notice that, the partitioning Gj(x) is dependent on the input location x. For each

input location x, all its m location groups and the perturbation probabilities (for

perturbing x to any output location y) will be efficiently computed as:

3W.l.o.g., the distances from x to locations in Gj(x) are farther if j is larger.
The closest group is G1(x) whereas the farthest group is Gm(x).
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SRR : ∀x ∈ D, q(y|x) =


α1(x), if y ∈ G1(x)

...
...

...

αm(x), if y ∈ Gm(x)

(5.2)

where α1(x), ..., αm(x) are the distance-based perturbation probabilities for

locations in m different groups perturbed from x ∈ D, and the gap between the

perturbation probabilities in every adjacent groups is the same (“Staircase PDF”) in

α1(x), ..., αm(x).

Also, the sum of all the perturbation probabilities for each input location x

should satisfy:
∑

j∈[1,m]

∑
y∈Gj(x)

q(y|x) = 1. The details for computing the probabil-

ities will be given in Section 5.3.3. SRR generates more accurate locally perturbed

locations than the state-of-the-art LDP mechanisms with only two perturbation prob-

abilities (e.g., GRR [126] and HR [50]), as validated in Section 3.7.

5.3.2 Data Encoding and Domain Partitioning. Hierarchical Location

Encoding: To encode the location data, we use a hierarchical encoding scheme based

on the Bing Map Tiles System [129], which recursively partitions geo-coordinates into

4 blocks, and indexes all the locations to reach the desired resolution [27]. Then, the

locations are encoded into bit strings by hierarchically concatenating the indices of

all the levels for every specific location. Figure 5.3 illustrates an example for the

encoding. Specifically, starting from the root node, at each level h, the 4 children of

each node (four sub-blocks) can be encoded by 00, 01, 10, 11 (2-bit), and thus form

4h blocks for indexing locations. Then, we can derive the encoded bit string by

concatenating the bits from the first level to the leaf node level. For all the locations

on the earth, h can be as large as 23 (46 bits for a location) to index each 4.7m×4.7m

region. As a result, all the locations can be encoded with the same length of bits if

the same precision (h) is applied to all the locations.
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Figure 5.3. Hierarchical encoding for locations

Example 2 (Encoding for “New York”). The coordinates of the center of “New York”

are (40.730610,−73.935242). Given h = 23, the location is encoded as “e1147b6afff”

(hex of the bit string).

Location Groups: With hierarchical encoding for the location domain D,

the distance between any two locations x, x′ ∈ D can be directly measured by the

longest common prefixes (LCP) of their encoded bit strings. Then, given a location

x and any of its output groups Gj(x), j ∈ [1,m], we define the LCP of the group.

Definition 6 (Group LCP). Given an input location x and any of its groups Gj(x), j ∈

[1,m], the group LCP (aka. GLCP) is the shortest LCP between the input location x

and ∀y ∈ Gj(x). The length of GLCP for group Gj(x) is denoted as βj(x).

Thus, the distance between the input location x and each location group

Gj(x), j ∈ [1,m] can be measured by the length of its GLCP βj(x): the larger, the

closer. Then, we can partition all the output locations into groups using the GLCP

lengths. In each group Gj(x), all the locations share a prefix with at least βj(x) bits

with location x (applying such rule for partitioning could reduce the complexity of

partitioning to O(d) though not optimal). For the group with a longer GLCP shared

with the input location x, higher probabilities will be assigned to them (for perturbing
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x).4

Location Partitioning: We next partition the locations into m groups for

each input x ∈ D, and assign the same perturbation probability to all the locations

in the same group. Specifically, for m groups, we define a GLCP length vector

{β1(x), . . . , βm(x)}. All the encoded locations in group Gj(x), 1 ≤ j ≤ m share at

least βj(x)-bit prefix with x. Then, β1(x) > β2(x) > · · · > βm(x) since G1(x) is the

closest group to the input location x.

ROOT

00

00 01 10 11 …

00 00 00

00 01 10 11 01 10 11
…

…

00 01 10 11 00 11 1101… …

ℎ = 2

…

00000000

00000001

00000010

00000011

…

00000100

00001111

…

ℎ = 1

ℎ = 3

ℎ = 4

ℎ = 0

𝐺1(x): 
GLCP length (6-bit)

𝐺2(x): 
GLCP length (4-bit)

𝐺3(x): 
GLCP length (2-bit)

Input x

00111101

…

00111111

Figure 5.4. Example of location domain partitioning

Figure 5.4 shows an example for partitioning the location domain. Given the

input location x, all the locations are partitioned into three groups with the GLCP

lengths {β1(x) = 6, β2(x) = 4, β3(x) = 2} where m = 3. In G1(x), G2(x) and G3(x),

all the locations share at least 6-bit, 4-bit and 2-bit prefix with x, respectively. Thus,

4In SRR, every input location x will be only perturbed to another location y in
the domain D (rather than an arbitrary location on the map).
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given any GLCP length vector β1(x), . . . , βm(x), the m groups G1(x), . . . , Gm(x) for

the input location x can be efficiently generated with complexity O(d). Then, de-

noting the LCP between input x and output y as LCP (x, y), the optimal {β1(x),

. . . , βm(x)} and the m groups that maximizes
∑

∀y∈D LCP (x, y) can be derived.

More specifically, if m is not large, we can traverse all the GLCP lengths {β1(x),

. . . , βm(x)} where β1(x) > β2(x) > · · · > βm(x) to find the optimal result. Otherwise,

the server can apply a meta-heuristic algorithm (e.g., simulated annealing [130]) to

derive a near-optimal {β1(x), . . . , βm(x)} for partitioning. Next, the location domain

D can be efficiently partitioned by the optimal {β1(x), . . . , βm(x)}. First, locations

sharing a β1(x)-bit or longer prefix with x will be assigned to G1(x); second, the

locations sharing a prefix (length between β2(x)-bit and (β1(x) − 1)-bit) with x will

be assigned to G2(x); repeat the above until Gm(x) is formed.

Offline Computation: Since the optimization and partitioning are solely

based on the domain D, they can be executed offline and periodically updated with

D by the server in L-SRR. In general, the location domain is stored in the server of

companies and released as public knowledge for users (e.g., Google Maps) and these

companies will take about several days to update the domains since these companies

have to verify locations before making the changes available to the public. Then,

for each x ∈ D, the perturbation probabilities for all the m output location groups

α1(x), . . . , αm(x) can also be derived offline (see Section 5.3.3). This is consistent

with other LDP schemes [29,103,117].

5.3.3 Optimal Perturbation Probabilities. Recall that the possible output

locations can be partitioned into m groups based on their distances to input and

the PDF similar to the staircase mechanism [128] in differential privacy. We de-

fine the perturbation probabilities from input x to all the output locations as follows.

Given any two output locations y and y′ in any two neighboring groups y ∈ Gj(x) and
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y′ ∈ Gj+1(x), we have probability q(y|x) = q(y′|x)+∆(x) where the step ∆(x) ∈ [0, 1)

is the constant probability difference for any two neighboring groups of input x. Com-

pared to the staircase mechanism in differential privacy which aims to the unbounded

domain (entire real line or the set of all integers) and these probabilities are geometric

sequence to maintain ϵ-DP, for the bounded location domain, the probabilities in the

L-SRR follow a linear sequence. Note that the perturbation probability from the

given input location x to output location y decreases as y moves to further groups

(larger j).

Denoting αmax(x) and αmin(x) as the max and min probabilities in α1(x), ..., αm

(x), we have αmax(x) = α1(x) and αmin(x) = αm(x). In SRR, for all the input loca-

tions x ∈ D, we specify a constant c ≥ 1 as the ratio αmax(x)
αmin(x)

. Thus, we have:

∆(x) =
αmax(x)− αmin(x)

m− 1
=

αmin(x) · (c− 1)

m− 1
(5.3)

For each x ∈ D, the sum of the perturbation probabilities of all the output

locations is 1. Given the differences of perturbation probabilities for output locations

in different groups in Equation 5.3 and the number of output locations in each group,

all the perturbation probabilities can be derived, including αmax(x) and αmin(x):

αmin(x) =
m− 1

(m− 1)d · c− (c− 1)
∑m

j=2[(j − 1) · |Gj(x)|]

αmax(x) =αmin(x) · c (5.4)

where d is the location domain size and |Gj(x)| is the size of group Gj(x).

Notice that, different α1(x), . . . , αm(x) will be derived for different input location x

since the group sizes ∀j ∈ [1,m], |Gj(x)| might be different for different x. Thus, the

privacy upper bound ϵ can be computed (for any two input locations x, x′ ∈ D).
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Theorem 7. Staircase randomized response (SRR) satisfies ϵ-local differential pri-

vacy, where

ϵ = max
x,x′∈D

log(c ·
(m− 1)d · c− (c− 1)

∑m−1
j=2 [(j − 1) · |Gj(x)|]

(m− 1)d · c− (c− 1)
∑m−1

j=2 [(j − 1) · |Gj(x′)|]
)

Proof. See details in the Appendix A.4.2.

For each input location x ∈ D, the groups G1(x), . . . , Gm(x) are constants if

m and D are specified (as discussed in Section 5.3.2). Thus, given the value of c, we

can derive a constant ϵ as a strict privacy upper bound for the LDP guarantee.

Selecting c for ϵ-LDP. Since ϵ is positively correlated to c, for any desired

ϵ-LDP, the required c can be uniquely calculated using ϵ, D and m (see the rela-

tionship between ϵ and c in Figure 5.5(a)). Then, all the perturbation probabilities

α1(x), . . . , αm(x) for all the input locations x ∈ D can be derived and made available

to the users.

Optimal m with Mutual Information. In practice, both the server and

clients do not know the data distribution before collecting them. Hence, it is critical

to learn that the optimal m is also independent of input data and ensure good utility

for all possible location data distributions in the SRR mechanism. To this end, we will

optimize m for location domain partitioning with the mutual information [131, 132]

between the input x and output y, which can measure the mutual dependence between

them. As mutual information varies for different distributions, the maximum mutual

information can cover all the cases (since the mutual dependence of any case would

not violate such dependence [118]). Thus, the optimal m can be derived by the

upper bound of mutual information for all the distributions [118, 133]. Specifically,
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the mutual information between x and y is expressed by the difference between the

differential entropy and conditional differential entropy of x and y [118]:

I(X,Y ) = H(X)−H(X|Y ) = H(Y )−H(Y |X) (5.5)

where H(·) is the entropy function. X and Y are the input and output random

variables representing the input and output, respectively. Since no prior knowledge

on the input data, it considers the distribution of y as uniform distribution U to

maximize the mutual information (the output y is the random sampling result) [134].

H(U) is an upper bound for any possible input distribution [131]. Thus, we have:

I(X,Y ) ≤ H(U)−H(Y |X) (5.6)

where H(U) = log d. The conditional differential entropy H(Y |X) can be

computed as below:

H(Y |X) = −[
m∑
j=1

|Gj(x)| · αj(x) · logαj(x)]

≥ −d · αmin(x) logαmax(x)

Thus, H(Y |X) is lower bounded by−d·αmin(x) logαmax(x) for α1(x), . . . , αm(x).

Finally, the upper bound of mutual information can be expressed with the number of

groups m:

I(X,Y ) ≤ log d−H(Y |X) ≤ log d+ d · αmin(x) logαmax(x)

We then explore the optimal m based on the mutual information metric. Since

the smaller mutual information between two variables indicates more independence
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between them, and the mutual information on m for LDP is convex (as proven in the

Appendix A.4.1), the optimal m can be computed by making the derivation of the

upper bound to 0 which is equal to minimize the mutual information bound.

Lemma 1. The optimal m to minimize the mutual information bound is

m =
2 · (c · d− e1+log c)

(c− 1) · d
(5.7)

Proof. The mutual information bound is log d + d · m−1
(m−1)·c·d−R

· log c(m−1)
(m−1)·c·d−R

where

R = (
∑m

j=2{(j − 1) · |Gj|}) · (c − 1) is a part of αmin(x) (see Equation 5.4). We can

see that R is also determined by m. If |G1| ̸= |G2| ̸= · · · ̸= |Gm|, R non-differentiable

(discrete). To solve this, we consider the worst case: assuming group size d and R is

replaced with Rmax = (
∑m

j=2{(j− 1) · d}) · (c− 1) (relaxed). The mutual information

bound can be derived as below:

[
m− 1

(m− 1) · c · d−Rmax
· log c(m− 1)

(m− 1) · c · d−Rmax
]′

= (log
m− 1

(m− 1) · c · d−Rmax
+ log c+ 1) · (m− 1) ·R′

max −Rmax

[(m− 1) · c · d−Rmax]2

Due to Rmax = (
∑m

j=2(j − 1) · d) · (c− 1), we have:

Rmax = (c− 1) · d · m
2 −m

2
, R′

max = (c− 1) · d · (m− 1

2
) (5.8)

Then, we replace the derivative of mutual information with Rmax and R′
max.

Since (m−1) ·(R′
max) < Rmax, the second part of the derivative cannot be 0. Thus, m

is optimal when log m−1
(m−1)·c·d−Rmax

+ log c+ 1 = 0, and we have m = 2·(c·d−elog c+1)
(c−1)·d .

Specifying ϵ for LDP. In our setting, there are three parameters ϵ, c and m.

With the given privacy requirement ϵ, the server can calculate the m and the corre-

sponding c with Lemma 1 and Theorem 7 to make the privacy meet the requirement
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ϵ. Specifically, we can set a value c and get the corresponding m with Lemma 1. Since

the location domain can be partitioned into m groups and ∀j ∈ [2,m − 1], |Gj(x)|

are fixed for all x, we can then calculate the privacy bound by Theorem 7 to see

if it meets the privacy requirement ϵ. Per Theorem 7, the ϵ is positively correlated

to c with the fixed m and partition groups. Thus, there should be many values c

that make the privacy requirement satisfy ϵ. For example, if the c value equals to 5

to meet the privacy requirement ϵ = 6, the value less than 5 would make ϵ smaller

which also meets the privacy requirement. However, to fully utilize the privacy that

can make the utility maximize, it should only take the maximum of c with the fixed

domain. Figure 5.5 shows the numeric results for c = αmax(x)
αmin(x)

,∀x ∈ D and the optimal

m versus a varying ϵ ∈ [0.01, 20] (given four different domains in our experimental

datasets). The plots confirm that ϵ is positively correlated to c (given any domain

D), and c is extremely close to eϵ (slightly smaller). In the experiment, with the given

ϵ value and the domain D, we search the maximum value c to satisfy the ϵ-LDP by

the binary search method. In Figure 5.5(b), the optimal m is mainly determined by

ϵ. The optimal m (rounded to its floor or ceiling) is a small integer, e.g., 2-6 for all

the four different domains.
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Figure 5.5. log c and optimal m vs ϵ with various domain size d; domain size d
is 374, 566, 1738, and 3202 in datasets Portcabs [4], Geolife [5], Gowalla [6], and
Foursquare [7], respectively
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5.3.4 Perturbation Algorithm. For each location x ∈ D, the server partitions m

groups G1(x), . . . , Gm(x) and derives the perturbation probabilities for all the output

locations in m groups α1(x), . . . , αm(x). After receiving such information from the

server, each client perturbs its location x by sampling the output location y. Plsease

see details in Algorithm 4.

Algorithm 4 Staircase Randomized Response
Input: user location x, privacy budget ϵ, and domain D

Output: perturbed location y

1: server pre-computes the optimal m and βj(x), j ∈ [1,m]

2: for each location x ∈ D do

3: for each group j ∈ [1,m] do

4: for each location z ∈ D do

5: if length(LCP (z, x)) ≥ βj(x) then

Gj(x)← z; D ← D \ z

6: end if

7: end for

8: end for

9: for each j ∈ [1,m] do

compute the perturbation probability αj(x) for locations in Gj(x)

10: end for

11: end for

12: client samples an output location y from all the locations in G1(x), · · · , Gm(x)

(per Equation 5.2) and submit it to the server

5.3.5 Distribution Estimation. Similar to other LDP mechanisms, the expecta-

tion of the aggregated random location counts would be biased [103]. Given samples

from unknown data distribution p, estimating the distribution p̃ of p has been exten-

sively studied [50, 118]. In L-SRR, we extend the empirical estimation method with



100

two perturbation probabilities [50] to estimate the location distribution from the per-

turbed locations using staircase perturbation probabilities. In our experiment, we

also compare the performance of [50] (named HR) with L-SRR.

In the GRR, the estimation counts of location x is only related to the sampled

counts of location x. Then, users try to send more information by the perturbation

mechanism to have more accurate estimation results. Specifically, in the empirical

estimation, for each x ∈ D, the server creates a candidate location set Cx for input x

to estimate the item distribution p̃ from the observed noisy distribution p. Each set

Cx which contains d
2

locations is a subset of the domain5. The server will estimate

the p(x) by the Cx. In L-SRR, the server generates a candidate location set Cx for

each x with a Hadamard matrix (a square matrix with either +1 or −1 entries and

mutually orthogonal rows). Given H1 = 1, for any HK , we have:

HK =

 HK/2 HK/2

HK/2 −HK/2

 (5.9)

The server then applies a recursion algorithm [50] to generate such Hadamard

matrix with size K ×K (denoting it as HK ∈ {−1,+1}K×K) where K = 2⌈log2(d+1)⌉

and d is the domain size [50]. Then, each row of HK except the 1st row (the 1st row

includes only “1” and HK includes d+1 rows) can be mapped into a unique location

in domain D. Specifically, given location x ∈ D, its candidate set will be derived

using the (i+ 1)th row in HK where i is the index of x in D. Then, ∀x ∈ D, we can

generate the candidate set Cx for each user’s input x as the locations related to the

column indices with a “+1” in the mapping row of matrix HK [50]. We denote the

candidate set of all the locations in D as HK ◦ D.

5We follow the generation of Cx in [50].



101

Let p(Cx) be the probability for sampling y ∈ Cx. Then, we can derive p(Cx)

with the output y in the corresponding candidate set in case of inputs x and x′

(x differs from x′ and Cx also differs from Cx′). Thus, we have ∀x ∈ D, p(Cx) =

p(x)
∑

y∈Cx
q(y|x) +

∑
x′
i ̸=x p(x

′) · [
∑

y∈Cx\Cx′
q(y|x′) +

∑
y∈Cx∩Cx′

q(y|x′)], where p(x)

is the distribution of x (to be estimated).

All the perturbation probabilities q(y|x) are known in Equation 5.2. Thus,

for each x ∈ D, there exists one equation as above. Given d independent linear

equations (due to random coefficients), the d variables ∀x ∈ D, p(x) can always be

solvable. Specifically, ∀x ∈ D, p(Cx) are the observed distribution of all the locations

from the aggregated noisy data. Each user sends its perturbed location to the server,

which derives the total frequency of all the locations in the pre-computed candidate

set of location x. Then, the above d equations can be constructed for estimating the

distribution of all the locations ∀x ∈ D, p(x). We apply the lower-upper (LU) decom-

position algorithm [135, 136] to solve these independent linear equations. Moreover,

if the domain D is too large, we can make the heuristic decision using the sampled

counts of x′ in place of the true count of x′ [137]. Algorithm 5 presents the details.

Algorithm 5 Location Distribution Estimation
Input: perturbed locations y1, ..., yn

Output: estimated location distribution p̃(x)

1: server generates the candidate location set HK ◦ D for all the locations in D

2: for each x ∈ D do

calculate the p(Cx) with y1, ..., yn: p(Cx) :=
∑n

j=1
I{yj∈Cx}

n
construct a linear

equation for x with p(Cx) and perturbation probabilities

3: end for

4: solve linear equations with the LU decomposition to derive ∀x ∈ D, p(x)

5: return the estimated location distribution ∀x ∈ D, p̃(x) = p(x)
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5.3.6 Private Retrieval for Client Queries. Recall that the client may need

to query the estimated location distribution with its true location, e.g., k nearest

users [48] (see Section 5.6.3), and traffic-aware GPS navigation [122] (see Section

5.4.2). In L-SRR, users can retrieve the results from the server using the Private

Information Retrieval (PIR) protocol [47,123,138] (when needed), which enables any

user to privately retrieve information from a database server without letting the server

know which record has been retrieved. In the PIR, the database server has an n-

bit string V = {v1, ...., vn}, and the client would like to know vi. The client first

sends an encrypted request E(i) for the i-th value to the server, where E(·) denotes

encryption function. The server also responds with an encrypted value r(vi, E(i))

(e.g., by quadratic residuosity). Finally, the client can retrieve the record vi privately

based on the server’s encrypted response.

Most of the off-the-shelf PIR algorithms can work as a post-processing com-

ponent (e.g., [47] takes only a few seconds in our experiments). Moreover, the local

perturbation and distribution estimation require only ∼ 0.014 second for the client

and a few seconds for the server (see Section 5.6.5). Thus, the system performance

of L-SRR would be very efficient for real-time LBS deployment.

5.3.7 Privacy and Utility Analysis.

Privacy Analysis: ϵ-LDP has been proven for the SRR mechanism in The-

orem 7. The server cannot distinguish users’ true locations from the noisy data.

Moreover, as post-processing procedures applied on the results of LDP scheme, the

empirical estimation and PIR (if needed) do not leak any extra information [37].

Error Bounds: Error bounds for the estimation methods in LDP schemes

can be derived to understand the expectation of the randomized noise. Then, we

derive the error bounds (based on the expectation of the L1 and L2-distance) for the
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Figure 5.6. Extending SRR to collect and aggregate origin-destination pairs with ϵ-
LDP

estimated distribution of all the locations p̃ deviated from the true distribution p.

Theorem 8. In SRR, E[L1(p̃, p)] ≤ 2d√
n·(2γ−d·µ) , where γ = min{

∑
y∈Cx

q(y|x), x ∈ D}

and µ = max{αmin(x), x ∈ D}.

Theorem 9. in SRR, E[L2(p̃, p)] ≤ 2
√
d√

n(2γ−d·µ) , where γ = min{
∑

y∈Cx
q(y|x), x ∈ D}

and µ = max{αmin(x), x ∈ D}.

Proof details are given in the Appendix A.4.2. Both error bounds decline if

increasing the privacy bound ϵ or the number of users n (thus the error bound would

be minor in practice due to a large number of users). Notice that, the expected L1-

distance for the GRR is upper bounded by d
ϵ

√
2(d−1)
nπ

[134], which can be
√
d times of

the SRR error bound in the worst case.

5.4 L-SRR for Trajectory-Input LBS

In this section, we extend SRR to support trajectory-input LBS using two

example applications: (1) collecting the origin and destination (OD) of users for OD

analysis [49], and (2) collecting a sequence of user locations for traffic-aware GPS

navigation [5].

5.4.1 Origin-Destination Analysis. OD analysis aggregates a pair of origin-

destination from each user to estimate the traffic flow [49]. In this case, the LDP

notion (Definition 5) should be extended to protect each user’s OD pair.

Definition 7 (ϵ-Local Differential Privacy). A randomization algorithm A satisfies

ϵ-LDP, if for any two different location pairs (xo, xd), (x
′
o, x

′
d) ∈ D × D, and for
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any output location pair (yo, yd) ∈ range(A) sent to the untrusted server, we have

Pr[A(xo, xd) = (yo, yd)] ≤ eϵ · Pr[A(x′
o, x

′
d) = (yo, yd)].

The LDP scheme for OD analysis should preserve the sequential correlation

from the origin to the destination (OD pair). Thus, the domain has been greatly

expanded to d2 OD pairs in D × D. To avoid the bad utility resulted from a large

domain, we extend the Lasso regression [139] to a novel private matching method to

preserve the OD sequence.6 Then, we integrate the private matching into L-SRR to

ensure accurate OD distribution with ϵ-LDP.

Specifically, users perturb their two locations with privacy budget ϵ
2

for each.

The server receives a large number of noisy samples of all users from specific dis-

tributions for origins and destinations, respectively. The server may estimate the

distribution from the noisy sample space using the linear regression y⃗ = M∗ w⃗, where

matrix M includes the predictor variables, vector y⃗ includes the response variables,

and vector w⃗ includes the regression coefficients. The predictor variables in M consist

of all the combinations of trajectories from each origin to each destination (d2 pairs),

which could be known to the server and client beforehand. Moreover, the response

variables y⃗ can be estimated from the SRR perturbed values. Notice that, the fre-

quencies of most combinations (xo, xd) ∈ D ×D are very small or even equal to zero

in LBS. Thus, Lasso regression [139] can effectively solve such sparse linear regression

by encoding the predictor variables M for all the OD pairs.

As shown in Figure 5.6, we have two steps in L-SRR: (1) perturbing the origin

and destination separately by each client, and (2) estimating the joint distribution of

OD pairs using Lasso regression by the server. Each client first applies SRR to perturb

the origin and destination with privacy budget ϵ
2

each. Then, the server estimates

6Lasso regression was used to generate the synthetic high-dimensional dataset
with LDP and preserve the correlation across dimensions [139].
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the distribution of origin and destination to generate the vector y⃗. Meanwhile, the

server encodes the overall candidate set of OD pairs M based on the location domain

D. Finally, the server fits a Lasso regression model to the vector y⃗ and the candidate

matrix M to learn w⃗. Therefore, the non-zero coefficients in w will be considered as

the frequencies for the candidate OD pairs.

Privacy Bound. Although the origin and destination are correlated, each

user sends these two perturbed locations sequentially. The sequential composition of

releasing two locations would only result in the total leakage (ϵ-LDP) even if they are

highly correlated [37]. The Lasso regression is performed on the two sets of perturbed

data (one set of origins and another set of destinations) as post-processing to retain

the correlation, which would not consume privacy budget [37]. Thus, the OD analysis

still satisfies ϵ-LDP.

5.4.2 Traffic-Aware GPS Navigation. In this App, users may seek the route

with shortest time by avoiding congested roads. At that moment, users may update

and send multiple locations to the server in sequence. Meanwhile, each user will

privately retrieve the real-time nearby traffic from the server to help update the route

in case of traffic congestion.

Specifically, the route recommendation algorithm can be deployed in the client

to compute the best route with the shortest traveling time on an offline map (inte-

grated with the real-time traffic information from the server) [5]. For any route, the

total traveling time t can be predicted with the historical dataset.7 Also, each user can

send the current location xi to the server again and learn the current traffic density.

Then, the client may recompute the best route and update the estimated traveling

time. Intuitively, if the suggested route does not have any traffic, it is unnecessary

7These historical datasets could be obtained from public traces and check-in
datasets, or datasets generated from LBS applications.
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to update the user’s location to learn the real-time traffic density (this would avoid

consuming more privacy budget). Thus, we follow this idea to extend our SRR. In

L-SRR, the client will identify these “location updates” (similar to [140]). Let T de-

note a trajectory and Agg(xo, xi), xi ∈ T represent the actual traveling time from the

origin xo to current location xi. In the meanwhile, the GPS can predict the piece-wise

traveling times between the origin xo and any location xi ∈ T before the arrival. It is

worth noting that the time is treated as the condition for the update (as above). It

can be extended to update the location with other criterion in specific applications

(e.g., distance, and checkpoints).

Denoting such predicted time as Aggp(xo, xi), xi ∈ T, the client will exam-

ine the difference between their actual traveling time Aggt(xo, xi) and the predicted

time Aggp(xo, xi) at different locations xi ∈ T. If the client finds that the actual

traveling time Aggt(xo, xi) is significantly more than predicted one Aggp(xo, xi), e.g.,

delayed time exceeds a threshold: Aggt(xo, xi) − Aggp(xo, xi) > θ, there is likely a

traffic congestion. Then, the client requests a “location update” to privately upload

the perturbed location to the server, and privately retrieve the current traffic density.

Moreover, the server will periodically estimate the traffic density using all the per-

turbed locations collected from the clients in the past time window (e.g., 5 minutes

for each time window). Once a location update is requested by any client, the server

privately delivers the traffic density to the client via the PIR protocol.

Privacy Bound. Since every perturbed location is individually aggregated

(based on individual locations) rather than as a combination, such data collection

can be done for all the locations separately and simply follows sequential composition

[127]. Thus, SRR for such trajectory-input LBS satisfies λϵ-LDP where λ is the

number of requested location updates from the origin to the destination. We have

empirically evaluated that λ is small in practice (e.g., 2 or 3). Finally, PIR may
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result in side-channel leakage (e.g., who requested the location update may be in the

congested areas). If necessary, this can be simply mitigated by an anonymizer (e.g.,

shuffler [141]), which also further amplifies the LDP protection [141].

5.5 Discussion

Relaxed LDP. Some recent works [44,127,137] relaxed the LDP by consider-

ing the input variants. For instance, ID-LDP [127] relaxes the LDP with different ϵ for

different inputs; geo-indistinguishability (GI) makes every pair of locations indistin-

guishable, but the “level" of indistinguishability depends on their distance (locations

that are far apart are more distinguishable than locations that are close together);

CLDP [137] provides distance discriminative privacy, and relaxes the protection for

different pairs of inputs. Different from L-SRR, all of them cannot strictly satisfy

ϵ-LDP. To validate their limitations on rigorous LDP guarantee, we present some

numeric analysis with the same setting (by converting them to ϵ-LDP). PLDP [45] is

experimentally compared in Section 3.7 since it focuses on LBS.

First, we generate a synthetic dataset including items with uniformly dis-

tributed frequencies (the distance between inputs can also be directly measured). For

ID-LDP, we randomly assign the privacy bound from {0.5ϵ, 0.8ϵ, ϵ} to each distinct

item. Since {0.5ϵ, 0.8ϵ, ϵ}-ID-LDP satisfies min{{ϵ}, 2× {0.5ϵ}}-LDP, it can guaran-

tee ϵ-LDP for all the items. For GI, we sample the output y with the Laplace-based

PDF centered at input x. For CLDP, we adopt the conversion between ϵ and α [137].

Table 5.1 shows the L1-distance of the outputs on different ϵ. The utility of L-SRR

significantly outperforms all the relaxed LDP with the same LDP guarantees.

Generalization. L-SRR can be potentially extended to other data types

if the distances between values/items can be measured (e.g., numerical data). In

such contexts, the data items can also be partitioned and staircase perturbation
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Table 5.1. Average L1-distance

Privacy Bound ϵ 0.5 1 2 3 4

ID-LDP 2.14 1.97 1.64 1.45 1.18

GI 2.21 1.84 1.75 1.43 1.21

CLDP 0.93 0.90 0.84 0.72 0.70

L-SRR 0.65 0.62 0.51 0.44 0.36

probabilities can be derived and allocated to values/items in different groups. We

will evaluate its performance in other domains and benchmark with the corresponding

LDP schemes (e.g., Piecewise [142]) in the future.

Encoding and Precision. The precision of the encoded locations can be

tuned by the level of the bit string hierarchy. Although larger h more accurately

encodes locations, the domain size will grow and thus the perturbation probability

(for the true location) may decline for the same privacy. Thus, larger h does not

necessarily make the staircase perturbation scheme more accurate (thus we use the

standard h = 23 as Bing Map). In the experiment, every location can only be possibly

flipped to other locations in the domain not every pixel on the map. There are two

benefits for such encoding and design: (1) locations will not be perturbed to an

unrealistic location (e.g., in the ocean), and (2) it is more efficient to compute the

perturbation probabilities offline (due to reduced domain size).

Larger and Worldwide Domain. In this paper, we evaluated our scheme

within each city (four datasets) by following the same settings as other LBS since each

experimental dataset is collected within a city. If all the locations on the planet are

considered, the domain size would be much larger and the utility might be degraded
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since the error bound is related to the domain size d.
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Figure 5.7. Location frequencies in experimental datasets

System Deployment. L-SRR can be deployed as an application or inte-

grated with the existing LBS applications in the server and clients (e.g., mobile de-

vices). Given the privacy bound ϵ and a location domain D, the server will pre-

compute the required c, the optimal m, the GLCP for group partitioning ∀x ∈

D, β1(x), . . . , βm(x), and the perturbation probabilities ∀x ∈ D, α1(x), . . . , αm(x) for

SRR, and then share them to all the clients. In L-SRR, the location domain is updated

periodically by the server rather than per users’ requests. It would not cause any pri-

vacy leakage, and it is very efficient to update the domain. If a user is at a location

not in the domain before the update, the client will approximate it to the nearest

location in the domain. Each client only needs to perturb their locations based on

the stored md perturbation probabilities q(y|x), and then directly send the output

to the server. Even if the client may privately retrieve the analysis result related to
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his/her location from the server, the PIR protocol can be efficiently executed without

many overheads. Thus, the clients do not need to be equipped with strong computing

capabilities (mobile devices suffice). Each client should download an offline map if

required in certain LBS applications, e.g., traffic-aware GPS navigation.

Provable Privacy for PIR and LDP. The PIR protocol is applied as the

post-processing to the query results that guarantees ϵ-LDP. The index (w.r.t. the

domain) can be public knowledge and shared to users. The PIR protocol does not

cause any additional information leakage since the query results are retrieved based

on the encrypted location by employing the provably secure cryptographic technique.

From the viewpoint of the server, the PIR request might be originated from any user.

Therefore, the probability to identify every user as the querying user is exactly 1
n

(for

all the users). Thus, it does not cause additional leakage from such random guess

either (after the private data collection with ϵ-LDP).

Complex Applications. The staircase randomized response can generate

more accurate location distribution than existing LDP mechanisms. As a key build-

ing block of LBS applications, such high accurate location frequency/distribution

estimation by the proposed SRR mechanism could universally support different LBS

applications, including complex LBS such as traffic-aware GPS navigation. In our

experiments, we simulate the route recommendation by the GPS, which shows better

performance of SRR (see the details in Appendix A.5). In practice, as the LBS appli-

cation becomes more complicated (e.g., more data collection), SRR would outperform

the state-of-the-art LDP schemes more.

5.6 Experiments

5.6.1 Experimental Setting. We conduct our experiments on four real-world

location datasets.
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• Gowalla Dataset [6] collects 6, 442, 890 check-ins records of 196, 591 users in

Austin, USA via the social network app Gowalla between 02/2009 and 10/2010.

• Geolife Dataset [5] collects 17,621 GPS trajectories of 182 users in Beijing be-

tween 04/2007 and 08/2012.

• Portocabs Dataset [4] collects the GPS trajectories of 441 taxis in Porto between

07/2013 and 06/2014.

• Foursquare Dataset [7] collects 90, 048, 627 check-in locations of 2, 733, 324 users

in New York City, USA.

Since each of the four datasets is collected from locations within a city, we

focus on a large geographical region covering a 40 × 30km2 area for each dataset.

Only the reported locations in this area are considered as the domain. Since the

encoded bit strings for all the locations in each dataset share a 20-bit common prefix,

the last 26 bits (out of 46 bits for h = 23) could sufficiently index all the locations

with high accuracy for all the 4.7m×4.7m regions (removing the common prefixes does

not affect the accuracy due to fixed domain size and groups). All the experiments

were performed on the NSF Chameleon Cluster with Intel(R) Xeon(R)Gold 6126

2.60GHz CPUs and 192G RAM [143]. Docker is used to start containers to emulate

the server/clients with system and network setup.

Dataset Characteristics: Table 5.2 presents the number of locations and

users in four datasets. The total user number can vary from 30, 000 to 1M. As we

know, infrequent locations in the LDP can cause more utility loss than frequent

locations [103]. So, we use four dataset that have different densities of users. Figure

5.7 presents the original frequencies of all the locations in four datasets.

5.6.2 Distribution Estimation (Location-Input). We first evaluate the utility

of L-SRR for the distribution estimation while benchmarking with the state-of-the-art
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Table 5.2. Characteristics of datasets (after pre-processing)

Dataset Location # User #

Gowalla 1,738 1,120,147

Geolife 566 104,488

Portcabs 374 34,438

Foursquare 3,202 701,528

LDP schemes, including Generalized Randomized Response [126] (GRR), Optimal Lo-

cal Hash with hierarchy structure [144] (OLH-H), the Location Data Aggregation [45]

(PLDP), and the Hadamard Response (HR) [50]. We follow the original perturbation

and estimation method in each benchmark. Here, we choose the OLH mechanism

since it has better utility than unary encoding (UE), and choose the existing loca-

tion LDP framework PLDP instead of existing location framework in [42, 43] since

the PLDP is an optimized framework that boosts the utility. For fair comparisons, in

OLH-H, we randomly sample a hierarchical level for each location. Then, we adapt

the constrained inference [145] to adjust the frequencies of parent and leaf nodes for

consistency. In PLDP, we assign the same protection region level for all the users as

other LDP schemes to satisfy the strict ϵ-LDP.

The server derives the spatial density for many LBS applications, e.g., urban

traffic density [146], and crowd density for events [120]. In most existing LDP settings,

the ϵ is in the range between 0.5 to 10 for privacy protection. Too large ϵ value can’t

protect user’s location well. Similar to that, we set ϵ between 1 and 8 with a step of

0.5 (covering both strong and weak privacy regime).

Figure 5.8 shows the average L1-distance and KL-divergence between the true
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and estimated distributions of all the locations. Both L1-distance and KL-divergence

decrease as ϵ increases. Especially for the GRR, the error dramatically decreases (e.g.,

Figure 5.8(e)) since the probability grows exponentially. However, L-SRR still greatly

outperforms other LDP schemes on all the four datasets.

5.6.3 Case Study I: k-NN Query (Location-Input). We first evaluate the

performance of SRR in specific applications on recommendations based on the location

distribution. k-nearest neighbors (k-NNs) is a typical application in which queries

can be made for the nearest point-of-interests or users. We next show the results for

querying the k-NN users [48], which can be extended from the distribution estimation.

The k-NN lists for any user (with a location) are the other k closest users, measured

by the MSE of their coordinates. Then, given the estimated location distribution,

the server can directly derive each location’s list of k-NNs.

k-NN Lists Computed by Server. Figure 5.9 shows the normalized MSE

between the true and estimated coordinates of all the users’ k-NN lists. The nor-

malized MSE also decreases while ϵ increases. In Figure 5.9(a), 5.9(b), 5.9(c), and

5.9(d), L-SRR outperforms GRR, OLH-H, PLDP, and HR, which is consistent with the

previous results.

We also present the precision and recall of all the users’ estimated k-NN lists

in Table 5.3 and Table 5.4. Again, L-SRR can produce more accurate k-NN lists

than all the other LDP schemes. Note that ϵ might be relatively large for very high

accuracy (e.g., ϵ = 5 similar to the privacy setting by Apple [116]). If involving more

users in the practical LBS App, ϵ can be much smaller for such very high accuracy.

5.6.4 Case Study II: Trajectory-Input LBS. We next evaluate the performance

of L-SRR on collecting trajectories for two example LBS applications: (1) origin and

destination (OD) analysis which estimates the OD pairs frequencies with the Lasso

regression, and (2) traffic-aware GPS navigation.
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Figure 5.8. Average L1-distance and KL-divergence for the distribution estimation
on four datasets using different LDP schemes
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Figure 5.9. MSE of all the locations’ k-NN lists on four datasets using different LDP
schemes (k = 25)

OD Analysis. The true number of distinct OD pairs in four datasets are

2, 315, 876, 1, 034, and 5, 634, respectively. We apply the same Lasso regression algo-

rithm to all the LDP schemes. Figure 5.10 presents the average L1-distance between

the true and estimated OD pair distribution. As ϵ increases, L1-distance decreases.

L-SRR again shows the smallest L1-distance of L-SRR in all the experiments. More-

over, we also observe that the L1-distance is smaller than LBS with single-location

input (see Figure 5.8).

Traffic-Aware GPS Navigation. To test the performance of the traffic-

aware GPS navigation, we make the simulation the experiment of recommendation

for the fastest route. We can also draw the conclusion that L-SRR outperforms other

LDP schemes (see the detailed results and discussions in Appendix A.5).
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Figure 5.10. Average L1-distance for the OD pair frequency on four datasets using
different LDP schemes

5.6.5 Ablation Study and Runtime.

Ablation Study. We compare the results with different combinations of

perturbation mechanisms (GRR, HR and SRR) and estimation methods. Since the

standard estimation method cannot be applied to SRR (more than two perturbation

probabilities), we apply the maximum likelihood estimation (MLE) instead. Moreover,

the GRR with empirical estimation (EM) is a special case of Hadamard response (HR):

|Cx| = 1. Figure 5.11 shows that SRR and the revised EM (L-SRR) perform the best.

Even with the MLE, SRR is better than GRR in most cases. Also, the revised EM can

further boost the utility of SRR (compared to SRR and MLE).

Runtime. Since users only need to perturb their locations, the user-side
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Figure 5.11. Average L1-distance for frequency estimation using different combina-
tions of perturbation and estimation methods

runtime is negligible. It takes only 0.014 second for each user on average in the

experiments, and thus we only report the server-side runtime in Figure 5.12. We test

10% to 100% of each dataset with a step of 10%. Similar to GRR, OLH-H, PLDP and

HR, the runtime of L-SRR only slightly increases as the number of users reaches ∼1M

(e.g., 9 seconds for Gowalla dataset), which is acceptable.

Notice that, group partitioning dominates the offline costs O(d2) for L-SRR.

Thus, we also present such offline partitioning time w.r.t. the number of users and the

number of locations, as shown in Figure 5.13. We uniformly extract 25%, 50%, 75%,

and 100% of users and locations from each dataset as the test datasets. As shown

in Figure 5.13(a), the offline time (including the the preprocessing time to get the

sub-dataset) increases as the number of users increases due to the growth of distinct
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Figure 5.12. Runtime for the server (vs. the number of users)
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Figure 5.13. Offline runtime

locations. Since the group partitioning that is related to the domain size dominates

the offline costs. In Figure 5.13(b), we also see that the offline runtime (excluding the

preprocessing time) grows on the number of locations, and the offline time is around 30

seconds at most. However, the offline execution is needed when the location domain
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is updated. Recall that the domain is only updated periodically (e.g., every day).

Thus, such offline costs are efficient for real-world deployments.

5.7 Conclusion

Severe privacy risks arise in LBS applications due to sensitive location collec-

tion. To address the deficiency on privately collecting locations with LDP guarantees

and high utility, we propose a novel LDP mechanism “Staircase Randomized Re-

sponse” (SRR) and extend the empirical estimation for SRR to significantly improve

the accuracy of the LDP model for LBS applications. In addition, we have also ex-

tended SRR to privately collect trajectories with ϵ-LDP. We have conducted extensive

experiments on real datasets to show that L-SRR drastically outperforms other LDP

schemes.
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CHAPTER 6

CONCLUSION & FUTURE WORK

6.1 Conclusion

In conclusion, the prevalence of portable devices that generate vast amounts

of high-dimensional and unstructured data has raised concerns about privacy. To

address this issue, this dissertation proposes three frameworks for safeguarding the

privacy of such data in various domains.

Specifically, the first work focuses on video analysis with differential privacy

guarantee and proposes a new sampling-based mechanism called VideoDP that gen-

erates utility-driven private videos for any private analysis. The proposed mechanism

provides a flexible platform for untrusted analysts to conduct private queries and

analyses with superior utility, as demonstrated through extensive experiments.

The second paper addresses privacy concerns in real-world videos and proposes

a two-phase video sanitization technique called Verro that perturbs all objects’ con-

tent and coordinates in the video to generate a synthetic video with indistinguishable

objects. This approach helps to prevent individuals from being re-identified with

background knowledge and has been validated through experiments on real videos.

The third work focuses on location-based services (LBS) applications and pro-

poses a novel LDP mechanism called Staircase Randomized Response (SRR) to pri-

vately collect locations and trajectories with LDP guarantees and high utility. The

paper extends SRR to improve the accuracy of the LDP model for LBS applica-

tions and demonstrates the superiority of L-SRR over other LDP schemes through

extensive experiments on real datasets.

Overall, these framework demonstrate the importance of privacy protection in

various domains and propose innovative solutions to address privacy concerns while
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maintaining high utility. These solutions have significant implications for a wide range

of industries and applications, and can inspire further research and innovation in the

field of privacy protection.

6.2 Future Work

6.2.1 Trustworthy AI. Deep learning is a subset of machine learning that involves

training artificial neural networks with many layers. Deep learning algorithms can

learn to recognize patterns and features in data, making them particularly useful for

tasks such as image recognition, natural language processing, and speech recognition.

These algorithms are often used in applications such as self-driving cars, facial recog-

nition systems, and language translation software. To get an accurate deep learning

model, one of the key points is to train the model on massive datasets. It requires

that datasets are clean, well-labeled, and representative. The privacy problem in deep

learning arises when sensitive or personal information is present in the datasets (e.g.,

medical records or financial information) used to train the models. There is a risk

that this information could be used to identify individuals or disclose their private

information.

There are several ways in which deep learning can pose privacy risks. One is

through the use of training data that contains sensitive information. This information

can be inadvertently learned by the deep learning model and used to make predictions

or inferences about individuals, potentially leading to unintended consequences. For

example, Reza et al. [147] proposed membership inference attacks against machine

learning models. Specifically, the pre-trained models have been publicly available and

model parameters are fully exposed. With the model parameter, the adversaries can

train an attack model by the shadow models which use the same machine learning

platform for training the target model and the same format training dataset (disjoint

with the training dataset of the target model). Another issue is the possibility of
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adversarial attacks on deep learning models. These attacks involve deliberately ma-

nipulating the input data in order to cause the model to make incorrect predictions

or reveal sensitive information. For example, an attacker could add noise to an im-

age/video in a way that causes a deep-learning model to misidentify the contents of

the image/video [148–152]. In summary, the privacy of deep learning is an important

consideration in the development and deployment of machine learning models. It is

important to design models and train data with privacy in mind and to use appro-

priate privacy-preserving techniques to ensure that individual privacy is protected.

Nowadays, differential privacy is widely applied to solve the privacy problems

in machine learning [62,153–156], and it has a certain defense effect against member-

ship inference attacks for the training dataset [157]. Moreover, differential privacy is

also used to different layers of DNN models to propose defense methods against the

state-of-the-art adversarial perturbations of the DNN models, which guarantees the

robustness of models [158]. However, there are still some issues to be addressed since

there are different machine learning tasks and they use different metrics as loss func-

tions. Thus, we can investigate the relationship between the defense or robustness

of deep learning and differential privacy and explore the utility-optimized privacy-

preserving deep learning model aiming at specific machine learning tasks and loss

functions (universal solution) [62]. In addition, we will also investigate cryptographic

techniques [159–166] for preserving the privacy of deep learning systems by studying

the trade-off between user privacy protection and system efficiency.

6.2.2 Security and Privacy for Biomedical Data. Biomedical data is always

analyzed to understand how living systems function. For instance, biomedical data

science can develop new analysis technologies with machine learning in order to pre-

dict disease and provide disease diagnosis at lower human costs. However, there are

several issues to be addressed when we process biomedical data with machine learning
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models.

First, as we know, some additive noise may be generated by the respiratory

and body movements of patients in medical images (e.g., MR images). These noise

may be Gaussian, Rician, and Speckle noise. It is highly possible for radiologists

to misdiagnose these medical images with additive noises. With the fact that the

prediction and diagnosis result should be more accurate if these medical images are

more “clean”, we would like to pre-process these images and eliminate the noise be-

fore diagnosing these images with deep learning models. However, the traditional

methods to pre-process the noise still need a lot of human work to identify and ex-

clude such poor images prior to any algorithmic analysis. Thus, we can propose a

smooth classifier that can predict the noised medical image correctly. In the concept

of certified robustness against adversarial examples (noisy image for misclassifica-

tion), we can also add the noise into the classifier and use the smoothed classifier

to do the prediction. The smoothed classifier outputs the statistic prediction prob-

ability of the input over the noises and guarantees the prediction accuracy with the

noisy input image. Based on this, for a general problem by classifying medical im-

ages to classes in Y , given an arbitrary base classifier f , it can be converted to a

“smoothed" classifier g by adding isotropic noise (e.g., Gaussian noise) to the input

x: g(x) = argmaxc∈Y P (f(x + ϵ) = c). The smooth classifier then makes the correct

prediction P (f(x + ϵ + δ) = cA) ≥ maxc̸=cAP (f(x + ϵ + δ) = c) where cA means the

correct class of the medical image and δ means the noise of medical image. Thus, our

mission is to find a suitable noise ϵ for the classifier.

Second, there is privacy and security problem for medical image collection. In

many recent machine learning work with medical images, there is only a small training

dataset since they can’t have enough patients’ medical images which involve in the

privacy of patients. However, the training dataset size affects the results significantly
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and too small training dataset can’t guarantee the accuracy. If each hospital or

agent would like to share their patients’ record, it would make the training dataset

size larger. However, not each hospital can obtain the authorization from patient to

release the image directly. Thus, we propose a platform that trains the DNN models

locally by differentially private federated learning without sharing records, which can

guarantee the accuracy of the trained model while protecting the medical privacy of

users.
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APPENDIX A

PROOF, ALGORITHM, ADDITIONAL RESULTS
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A.1 Optimal kj for VE Υj

A.1.1 Equations for Different Pixels. If pixel (a, b, t) is a non-border pixel,

we have Equation 3.1 to represent the relation between the RGB expectation of any

pixel (a, b, t) and the RGB expectation of its four neighbors (denoted as θ̂N , θ̂S, θ̂W

and θ̂E). We now briefly discuss how to derive such relation.

First, if pixel (a, b, t) is sampled, then the RGB expectation equals Pr(a, b, t)∗

θ(a, b, t) where Pr(a, b, t) is the probability of sampling (a, b, t) and θ(a, b, t) denotes

its RGB in the original video V .

Second, if pixel (a, b, t) is not sampled, then it will be interpolated based on

the RGBs of its neighbors. There are five subcases (denoting the probabilities that

(a, b, t) has 0, 1, 2, 3 and 4 neighbors before interpolation as σ0(a, b, t), σ1(a, b, t),

σ2(a, b, t), σ3(a, b, t), σ4(a, b, t)):

1. 0 neighbor: all its neighbors are not sampled in Phase I. Then, the probability

share is σ0(a, b, t) ∗ 0.

2. 1 neighbor: 3 of its neighbors are not sampled in Phase I. Then, the probability

share is:

σ1(a, b, t) ∗ [1− Pr(a, b, t)] ∗ E(θ̂N) + E(θ̂S) + E(θ̂W ) + E(θ̂E)

4

where all 4 neighbors can be used for interpolation.

3. 2 neighbors: 2 of its neighbors not sampled in Phase I. Then, the probability

share is:

σ2(a, b, t) ∗ [1− Pr(a, b, t)] ∗ 3E(θ̂N) + 3E(θ̂S) + 3E(θ̂W ) + 3E(θ̂E)

6 ∗ 2
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where 6 different combinations of two neighbors can be used for interpolation

and the interpolated RGB is the average of two neighbors’ RGBs.

4. 3 neighbors: 1 of its neighbors is not sampled in Phase I. Then, the probability

share is:

σ3(a, b, t) ∗ [1− Pr(a, b, t)] ∗ 3E(θ̂N) + 3E(θ̂S) + 3E(θ̂W ) + 3E(θ̂E)

4 ∗ 2

where 4 different combinations of two neighbors can be used for interpolation

and the interpolated RGB is the average of three neighbors’ RGBs.

5. 4 neighbors: no neighbor is suppressed in sampling. Then, the probability share

is:

σ4(a, b, t) ∗ [1− Pr(a, b, t)] ∗ E(θ̂N) + E(θ̂S) + E(θ̂W ) + E(θ̂E)

4

where only 1 combination of 4 neighbors can be used for interpolation and the

interpolated RGB is the average of 4 neighbors’ RGBs.

Similarly, if pixel (a, b, t) is on the border but not at the corner (w.l.o.g., the

left border), then we have:

E[θ̂(a, b, t)] = Pr(a, b, t) ∗ θ(a, b, t) + σ0(a, b, t) ∗ 0

+
σ1(a, b, t) ∗ [1− Pr(a, b, t)] ∗ [E(θ̂N) + E(θ̂S) + E(θ̂E)]

3

+
σ2(a, b, t) ∗ [1− Pr(a, b, t)] ∗ [2E(θ̂N) + 2E(θ̂S) + 2E(θ̂E)]]

3 ∗ 2

+
σ3(a, b, t) ∗ [1− Pr(a, b, t)] ∗ [E(θ̂N) + E(θ̂S) + E(θ̂E)]

3
(A.1)



130

If pixel (a, b, t) is located at the corner of the tth frame (w.l.o.g., the upper-left

corner), then we have:

E[θ̂(a, b, t)] = Pr(a, b, t) ∗ θ(a, b, t) + σ0(a, b, t) ∗ 0

+
σ1(a, b, t) ∗ [1− Pr(a, b, t)] ∗ [E(θ̂S) + E(θ̂E)]

2

+
σ2(a, b, t) ∗ [1− Pr(a, b, t)] ∗ [E(θ̂S) + E(θ̂E)]]

2
(A.2)

A.1.2 Solving Algorithm. The optimal number of distinct RGBs kj (to al-

locate privacy budget) is computed based on minimizing the MSE expectation of

visual element Υj (averaged by the number of pixels). Thus, we solve the following

optimization (which is equivalent to Equation 3.2):

argmin
kj

∑
∀(a,b,t)∈Υj

(
E[θ(a, b, t)]− E[θ̂(a, b, t)]

)2



E[θ̂(1, 1)] = Pr(1, 1)) ∗ θ(1, 1) + [1−Pr(1,1)]∗(σ1(1,1)+σ2(1,1))∗(E[θ̂(1,2)]+E[θ̂(2,1)])
2

E[θ̂(1, 2)] = Pr(1, 2) ∗ θ(1, 2) + [1−Pr(1,2)]∗(σ1(1,2)+σ2(1,2)+σ3(1,2))∗(E[θ̂(1,1)]+E[θ̂(2,2)]+E[θ̂(1,3)])
3

...
...

...

∀a ∈ (1, A),∀b ∈ (1, B)

E(θ̂(a, b)) = Pr(a, b) ∗ θ(a, b) + [1−Pr(a,b)]∗(σ1(a,b)+···+σ4(a,b))∗(E[θ̂(a−1,b)]+···+E[θ̂(a,b+1)])
4

...
...

...

E(θ̂(A,B)) = Pr(A,B) ∗ θ(A,B) + [1−Pr(A,B)]∗(σ1(A,B)+σ2(A,B))∗(E[θ̂(A−1,b)]+E[θ̂(A,B−1)]
2

Note that the above equations can be simply extended to all the pixels in

Υj in all the frames (incorporating frame t). We use the inverse matrix to solve

these equations where the coefficients of all the above equations can be represented
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as a |Υj| × |Υj| matrix (denoted as M). To ensure that the inverse matrix can

solve the equations, M should have a full rank |Υj|. In case that M is not a full

rank matrix (indeed, the rank of M is very high since ∀(a, b, t) ∈ Υj, σ1(a, b, t), σ2

(a, b, t), σ3(a, b, t), σ4(a, b, t) are somewhat random), we can add a tiny random noise

to the non-zero entries in M (in which the deviation is negligible).

Specifically, denoting the expectation of the sth pixel in Υj as E[θ̂(s)] where

s ∈ [1, AB]. Then, we have

E[θ̂(s)] =
1

|M |
∗

AB∑
i=1

[(−1)i+s ∗M (AB−1)
is ∗ bi] (A.3)

where |M | is the determinant of M , M (AB−1)
is denotes the sth cofactor (cor-

responding the sth pixel; including (AB − 1) × (AB − 1) entries) and bi is the ith

constant in the equation (in last column of M). Thus, M (AB−1)
is can be recursively

represented:

M
(AB−1)
is =

AB∑
i=1

[(−1)i+s ∗ Ri ∗M (AB−2)
is ] (A.4)

where M (AB−2) represents the cofactor matrix of MAB−1 and Ri is a random

constant (for ensuring full rank for M) which is close to − [1−Pr(a,b,t)](σ1(a,b,t)+σ2(a,b,t))
2

for corner pixels, − [1−Pr(a,b,t)][σ1(a,b,t)+σ2(a,b,t)+σ3(a,b,t)]
3

for border pixels, and

− [1−Pr(a,b,t)][σ1(a,b,t)+σ2(a,b,t)+σ3(a,b,t)+σ4(a,b,t)]
4

for non-border pixels. Then, Equation A.4

can be:

M
(AB−1)
is =

AB∑
i=1

[(−1)i+s ∗ (
AB−3∏
i=1

Ri) ∗M (2)
is ] (A.5)

Since each row of M only has at most 5 non-zero entries (corresponding to the

variables of the current pixel and its four/three/two neighbors), we have:
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E[θ̂(s)] ≈ −5AB−3 ∗AB

|M |
∗ max
∀i∈[1,AB]

{|Ri|AB−3 ∗M (2)
is ∗ bi} (A.6)

Thus, we have the MSE expectation in VE Υj:

AB∑
i=1

[θ(a, b, t) +
5AB−3 ∗ AB
|M |

∗ max
∀i∈[1,AB]

{|Ri|AB−3 ∗M (2)
is ∗ bi}]2

For each kj, the corresponding MSE expectation can be computed using the

above equation. Then, the optimal kj can be obtained by traversing kj in any range.

In addition, it is straightforward to prove that the complexity of the inverse matrix

based solver is O(n3 log(n)). Note that we assume that the optimal kj is computed for

minimum MSE based on the first traversal in the interpolation of each visual element.

The deviation is very minor since most pixels are interpolated in the first traversal in

our experiments. Moreover, the optimal kj (derived as above) is also experimentally

validated (see Figure A.3(d)).

A.2 Budget Allocation Algorithm

A.3 Additional Results

(a) Original (b) ϵ = 0.8 (I) (c) ϵ = 1.6 (I) (d) ϵ = 0.8 (II) (e) ϵ = 1.6 (II)

Figure A.1. Representative Frames in the Random Output Video of PED (available
for differentially private queries/analysis)

While evaluating the utility of the sanitized videos in three datasets using two

utility measures (KL divergence and MSE), we also fix ϵ and traverse different k for

all the visual elements (assigning the same k ∈ [4, 30]). Since optimal k may be
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Algorithm 6 Budget Allocation
Input: n sets of RGBs Ψj = {i ∈ [1, kj], θ̃ij}, privacy budget ϵ for Phase I

Output: privacy budget for each unique RGB

1: initialize the set of unique RGBs: Ψ←
⋃n

j=1 Ψj

2: for each j ∈ [1, n] do

3: initialize the overall budget for set Ψj : ϵ(Ψj)← ϵ

4: end for

5: for eachℓ ∈ [1, n] do

6: for each θ̃ ∈ Ψ do

7: if count(θ̃ ∈ {Ψ1, . . . ,Ψn}) = (n− ℓ+ 1) then

8: initialize budget for RGB θ̃: ϵ(θ̃)

9: ϵ(θ̃)← min
∀j∈[1,(n−ℓ+1)]

[
dj(θ̃)

dj
∗ ϵ(Ψj)]

10: for each j ∈ [1, (n− ℓ+ 1)],Ψj do

11: update budget: ϵ(Ψj)← ϵ(Ψj)− ϵ(θ̃)

12: update total pixel count: dj ← dj − dj(θ̃)

13: end for

14: end if

15: return budget ϵ(θ̃) for RGB θ̃

16: Ψ← Ψ \ θ̃

17: end for

18: end for

different, we use specific videos to see how it affects result. Figure A.3(a) and A.3(b)

present the KL divergence values for all the sampled pixels (where privacy budget

ϵ is fixed as 0.8 and 1.6, respectively). We can observe that the KL value increases

as k increases (if the same number of distinct RGBs in all the visual elements are

selected to assign privacy budgets). This is true for the following reason: smaller k

samples pixels with less diverse RGBs, but it can allocate a larger privacy budget to
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(a) Original (b) ϵ = 0.8 ( I) (c) ϵ = 1.6 ( I) (d) ϵ = 0.8 ( II) (e) ϵ = 1.6 ( II)

Figure A.2. Representative Frames in the Random Output Video of VEH (available
for differentially private queries/analysis)
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(a) KL vs k (ϵ = 0.8)
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(b) KL vs k (ϵ = 1.6)

0 5 10 15 20 25 30
k

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 M
SE

PED
VEH
PV

(c) MSE vs kj (after Phase I)
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(d) MSE vs kj (after Phase II)

Figure A.3. Pixel Level Utility Evaluation with k

each RGB. Then, the generated results can have better count distributions for all the

sampled RGBs.

We also examine the optimal number of selected RGBs to assign privacy bud-
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gets kj in visual elements. We select the visual element with most pixels in all the

videos (PED , VEH and PV). Since the optimal values are derived based on MSEs,

we plot the normalized MSEs for all the pixels in the visual element for two videos in

Figure A.3(c) (after Phase I) and Figure A.3(d) (after Phase II), respectively. The

normalized MSE does not change much (after Phase I) as k increases since the MSE

expectation is optimized for Phase II. Instead, Figure A.3(d) clearly shows that kj

goes optimal in the range (which equals the optimal kj after solving Equation 3.2

detailed in Appendix A.1) in both videos for all possible values in the specified range.

As kj increases, the normalized MSE of the VE first decreases and then increases.

This reflects that the best kj with respect to the optimal MSE is neither too small

nor too large for different VE in all the three videos.

Finally, we present some representative frames of the PED and VEH to show

the effectiveness of pixel sampling (Phase I) and utility-driven private video genera-

tion (Phase II) in VideoDP. Specifically, we randomly select a frame in video PED and

VEH. Figure A.1 and A.2 demonstrate such frames in the input videos and the output

videos (after Phase I and II). Figure A.1(b), A.1(c),A.2(b) and A.2(c) demonstrate

that more pixels are sampled as private budget ϵ is larger (ϵ = 1.6). Although the

portion of the total sampled pixels is not high (after Phase I), the pixel interpolation

(Phase II) can reconstruct the video with good quality as shown in Figure A.1(d),

A.1(e), A.2(d) and A.2(e). We can observe that the pedestrian/vehicles are randomly

generated in the frame (which are not directly revealed to the analysts). More pedes-

trians/vehicles can be detected as ϵ = 1.6. Then, disclosing the any query/analysis

result on such (random) video to analysts satisfies differential privacy.
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A.4 Proof

A.4.1 Proof of Convex Property w.r.t. m.

Proof. With the mutual information bound function H, we can take its second order

derivative in m as follows:

∂2H

∂m2
=[

1

c · d− m·(c−1)·d
2

· log c

c− m·(c−1)·d
2

]
′′

=
(c− 1)2d2

4(c · d− (c−1)d
2 ·m)3

· (2 log c

c · d− (c−1)d
2 ·m

+ 3)

When the first order derivative is equal to zero, we have m = 2·(c·d−e1+log c)
(c−1)·d .

It is very straightforward to prove that the second order derivative is greater than

zero since (cd − (c−1)d
2

m) > 0 and 2 log c

cd− (c−1)d
2

m
+ 3 > 0. Therefore, it is a convex

function, and we can derive its minimum value by the derivative.

A.4.2 Privacy and Utility Analysis.

A.4.2.1 Proof of Theorem 7 (Privacy Analysis).

Proof. For any pair of input locations x, x′ ∈ D and output y, the maximum pertur-

bation probability q(y|x) for sampling location y based on input x is αmax(x) when

y is in the same group with x (the first group G1(x)); the minimum perturbation

probability q(y|x′) for sampling location y based on input x′ is αmin(x
′) when y in

the furthest group for x′ (the last group Gm(x
′)). Thus, the SRR mechanism in

L-SRR satisfies ϵ = maxx,x′∈D log(c · (m−1)d·c−(c−1)
∑m−1

j=2 [(j−1)·|Gj(x)|]
(m−1)d·c−(c−1)

∑m−1
j=2 [(j−1)·|Gj(x′)|])-LDP in all the

cases, where ϵ is a strict constant privacy bound derived by c and domain D.

A.4.2.2 Proof of Theorem 9 (L2 Error Bound).
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Proof. With the estimation formula, we have p(Cx) = p(x)·
∑

y∈Cx
q(y|x)+

∑
x′ ̸=x p(x

′)·

[
∑

y∈Cx\Cx′
q(y|x′) +

∑
y∈Cx∩Cx′

q(y|x′)]. With the property of Hadamard matrix [50],

the size of the set difference between any two location candidate sets is d
4
, and the

size of intersection between any two candidate sets of locations is also d
4
. We can

integrate these into the equation. Then, we have:

p(Cx) ≥ p(x) · [
∑
y∈Cx

q(y|x)] +
∑
x′ ̸=x

p(x′) · d ·min{q(y|x′)}
2

= p(x) · [
∑
y∈Cx

q(y|x)] + [1− p(x)] · d · αmin(x)

2

=⇒ p(x) ≤
q(Cx)− d·αmin(x)

2∑
y∈Cx

[q(y|x)− d·αmin(x)
2 ]

Then, we can have the L2
2-distance as below:

E[L2
2(p̃, p)] ≤ (

1∑
y∈Cx

q(y|x)− d·µ
2

)2 · E[L2
2(p̃(C), p(C)]

where µ = max{αmin(x)}. Since E[p̃(Cx)] = E[ I{yj∈Cx

n
}]

= p(Cx), we have:

E[L2
2(p̃(C), p(C))] = E[

∑
x∈D

(p̃(Cx)− p(Cx))
2] =

∑
x∈D

V ar(p̃(Cx))

Moreover, each y is independently sampled and p̃(Cx) = p(Cx) is the mean of

n independent multinomial distributions.

∑
x∈D

V ar(p̃(Cx)) ≤
∑
x∈D

1

n
·max{p(Cx)} ≤

d

n

Thus, we have E[L2(p̃, p)] ≤ ( 1∑
y∈Cx

q(y|x)− d·µ
2

) ·
√

d
n
.
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A.4.2.3 Proof of Theorem 8 (L1 Error Bound).

Proof. Since ∀i, ai > 0, n ·
∑n

i=1(an)
2 ≥ [

∑n
i=1(an)]

2 holds, we have d · L2
2(p̃, p) ≥

[L1(p̃, p)]
2. Then. we can derive:

(E[L1(p̃, p)])
2 ≤ d2

n · (γ − d·µ
2
)2

Thus, E[L1(p̃, p)] ≤ 2d√
n·(2γ−d·µ) completes the proof.

A.5 Additional Experiments

A.5.1 Traffic-Aware GPS Navigation. We simulate many trajectories and
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Figure A.4. The total privacy bound of L-SRR for traffic-aware GPS navigation by
collecting trajectories

predict the time Aggp(x1,x2) between any two locations on the trajectory using the

Markov Chain [167]. Specifically, we generate multiple routes for each OD pair (at
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client). For each route, we compute the predicted time t based on historical datasets

for any two locations. In our experiment, we use the data collected earlier as the

historical data (e.g., Geolife dataset collected in 2009 as the historical data, and

collected in 2010 as the test data). Furthermore, for locations on each route, such

LBS calculates the frequencies of users near the location within a range (e.g., 4.7m).

If the frequency exceeds a threshold (e.g., 50 users), a 3-second delay time will be

added [168]. Finally, given the traffic density, it may update the route to avoid heavy

traffic. With L-SRR, the route recalculation occurs if Aggt(xo, xi)−Aggp(xo, xi) > θ

holds, where i ∈ T and θ is the delay threshold (e.g., 30 seconds). If yes, the client

will submit its perturbed location, and privately retrieve the traffic density at the

current position to recalculate the fastest route [168].

In the experiments, we first evaluate how the delay time threshold θ affects

the total privacy guarantee. The maximum numbers of locations on the trajectories

for four datasets are 140, 135, 127, and 150, respectively. In Figure A.4, we set θ

between 10 seconds and 55 seconds with a step of 5 seconds. As θ increases, the total

privacy bound ϵ decreases with a decreasing number of location updates. As θ = 60

(updating the location once delay exceeds 1 minute), the privacy bound is around 3ϵ,

which is very small for trajectories.

Second, to measure the route deviation, we apply Levenshtein distance to

measure the accuracy between true route and the route recommended by L-SRR. It

measures the difference by calculating the minimum number of location edits (inser-

tions, deletions, or substitutions) required to change one route to the other. Figure

A.5 shows the relative Levenshtein distance over the total size of the true routes (vs

the total privacy bound ϵ). L-SRR again outperforms other LDP schemes. In ad-

dition, we also measure the deviation of the total trip time. Figure A.6 shows that

the trip time deviation decreases as the privacy bound ϵ increases for all the LDP



140

1 2 3 4 5 6 7 8
ε

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

Le
ve

ns
ht

ei
n 

D
is

ta
nc

e

GRR
OLH
PLDP
HR
L-SRR

(a) Gowalla

1 2 3 4 5 6 7 8
ε

0.0

0.2

0.4

0.6

0.8

1.0

Le
ve

ns
ht

ei
n 

D
is

ta
nc

e

GRR
OLH
PLDP
HR
L-SRR

(b) Geolife

1 2 3 4 5 6 7 8
ε

0.0

0.2

0.4

0.6

0.8

1.0

Le
ve

ns
ht

ei
n 

D
is

ta
nc

e

GRR
OLH
PLDP
HR
L-SRR

(c) Portocabs

1 2 3 4 5 6 7 8
ε

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Le
ve

ns
ht

ei
n 

D
is

ta
nc

e

GRR
OLH
PLDP
HR
L-SRR

(d) Foursquare

Figure A.5. Relative levenshtein distance of trajectories in the traffic-aware GPS
navigation (θ = 40 seconds)

schemes, and L-SRR results in the least trip time deviation.

A.5.2 SRR and Differential Privacy. We discuss the utility of centralized

differential privacy. A generic solution is to add the Laplace noise to the frequency of

each location (after aggregation). Thus, ϵ should be equally allocated for d locations.

Table A.1 presents the L1-distance for the distribution on four datasets using Laplace

mechanism. The results show that the L1-distance gets smaller as ϵ becomes larger.

Compared to the LDP mechanism, for Gowalla and Foursquare, the distance with

SRR has smaller distance. For Geolife and Portocabs, the distance with SRR has

similar distance in case of a smaller domain. Note that the privacy guarantees of

LDP and DP are indeed incomparable even for the same ϵ (since the trust model and

indistinguishability are defined in different ways).
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Figure A.6. Average trip time deviation in the traffic-aware GPS navigation (θ = 40
seconds)

Table A.1. Average L1-distance for the location distribution on four datasets using
Laplace mechanism for centralized DP

Dataset ϵ = 1 ϵ = 3 ϵ = 5 ϵ = 7

Gowalla 0.18 0.16 0.15 0.13

Geolife 0.29 0.11 0.08 0.04

Portocabs 0.43 0.26 0.15 0.07

Foursquare 13.87 4.69 2.78 1.91
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