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Abstract
Differentially private federated learning (DP-FL) offers a compelling

approach to collaborativemodel training by ensuring robust privacy

for clients. Despite its potential, current methods face challenges

in effectively balancing privacy, utility, and performance across

diverse federated learning scenarios. Addressing these challenges,

we introduce UDP-FL, to our knowledge the first DP-FL framework

that universally harmonizes any randomization mechanism, includ-

ing those considered optimal, by employing the Gaussian Moments

Accountant (viz. DP-SGD). Central to UDP-FL is the ’Harmonizer,’

a dynamic module engineered to intelligently select and apply the

most suitable DP mechanism tailored to each client’s specific pri-

vacy requirements, data sensitivities, and computational capacities.

This selection process is driven by the principle of Rényi Differ-

ential Privacy, which serves as a crucial mediator for aligning pri-

vacy budgets effectively. Our comprehensive evaluation of UDP-FL,

benchmarked against established baseline methods, demonstrates

superior performance in upholding privacy guarantees and en-

hancing model functionality. The framework’s robustness has been

rigorously tested against a broad spectrum of privacy attacks, mak-

ing it one of the most thorough validations of a DP-FL framework

to date.
1

CCS Concepts
• Security and privacy→ Privacy-preserving protocols; • Com-
puting methodologies→ Machine learning algorithms.
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Source code, and the full version of this paper are available at https://github.com/

datasec-lab/UDP-FL.
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1 Introduction
As the volume of data generated by emerging applications contin-

ues to grow exponentially, federated learning (FL) [56] has emerged

as a promising solution for collaborative model training without

sharing raw data. Despite the absence of local data exposure, sen-

sitive information about the data can still be leaked through the

exchanged model parameters via, e.g., membership inference at-

tacks [8, 33, 61, 65, 83], data reconstruction attacks [26, 32, 39, 49],

and attribute inference attacks [4, 10, 25, 52, 54].

Differential privacy (DP) has been proposed to provide rigorous

privacy guarantees, ensuring that any data sample or user’s data

at any client cannot influence the output of a function (e.g., the

gradient or model parameters in FL) [1, 2, 48, 79]. However, directly

applying existing DP mechanisms and accounting approaches to FL

can result in excessive noise addition and loose privacy guarantees.

Recent techniques, such as the advanced accounting of privacy [1,

71, 74, 89] and Rényi Differential Privacy (RDP) [69], have shown

remarkable results in optimizing accounting for privacy loss in

machine learning. These techniques significantly improved the

tradeoff between data privacy and model utility. Nevertheless, ap-

plying the Moments Accountant (MA) as a budget economic solu-

tion to other DP mechanisms can be challenging. One reason is that

deriving the moments accountant for each DP mechanism often

requires a heavy analysis of the tails in their probability density

function (PDF), which can be difficult and may differ from one

mechanism to another. Accountants rely heavily on the Gaussian

mechanism to ensure DP, but this often results in excessive pertur-

bation of gradients. This can make it hard to achieve a satisfactory

balance between privacy and utility in existing DP-FL methods

[3, 24, 29, 38, 64, 68, 75, 85], which are dominantly based on the

Gaussian mechanism and the DP-SGD variants. The need to harmo-

nize different DP mechanisms in FL arises from the varying privacy

requirements and data characteristics in different applications. Due

to the different privacy-utility trade-offs and the changing privacy

regulations, no single DP mechanism can be universally optimal.

https://github.com/datasec-lab/UDP-FL
https://github.com/datasec-lab/UDP-FL
https://doi.org/10.1145/3714393.3726517
https://doi.org/10.1145/3714393.3726517
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Table 1: An example of Harmonizer’s output for choosing the DP mechanism. This is the ideal “after-the-fact” recommendation
after observing experiments. MIA, DRA and AIA stand for membership inference attacks, data reconstruction attacks and
attribute inference attacks, respectively.

DP

Mechanism
Convergence Accuracy MIA

Resilience

DRA

Resilience

AIA

Resilience
FL Arch Data Pattern Computational

Efficiency

Gaussian G#   G# G# FedAvg, FedSGD Any size, Dense  
Laplace # G# G#   FedProx, SCAFFOLD Any size, Sparse G#
Staircase      FedAvg, FedOpt, q-FedAvg Any size, Complex G#

Harmonizing DP mechanisms allows for personalized privacy for

clients and stricter privacy controls. This approach enables im-

proved privacy guarantees while maintaining high utility in diverse

FL scenarios, adapting to specific client needs and data characteris-

tics, and selecting the most suitable mechanism for each use case.

Building upon the limitations of existing DP-FL methods [3, 29,

38, 64, 68, 75, 85], we propose a novel universal solution for DP-FL

called UDP-FL, which offers a comprehensive approach for achiev-

ing DP in FL that extends beyond the popular DP-SGD algorithm

(Gaussian). It universally adopts different DP mechanisms (e.g.,

Staircase [27] which greatly outperforms Gaussian in terms of noise
magnitude2) and harmonizes privacy guarantees under a unified

framework. It allows for tighter budget accounting and comparison

of privacy guarantees between different DP-FL techniques, e.g., the

Gaussian, Laplace and Staircase noise additive mechanisms, using

the Rényi DP notion as a mediator variable [57, 74]. This approach

provides greater flexibility and generalizability for real-world sce-

narios that suit specific client and data characteristics.

DP-noise Harmonizer. The Harmonizer component is central to

UDP-FL, addressing the challenges of distributed learning systems.

It automatically selects and harmonizes different DP mechanisms

based on specific client requirements, dataset characteristics, and

privacy concerns. We also rely on the Harmonizer component to

enhance the budget accountant and management and improve the

applicability and convergence of DP-FL across diverse scenarios. It

harmonizes different DP mechanisms with the Rényi divergence,

providing a generalized, flexible, and universal approach to DP-FL

that adapts to various requirements, applications, and scenarios

while ensuring the best privacy-utility trade-off for each case. More-

over, the Harmonizer maps the Gaussian Moments Accountant [1]

to the corresponding Rényi DP of other DP mechanisms for FL, al-

lowing it to measure privacy loss using Rényi divergence [1, 57, 74].

This algorithm calculates privacy leakage for each training round

and ensures that the leakage of the adopted DP mechanism (e.g.,

Staircase mechanism [27]) does not exceed the Gaussian version

(viz. DP-SGD and other variants).

Robustness against Privacy Attacks. UDP-FL demonstrates sig-

nificant resilience against a spectrum of privacy attacks, aligning

with advanced theories presented in recent work [63]. Through

extensive empirical studies, our results reveal a substantial reduc-

tion in the success rate of Membership Inference Attacks (MIA)

(i.e., LiRA [8]) compared with non-private FL, highlighting the

framework’s effectiveness in preserving privacy. While DP is not

inherently designed to combat Attribute Inference Attacks (AIA),

we observed a reduced correlation in feature learning. Against Data

Reconstruction Attacks (DRA), UDP-FL has proven to be adept at

2
The Staircase mechanism [27] has been proven to be optimal for ℓ1 and ℓ2 metrics for

a wide range of privacy budget 𝜖 [27, 59].

preventing the reconstruction of original training data, thereby

reinforcing its robustness in protecting data privacy within DP-FL

environments.

Thus, the key contributions of this paper are summarized below:

(1) To our best knowledge, we propose the first DP-FL frame-

work (UDP-FL) that harmonizes different differential privacy

mechanisms in federated learning, achieving tighter privacy

bounds and higher model accuracy compared to baseline

methods while reducing computational and communication

overheads.

(2) We propose a scoring-based approach for DP mechanism

selection that considers privacy strength, utility preservation,

and computational efficiency, providing insights into how

different mechanisms can be optimally chosen for varying

FL scenarios.

(3) We conduct comprehensive privacy evaluations of UDP-FL

against membership inference [33, 65], data reconstruction

[23, 88], and attribute inference attacks [25, 52]. Our results

demonstrate superior defense capabilities, particularly with

the Staircase mechanism showing consistent improvement

across all attack scenarios while preserving model utility.

2 Preliminaries
2.1 System and Adversaries
In this work, we follow the standard semi-honest adversarial set-

ting for differentially private federated learning (DP-FL) where

the adversary can possess arbitrary background knowledge. The

server is honest-but-curious by following the protocol but attempt-

ing to derive private information about the client’s data from the

exchanged messages during the training process. Clients are also

categorized as “honest-but-curious”, by strictly adhering to the

protocol without deviating from established procedures [36]. Key

responsibilities include refraining from manipulating local model

updates and avoiding the use of poisoned or false data in the train-

ing. Upholding these guidelines is essential for maintaining the

integrity and security of the global model, ensuring its reliability

and robustness.

In terms of privacy, both UDP-FL (across all mechanisms) and the

DP-SGD are adding noise into local gradients during the training

process. Despite this, the disclosure of trained model parameters

is proven to preserve (𝜖, 𝛿)-DP [1]. The model parameters, viewed

as post-processed results of the DP guaranteed noisy gradients, do

not affect the privacy leakage.

Despite the distributed nature of federated learning offering col-

laborative model training, the challenge of preserving data privacy

persists. The privacy concerns stem from the potential leakage of

sensitive information through clients’ local model updates. We also

empirically evaluate the performance of UDP-FL against privacy
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attacks, including membership inference attacks (MIAs) [33, 65],

data reconstruction attacks (DRAs) [23, 88], and attribute inference

attacks (AIAs) [25, 52]. Their settings (which are different from

DP-FL) will be discussed in Section 5.

2.2 Federated Learning
FL is an emerging distributed learning approach that enables a

central server to coordinate multiple clients to jointly train a model

without accessing to the raw data. Assuming the FL system has

𝑁 clients C = {𝐶1,𝐶2, · · · ,𝐶𝑁 } and each client 𝐶𝑘 owns a private

training dataset D𝑘 = {(x𝑘
𝑗
, 𝑦𝑘

𝑗
)} with |D𝑘 | samples and each sam-

ple x𝑘
𝑗
has a label 𝑦𝑘

𝑗
. Then, FL considers the following distributed

optimization problem:

min

𝑤
𝐹 (𝑤) =

𝑁∑︁
𝑘=1

𝑝𝑘𝐹𝑘 (𝑤), (1)

where 𝑝𝑘 ≥ 0 is the client𝐶𝑘 ’s weight and
∑𝑁
𝑘=1

𝑝𝑘 = 1; Each client

𝐶𝑘 ’s local objective is defined by 𝐹𝑘 (𝑤) = 1

|D𝑘 |
∑ |D𝑘 |

𝑗=1
ℓ (𝑤 ; (x𝑘

𝑗
, 𝑦𝑘

𝑗
)),

with ℓ (·; ·) a user-specified loss function, e.g., cross-entropy loss.

FedAvg [55] is the de facto FL algorithm to solve Equation (1) in

an iterative way. It has the following steps:

(1) Global Model Initialization. The server initializes a global
model 𝑤0

, selects a random subset S𝑛 of 𝑛 clients from C,
and broadcasts𝑤0

to all clients in S𝑛 .
(2) Local Model Update. In each global epoch 𝑡 , each client𝐶𝑘

receives the global model𝑤𝑡
, initializes its local model𝑤𝑡

𝑘

as 𝑤𝑡
, and updates the local model by minimizing 𝐹𝑘 (𝑤𝑡 )

on the local dataset 𝐷𝑘 . E.g., when running SGD, we have:

𝑤𝑡
𝑘
← 𝑤𝑡

𝑘
− 𝜂𝑡∇𝑤𝑡

𝑘
𝐹𝑘 (𝑤𝑡 ), where 𝜂𝑡 is the learning rate in

the 𝑡-th epoch.

(3) Global Model Update. The server collects the updated

clientmodels {𝑤𝑡
𝑘
} and updates the global model𝑤𝑡+1

for the

next round via an aggregation algorithm. For instance, when

using FedAvg [55], the updated global model is: 𝑤𝑡+1 ←
𝑁
𝑛

∑
𝐶𝑘 ∈S𝑛 𝑝𝑘𝑤

𝑡
𝑘
, which is then broadcasted to clients for

the next round.

(4) Repeat Steps 2 and 3 until the global model converges.

2.3 Differential Privacy and Rényi Accountant
The use of DP in FL enhances the benefits of collaborative model

training with the need for protecting data privacy. It ensures that

each data sample or user’s contribution to the model training pro-

cess is indistinguishable from others, and it can be implemented

by adding noise to the gradients or parameters of the model or

by using secure aggregation techniques. The notion of DP can be

defined as below.

Definition 1 ((𝜖, 𝛿)-Differential Privacy [16, 17]). A random-
ization algorithmA is (𝜖, 𝛿)-differentially private if for any adjacent
databases 𝑑, 𝑑′ that differ on a single element, and for any output set
Ω ⊆ 𝑟𝑎𝑛𝑔𝑒 (A), we have 𝑃𝑟 [A(𝑑) ∈ Ω] ≤ 𝑒𝜖𝑃𝑟 [A(𝑑′) ∈ Ω] + 𝛿 ,
and vice versa.

FL with (𝜖, 𝛿)-DP generally requires hundreds of training rounds

to obtain a satisfactory model. Rényi accountant [71, 74] via Rényi

Differential Privacy (RDP) [57] has been proposed to provide tighter

privacy bounds on the privacy loss than the standard DP. RDP is

defined over the Rényi divergence [69]. Recall that for two prob-

ability distributions 𝑃 and 𝑄 , their Rényi divergence is defined

as D𝛼 (𝑃 | |𝑄) = 1

𝛼−1 logE𝑥∼𝑄 (
𝑃 (𝑥 )
𝑄 (𝑥 ) )

𝛼
where 𝑥 denotes a random

variable and 𝛼 > 1 is the Rényi divergence order. Thus, the RDP

can be defined as below.

Definition 2 ((𝛼,𝛾)-Rényi Differential Privacy [57]). A ran-
domized mechanism A is said to have 𝛾-Rényi differential privacy
of order 𝛼 , if for any adjacent datasets 𝑑,𝑑′ that differ on a single
element, and for any output set Ω ⊆ 𝑟𝑎𝑛𝑔𝑒 (A), the Rényi divergence
D𝛼 [A(𝑑) = Ω | |A(𝑑′) = Ω] ≤ 𝛾 holds.

Rényi accountant [1, 58, 74] is a method for managing and as-

sessing the cumulative privacy loss in a sequence of DP operations.

It operates by tracking the cumulant generating function (CGF) of

the privacy loss random variable over the sequence of operations.

Specifically, the Rényi accountant evaluates the CGF at a series of

fixed points corresponding to different orders of Rényi divergence,

thus enabling the calculation of an overall privacy guarantee for

the sequence. This overall guarantee is expressed in terms of Rényi

Differential Privacy, providing a more nuanced and tighter estima-

tion of privacy loss compared to traditional methods. The Rényi

accountant is particularly effective in complex scenarios, such as

those encountered in machine learning algorithms, where multiple

DP operations are composed over time.

Although the efficacy of the Rényi accountant in providing a

refined estimation of privacy loss becomes increasingly signifi-

cant when addressing privacy loss in FL, several challenges still

exist. These include non-optimal noise mechanisms like Gaussian

or Laplace that degrade accuracy, loose DP guarantees in complex

systems, difficulty in tracking privacy loss across diverse clients,

and reduced convergence speed. These limitations underscore the

need for developing an enhanced DP-FL framework that universally
ensures tighter privacy out of diverse DP mechanisms while main-

taining fast convergence and accuracy. The Rényi accountant [58]

adopted in UDP-FL helps to address these challenges by providing

tighter accounting of privacy loss across numerous training rounds.

Moreover, other recent accountants [1, 71, 74, 89] can also act as

viable alternatives, offering flexibility in the choice of DP composi-

tion. Our framework’s design is orthogonal to the specific choice

of accountant, meaning it is adaptable and could incorporate even

tighter accounting methods as they become available in the future.

3 UDP-FL Framework
In this section, we propose a comprehensive framework, called

universal DP-FL (UDP-FL), for achieving superior privacy-utility

tradeoff and faster convergence in FL.

3.1 Building Blocks of UDP-FL
DP Mechanisms. UDP-FL integrates diverse DP mechanisms, in-

cluding Gaussian, Laplace, and Staircase [27], offering versatility

for various FL applications. This approach provides stronger pri-

vacy guarantees while maintaining training quality, surpassing

Gaussian-only methods in adaptability. We primarily utilize the

Staircase mechanism for its optimality in ℓ1 and ℓ2 norms [27, 59],

making it particularly effective in scenarios requiring robust privacy
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guarantees without significant accuracy loss. UDP-FL is designed

to accommodate other advanced DP mechanisms [9, 59], enabling

flexibility to adapt to specific FL task requirements, such as data sen-

sitivity, privacy-utility trade-offs, and computational constraints.

Harmonizer. The Harmonizer dynamically selects the optimal

DP mechanism (e.g., Gaussian, Laplace, Staircase) for each client

in FL, based on their privacy requirements, data sensitivity, and

computational resources. It ensures privacy-preserving gradient

updates by clipping gradients, adding noise, and tracking privacy

budgets using Rényi Differential Privacy, balancing privacy and

utility across clients.

3.2 UDP-FL Framework
In this section, we present the main steps in UDP-FL.

(1) Local Data Preparation. The clients collect and store their

data locally. Once their data is ready, clients specify privacy

parameters (𝜖𝑘 , 𝛿𝑘 ) and send them to the server.

(2) Global Model Initialization. The server initializes a global
model𝑤0

, selects a subset of clients S𝑛 ⊂ C, and sends the

current global model parameters𝑤0
to the selected clients.

(3) Local Model Update. Clients perform local training over

their data. TheHarmonizermanages all aspects of differential

privacy during this process, including gradient processing,

noise addition, and privacy accounting. Finally, clients send

their updated local models𝑤𝑡
𝑘
to the server.

(4) Global Model Update. The server aggregates the received
local models: (1) Initialize intermediate models by averaging

pairs of client models. (2) Optimize intermediate models to

find a low-loss path between client models. The Harmonizer

ensures privacy-preserving computations for any client-side

operations. (3) Update the global model𝑤𝑡+1
based on the

optimized intermediate models.

The detailed procedures of UDP-FL are illustrated in Algorithm 1.

3.3 UDP-FL Harmonizer
The Harmonizer serves as the central privacy management com-

ponent within UDP-FL, orchestrating the selection and application

of differential privacy mechanisms across the federated learning

system. Its functionality can be divided into three primary aspects:

data characteristic analysis, privacy requirement assessment, and

adaptive noise management.

First, the Harmonizer performs comprehensive data character-

istic analysis for each client. This analysis begins by examining

the statistical properties of client data, including distribution pat-

terns, gradient sparsity, and feature sensitivity levels. For gradient

distribution analysis, the Harmonizer computes both the sparsity

ratio and gradient magnitude distribution. Dense gradients with

normal-like distributions typically benefit from Gaussian mecha-

nisms, while sparse gradients with heavy-tailed distributions are

better suited for Laplace mechanisms. The Harmonizer also ana-

lyzes data sensitivity by computing the maximum change possible

in the gradient when a single training example is modified, which

is crucial for calibrating noise addition.

Following data analysis, the Harmonizer conducts a thorough

privacy requirement assessment using a specialized scoring system.

This system evaluates each DP mechanism’s suitability through a

Algorithm 1: Harmonizer

Input: Clients𝐶 = {𝐶1, ...,𝐶𝑁 }, datasets 𝐷 = {𝐷1, ..., 𝐷𝑁 },
computational resources 𝑅, privacy requirements

𝐸 = {𝜖1, ..., 𝜖𝑁 }, Δ = {𝛿1, ..., 𝛿𝑁 }
Output: Selected DP mechanism𝑀∗, harmonized privacy

parameters 𝜖∗, 𝛿∗

1 mechanisms← [’Gaussian’, ’Laplace’, ’Staircase’];

2 best_score← −∞;
3 𝑀∗ ← null;

4 for each𝑀 in mechanisms do
5 score← calculate_score(𝑀,𝐷, 𝑅);

6 if score > best_score then
7 best_score← score;

8 𝑀∗ ←𝑀 ;

9 𝜖∗, 𝛿∗ ← 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒_𝑝𝑟𝑖𝑣𝑎𝑐𝑦_𝑝𝑎𝑟𝑎𝑚𝑠 (𝐸,Δ) ;
10 for each𝐶𝑘 ∈ 𝐶 do
11 𝑔𝑘 ← compute_gradient(𝐶𝑘 );

12 𝑔𝑐
𝑘
← clip_gradient(𝑔𝑘 , 𝑆𝑘 ) ;

13 𝑔𝑛
𝑘
← add_noise(𝑔𝑐

𝑘
, 𝑀∗, 𝜖∗, 𝛿∗);

14 send_noisy_gradient_to_server(𝐶𝑘 , 𝑔
𝑛
𝑘
);

15 RD← calculate_renyi_divergence(𝑀∗, 𝜖∗, 𝛿∗);

16 adjust_privacy_params(𝜖∗, 𝛿∗, 𝑅𝐷);

17 while privacy_budget_not_exceeded do
18 check_privacy_budget(𝜖∗, 𝛿∗);

19 return𝑀∗, 𝜖∗, 𝛿∗;

weighted combination of privacy strength, utility preservation, and

computational efficiency. The scoring function is defined as:

Score(𝑀) = 𝑤𝑝 ∗Privacy(𝑀)+𝑤𝑢∗Utility(𝑀)+𝑤𝑒 ∗Efficiency(𝑀)

The Privacy(𝑀) score quantifies the mechanism’s theoretical

privacy guarantees and empirical resistance to known attacks. For

example, when handling medical data, this score reflects how well

the mechanism resists membership inference and reconstruction

attacks. The Utility(𝑀) score measures the mechanism’s ability to

preserve model accuracy by examining historical performance data

and theoretical bounds on noise addition. The Efficiency(𝑀) score
evaluates computational overhead, memory requirements, and com-

munication costs associated with implementing the mechanism.

The scoring-based mechanism selection process incurs minimal

computational overhead while maintaining robust performance,

making UDP-FL highly practical for real-world deployments. The

selection logic employs efficient lookup tables, as presented in

Table 2, along with simple gradient statistics, thereby avoiding

computationally intensive operations during training.

The Harmonizer dynamically adjusts scoring weights based on

client-specific requirements. For medical institutions with strict

privacy regulations,𝑤𝑝 might be set to 0.5 or higher, while resource-

constrained IoT devices might be set to 0.4 or higher to prioritize

computational efficiency. These weights are continuously refined

based on observed performance and changing requirements.

A key function of the Harmonizer is calculating and managing

the noise multiplier, which controls the noise to be added to the

model updates while balancing privacy and utility. It adjusts this

multiplier throughout training by computing Rényi Divergence at

each iteration to ensure privacy loss remains within the set bounds.
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Furthermore, the Harmonizer incorporates a penalty term to

address heterogeneity in individual client privacy guarantees, ad-

justing the gradient updates based on the client’s privacy settings:

𝑤𝑡
𝑘
← 𝑤𝑡

𝑘
− 𝜂

(
𝑔𝑐
𝑘
+ 𝜆𝑘 (𝑤𝑡

𝑘
−𝑤𝑡

max
)
)

Where 𝜆𝑘 =
𝜖max−𝜖𝑘
𝜖max

adjusts based on each client’s privacy needs,

ensuring clients with weaker DP guarantees are balanced against

those with stronger guarantees.

Ultimately, the Harmonizer enables a highly customizable and

adaptable DP-FL process, allowing clients to define their own pri-

vacy parameters while ensuring the system harmonizes these di-

verse preferences using Rényi Divergence. This ensures efficient

management of the privacy budget across all participants, without

sacrificing model performance. By selecting optimal DP mecha-

nisms and tracking privacy budgets, the Harmonizer promotes

convergence to a unified global model while maintaining robust

privacy guarantees.

Through this comprehensive approach, the Harmonizer ensures

optimal privacy-utility tradeoffs while adapting to diverse client

requirements and data characteristics. Its modular design allows

for the incorporation of new DP mechanisms as they are devel-

oped, making UDP-FL extensible and future-proof. The system

continuously monitors and adjusts its decisions based on observed

performance metrics, ensuring robust privacy protection through-

out the federated learning process.

Table 2:Harmonizer’sMechanismSelectionCriteria. A practi-
cal interpretation of the scoring function Score (M), showing
how different characteristics influence mechanism selection
in UDP-FL.

Client Data Privacy Requirements Resource Mechanism
Dense gradients High (𝜖 < 3) Standard compute Gaussian

Sparse gradients Moderate (𝜖 = 3-8) Limited compute Laplace

Complex distributions Low (𝜖 > 8) High compute Staircase

Heterogeneous data High (𝜖 < 3) Limited compute Gaussian

Time-series data Moderate (𝜖 = 3-8) Standard compute Staircase

High-dimensional data High (𝜖 < 3) High compute Gaussian

Small datasets Moderate (𝜖 = 3-8) Limited compute Laplace

Large client pool Low (𝜖 > 8) Standard compute Staircase

4 Theoretical Analyses
In this section, we provide a theoretical analysis of the privacy

and utility of UDP-FL and examine the influence of its parameters

on the overall privacy guarantees. The proofs of the theorems are

provided in the full version of the appendix.

4.1 Error Bounds Analysis of UDP-FL
The Staircase mechanism can be viewed as a geometric mixture

of uniform probability distributions, ensuring an optimal privacy-

utility tradeoff, particularly for medium to large 𝜖 values. This

mechanism generates noise by carefully mixing uniform distribu-

tions, adjusting for the privacy budget and other requirements, and

adding the noise to query responses in a way that preserves pri-

vacy without significantly compromising accuracy. The Staircase

mechanism applied to a function 𝑓 is defined as follows:

𝑓 =

{
𝑒−𝜌𝜆 · 𝑦, | |𝑥 | |1 ∈ [𝜌Δ, (𝜌 + 𝜈 )Δ]
𝑒−(𝜌+1)𝜆 · 𝑦, | |𝑥 | |1 ∈ [ (𝜌 + 𝜈 )Δ, (𝜌 + 1)Δ]

for 𝜌 ∈ N, where 𝜆 and 𝜈 are the parameters controlling the noise

distribution, Δ is the sensitivity of the query, and 𝜌 defines the

intervals for the ℓ1-norm of 𝑥 . Furthermore, 𝑦 is given by:

𝑦 ≜
1 − 𝑒−1

2Δ(𝜈 + 𝑒−𝜆 (1 − 𝜈))
Theorem 1 formalizes the privacy guarantees of the Staircase

mechanism using Rényi differential privacy (RDP). This enables

the Harmonizer in UDP-FL to track the privacy loss of the Staircase

mechanism across different rounds of federated learning.

Theorem 1 (Proof in full version Appendix A.4). For any
order 𝛼 > 1 and privacy budget 𝜖𝛼 > 0, the Staircase mechanism
satisfies (𝛼, 𝜖𝛼 )-Rényi differential privacy (RDP), where 𝜖𝛼 is given
by:

𝜖𝛼 =
1

2

𝑒 (𝛼−1)𝜆 + 1

2

𝑒−𝛼𝜆 + 1 − 𝑒−1

2(𝜈 + 𝑒−𝜆 (1 − 𝜈))
×
((
𝑒 (𝛼−1)𝜆 + 𝑒−𝛼𝜆

)
(1 − 𝜈) + |2𝜈 − 1|𝑒−sgn(

1

2
−𝜈)𝜆

)
We now provide the error bounds for the DP mechanism (i.e.,

noise applied to the model parameters).

Lemma 1 (Proof in Geng et al. [27]). Given the Staircase mech-
anism 𝑓 (𝜆,Δ, 𝜈), when 𝜈 = 1

1+𝑒𝜆/2 , the minimum expectation of noise

amplitude is Δ 𝑒𝜆/2

𝑒𝜆−1 .

As demonstrated by Geng et al. [27], when the privacy bud-

get 𝜖 is sufficiently small, the Staircase mechanism saves at least

Δ2

(
1

12
− 𝜖2

720
+ O(𝜖4)

)
perturbation in variance compared to Gauss-

ian and Laplacian mechanisms. Since our privacy budget spent in

each round is negligible (𝜖 → 0), we can capitalize on this improved

accuracy payoff per round, leading to enhanced model performance

while maintaining robust privacy guarantees.

Theorem 2 (Proof in full version A.1). For any 𝛼 > 1, 𝛾 >

0, Staircase mechanism 𝑓 (𝜆,Δ, 𝜈) satisfies (𝛼,𝛾)-Rényi differential
privacy, where 𝜈 =

log(𝛾−1)
𝛼−1

Theorem 3 (Proof in full version Appendix A.5). The expec-
tation of the ℓ1 distance for the output model parameters preserved
by UDP-FL with the Staircase mechanism after 𝑇 training rounds is:

𝑚𝑇

1 − 𝑒−𝜆
(
𝜈2Δ2 + 𝑒−𝜆Δ2 − 𝑒−𝜆𝜈2Δ2 + Δ𝑒−𝜆

)
where𝑚 is the length of the loss function, and 𝜈, 𝜌, 𝜆 are the noise
multipliers computed by UDP-FL.

Furthermore, the utilization of Staircase noise has been demon-

strated to significantly accelerate convergence compared to the

baseline, as empirically validated in Figure 3, Figure 4, and Ta-

ble 1. The enhanced convergence speed is a byproduct of applying

the optimal noise for ℓ1 and ℓ2 distance metrics (for a wide range

of 𝜖). In essence, when DP is fixed to guarantee 𝜖 , this noise has

been proven to minimize both ℓ1 and ℓ2 distances. This implies that

all noise-additive operations, including gradient perturbation and
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client model averaging, yield more accurate results, closer to the

non-private scenario.

5 Experiments
In this section, we will evaluate the performance of UDP-FL on

privacy, accuracy and efficiency. The key objectives of our evalu-

ations are: (1) Assessing the accuracy of UDP-FL in comparison

with SOTAmechanisms. (2) Investigating the convergence behavior

of UDP-FL to understand how its hyperparameters influence the

training performance. (3) Demonstrating UDP-FL’s computational

and communication efficiency against baseline methods. (4) Rigor-

ously testing UDP-FL’s resilience against common privacy attacks,

including membership inference, data reconstruction, and attribute

inference attacks, to validate its defense performance.

5.1 Implementation
Our implementation leverages PyTorch 1.9.0, allowing easy inte-

gration with existing ML pipelines. The core of UDP-FL, our Har-

monizer component, is designed as a flexible Python module that

can seamlessly switch between different DP mechanisms without

requiring changes to the overall federated learning setup. To use

UDP-FL, practitioners only need to specify their desired privacy

budget 𝜖 and choose a DP mechanism, with the framework auto-

matically handling the rest of the privacy-preserving process. This

simplicity and flexibility enable UDP-FL to adapt to a wide range of

datasets and use cases beyond those presented in our experiments,

addressing potential concerns about overfitting specific scenar-

ios. We validate this adaptability by testing UDP-FL on diverse

datasets, including MNIST [45], Medical MNIST [44], UTKface [84]

and CIFAR-10 [43], demonstrating its effectiveness across various

data types and distributions.

5.2 Experiment Setup
MLModels. For the MNIST dataset, we utilize a two-layer CNN

with ReLU activation, max pooling, and two fully connected layers.

In contrast, the Medical MNIST dataset employs a four-layer CNN

with additional fully connected layers designed for 3-channel image

classification. For CIFAR-10, we use the ResNet-18 architecture [34]

other than pre-trained models. Focusing on initial training may lead

to lower accuracy, but is crucial for assessing UDP-FL’s influence

on early-stage learning and privacy in federated learning.

Parameters Setting. Although the Harmonizer supports dynamic

DP mechanism selection, we fix the mechanisms to Laplace, Gauss-

ian, and Staircase in our experiments to independently evaluate

their robustness and accuracy. Thus, the mechanisms used in the

experiments are not chosen by the Harmonizer but are manually

set to ensure consistency in evaluating each mechanism’s perfor-

mance across different datasets and privacy conditions. We have

used a learning rate of 0.01 in all experiments. For the MNIST and

Medical datasets, we have set the clipped gradient (ℓ2) as 1 and 0.1,

respectively. For the CIFAR-10, and UTKFace datasets (to be used

in the defense evaluation against privacy attacks in Section 5.6),

the clipped gradient is set as 0.01. The default number of clients

is set at 10, and the sampling rate is set at 0.05. We set the local

communication round as 150 and the local training epoch as 2.

Harmonizer Validation. While the Harmonizer is designed to

dynamically select the optimal DP mechanism based on client re-

quirements, data characteristics, and privacy constraints, for ex-

perimental validation purposes, we first evaluate each mechanism

independently to verify the Harmonizer’s selection criteria. This

systematic evaluation helps validate the scoring function used by

the Harmonizer and demonstrates why certain mechanisms are pre-

ferred in specific scenarios. We evaluate three primary mechanisms:

Laplace, Gaussian, and Staircase. For each dataset (MNIST, Medical

MNIST, and CIFAR-10), we first run experiments with fixed mech-

anisms to establish baseline performance across different privacy

budgets and data characteristics. These results inform the Harmo-

nizer’s scoring function and validate its mechanism selection logic.

5.3 Accuracy Comparison vs Baseline Methods
Due to the diverse settings for DP guarantee, trust model, noise

injection, and model architecture in DP-FL, there is no universally

accepted benchmark for evaluating DP-FL methods. Therefore, in

this work, we will compare UDP-FL with NbAFL [75] and DP-SGD

applied to FedAvg (equivalent to UDP-FL with Gaussian noise), as

they share similar settings (sample-level DP within each client and

local noise injection before aggregation). We also apply the classic

FedAvg [56] without DP guarantees as the baseline in the experi-

ments. Figure 1 shows the comparison results. We can observe from

Figure 1(a) and 1(b) that UDP-FL, when using the Staircase mecha-

nism, obtains higher accuracy and faster convergence rates com-

pared to othermethods. For instance, on theMNIST dataset, UDP-FL

achieves 90% accuracy in about 25 epochs, while other methods

struggle to reach this level even after 100 epochs. This faster conver-

gence is particularly evident in the Medical MNIST dataset, where

UDP-FL converges in approximately 30 epochs, while other meth-

ods fail to converge even after 100 epochs. Furthermore, UDP-FL

achieves nearly the same accuracy as FedAvg without DP guarantee.

The primary reason is that we evenly distribute the datasets to each

client so that their local datasets are unique.

Moreover, each time we randomly select some clients to update

their models, this may cause the global model to take more time to

converge because the data distribution from clients is more hetero-

geneous. Thus, the noise generated from UDP-FL helps to balance

the unbiased distribution and contributes to faster convergence.

UDP-FL requires fewer training epochs to reach the optimal per-

formance (as shown in Figure 1(c) and 1(d)) whereas other methods

take more training epochs but still result in lower accuracy.

5.4 Training Performance Analysis
Figure 1(c) and 1(d) further prove that even when the data dis-

tributions from different clients are heterogeneous, UDP-FL can

still preserve good performance and converge faster than other

baselines. For instance, in Figure 1(c), it takes about 25 epochs for

UDP-FL to achieve an accuracy of 0.9 and the accuracy tends to be

stable since then. However, the accuracy of other baselines is low

and fluctuates. Similar results can be seen in Figure 1(d), where it

only takes about 30 epochs for UDP-FL to converge on the medical

dataset. In contrast, other baselines did not converge even with 100

epochs. Thus, UDP-FL converges faster and has better performance.
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(a) MNIST: Accuracy vs 𝜖
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(b) Medical: Accuracy vs 𝜖
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(c) MNIST: Accuracy vs epochs
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Figure 1: Accuracy and convergence results of UDP-FL and the baselines. 1) among the three mechanisms, the Staircase always
performs the best with the same privacy budget; 2) UDP-FL obtains significantly better privacy-utility tradeoff and faster
convergence than the baseline; and 3) UDP-FL (Staircase) even has a comparable accuracy with FedAvg (No DP).
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Figure 2: UDP-FL on CIFAR-10 when (a) 𝜖 = 2 and (b) 𝜖 = 8.
For a small privacy budget (𝜖 = 2), DP-SGD yields better
performance, while at a larger privacy budget (𝜖 = 8), UDP-FL
with Staircase mechanism outperforms DP-SGD and Laplace.

Figure 2 for UDP-FL on CIFAR-10 shows that with a small privacy

budget, UDP-FL with Staircase and Laplace mechanism converge

more smoothly than DP-SGD. At a larger privacy budget, UDP-FL

achieves rapid convergence comparable to the non-private baseline,

matching the theoretical results on faster convergence.

5.5 UDP-FL Evaluation
The Number of Clients. As discussed in Section 4, the enhanced

privacy is related to a number of clients 𝑁 and sampling rate 𝑞.

Analyzing the impact of these hyperparameters allows us to gain

insights into the scalability and adaptability of UDP-FL, ensuring

optimal performance across different settings. We use UDP-FL with

the Staircase mechanism to represent the optimal randomization

(w.r.t. a range of 𝜖) and Laplace mechanism as another baseline

besides DP-SGD. We will present the performance of UDP-FL with

other mechanisms in Section 5.3.

The number of clients significantly impacts the performance,

communication overhead, model convergence, and privacy-utility

tradeoff in FL frameworks. We experimented with 50, 100, 150, 200

clients (as shown in Figure 3), selecting 10% of all the clients ran-

domly per training round. Each chosen client trains locally on 5% of

their data for 2 epochs. As shown in Figures 3(a) and 3(c), the accu-

racy slightly decreases with more clients, likely due to the increased

complexity in aggregating diverse model updates. This variance af-

fects convergence and generalization but, notably, the performance

drop is not substantial, showing UDP-FL’s effectiveness in handling

scalable, heterogeneous client scenarios in FL.

Sampling Rate. The sampling rate significantly impacts conver-

gence speed, model performance, and the privacy-utility tradeoff

in UDP-FL. A higher rate means more data samples are used per

training epoch, leading to faster convergence and better model

performance, but also higher privacy loss. Thus, more noise will be

used to preserve privacy. Figure 3(b) and 3(d) confirm the results

in the theoretical analysis (as discussed in Section 4). Experiments

demonstrate that higher sampling rates (e.g., 0.5) lead to improved

accuracy and faster convergence, whereas lower rates (e.g., 0.01)

result in slower convergence and reduced accuracy. These findings

suggest that utilizing a larger number of data samples per training

round enhances overall model performance.

Table 3: UDP-FL accuracy vs. privacy guarantees.

Datasets Mechanisms 𝜖 = 2 𝜖 = 4 𝜖 = 6 𝜖 = 8 𝜖 = ∞

CIFAR-10

Gaussian 0.704 0.714 0.719 0.742 0.871

Laplace 0.475 0.461 0.506 0.638 0.871

Staircase 0.633 0.691 0.733 0.780 0.871

Performance across Privacy Settings. In our comprehensive

evaluation, we first delve into the privacy-utility trade-off on the

MNIST and Medical datasets, as depicted in Figure 4. UDP-FL’s

performance with the Staircase mechanism exhibits a steady in-

crease in accuracy as the privacy budget increases and outper-

forms other baseline methods. The accuracy versus epochs on both

datasets reveals UDP-FL’s capability for consistent learning over

time, even outperforming the non-private baseline (FedAvg) during

early epochs on the Medical dataset. These results have validated

the practicality of UDP-FL in scenarios where stringent privacy is

required without substantially compromising model performance.

Subsequently, we extend our evaluation to the CIFAR-10 dataset,

which offers a more complex challenge due to its higher dimension-

ality and diverse image representations. This further examination

on CIFAR-10 aims to validate UDP-FL’s robustness and scalability

in more intricate visual data scenarios. From the experimental re-

sults on CIFAR-10 dataset in Table 3, we observed that DP-SGD has

shown consistent moderate accuracy across varying privacy levels,

peaking when no privacy constraint was applied (𝜖 = ∞). UDP-FL
with the Laplace mechanism, while less accurate at stricter privacy

settings, improved as privacy constraints were relaxed. Notably,

UDP-FL with the Staircase mechanism initially underperformed

at lower 𝜖 values but significantly improved with relaxed privacy,

surpassing Gaussian. This observation demonstrates that when
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(a) MNIST: Acc vs client #
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(b) MNIST: Acc vs sampling rate
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(c) Medical: Acc vs client #
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Figure 3: Impact of the number of clients and sampling rate on UDP-FL. We observe that: 1) when the number of clients
increases, shown in Figures (a) and (c), UDP-FL needs more epochs to converge; 2) with the increase of data sampling rate
shown in Figures (b) and (d), UDP-FL converges faster.
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(a) MNIST: Accuracy vs 𝜖
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(c) Medical: Accuracy vs 𝜖
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Figure 4: Performance evaluation of UDP-FL on MNIST and Medical datasets. (a) and (c) present UDP-FL’s accuracy under
various differential privacy noise mechanisms, compared to a non-private baseline, with varying 𝜖 values. (b) and (d) illustrate
the learning curves over training epochs for the MNIST and Medical datasets without privacy and with DP guarantees.

the privacy protection is medium and relatively weaker, UDP-FL

with the Staircase mechanism can effectively improve the trade-off

between privacy and utility, even in the FL setting.

Computation and Communication Overheads. The efficiency

of a DP-FL framework is a critical aspect to be considered, where the

computation and communication overheads can accurately reflect

the overall system performance. In this section, we evaluate the

computation and communication overheads of UDP-FL. Specifically,

we will present the total local training time and noise multiplier

computation time in UDP-FL, which are executed on the Flower

platform [5]. All the results are shown in Table 4 (can greatly reduce

the training time due to faster convergence). It implies that UDP-FL

does not require heavy computational resources, particularly when

compared to the training times with larger datasets and clients,

which reinforces the idea of efficient or quick parameter handling.

Table 4: Runtime of UDP-FL (sec) vs # training iterations.

Iterations 50 100 500 1000

MNIST (50 clients) 1049.71 2056.34 10500.80 20803.10

Medical (50 clients) 644.97 1328.23 6482.50 13177.98

CIFAR-10 (50 clients) 1808.67 3515.08 16443.23 31956.76

MNIST (100 clients) 1108.91 2196.13 10934.62 21579.99

Medical (100 clients) 714.02 1445.75 7064.78 14353.64

CIFAR-10 (100 clients) 1873.93 3653.36 17215.17 33562.24

Computing Parameters 50.50 50.60 51.60 54.30

Moreover, since each client sends a local model to the server

with a size of ∼2MB in each communication round, with a faster

convergence by UDP-FL, the total bandwidth consumption can be

reduced by more than 50%, e.g., 40GB bandwidth reduction for 10

clients involved in the FL.

5.6 Defense against Privacy Attacks
In the following, we will evaluate the performance of our UDP-FL

against several common privacy attacks in the domain of feder-

ated learning, specifically Membership Inference Attack (MIA) [65]

and Data Reconstruction Attack (DRA) [23, 88]. Notably, we un-

derscore the significance of DP’s core advantage lies in its ability

to offer plausible deniability [7], maintaining the privacy defenses

of UDP-FL against these attacks with strong indistinguishability.

This fundamental attribute ensures that, regardless of an attack’s

sophistication, the indistinguishability introduced by DP mech-

anisms significantly complicates the accurate reconstruction or

direct association of any data with individual participants. Since

these privacy attacks are primarily developed based on determinis-

tic results, the evaluation against these attacks can only be based

on several sampled random results instead of the entire output

space. DP inherently produces randomized outputs, which intro-

duces uncertainty into any inference made from the released data.

As a result, even if a privacy attack achieves high accuracy on a

subset of the perturbed results, clients and data owners retain plau-

sible deniability—they can legitimately dispute the validity of such

inferences, as formalized in [7].

Membership Inference Attacks. We assess the resilience of

UDP-FL against three advanced Membership Inference Attacks

(MIAs) using the CIFAR-10 dataset. The first attack, Shokri et al.[65],
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examines how models reveal information about their training data.

The second, Likelihood Ratio Attack (LiRA) [8], uses shadow mod-

els to statistically ascertain if a data point was used in training.

The third, the Canary attack, employs synthetic images, refined

through iteration, to probe the model’s disclosure of training data

characteristics. Our goal is to identify and mitigate potential pri-

vacy risks in the model’s outputs. Following the evaluation setting

from Canary [77], we maintain a strict True Positive Rate (TPR)

of 0.01 to measure False Positive Rate (FPR), AUC, and Accuracy

(ACC). This conservative approach minimizes false positives, ad-

dressing the significant legal and ethical concerns associated with

erroneous membership inferences and highlighting the need for a

robust defense mechanism that effectively prevents unauthorized

inferences while minimizing errors.

Table 5: Evaluation of the Shokri et al. [65], SOTA LiRA [8]
and Canary [77] MIAs on CIFAR-10. TPR∗ denotes the TPR
when FPR=0.01. The TPR∗, ACC and AUC for Shokri et al.
are 0.053, 0.710, and 0.757. The TPR∗, ACC and AUC LiRA
are 0.126, 0.651, and 0.716. The TPR∗, ACC and AUC LiRA
are 0.137, 0.649, and 0.719.

Attack 𝜖

DP-SGD

UDP-FL

(Laplace baseline)

UDP-FL

(Staircase)

TPR
∗

ACC AUC TPR
∗

ACC AUC TPR
∗

ACC AUC

Shokri

2 0.009 0.502 0.493 0.011 0.509 0.508 0.009 0.506 0.501

4 0.009 0.505 0.499 0.013 0.512 0.509 0.009 0.505 0.502

6 0.013 0.510 0.509 0.014 0.505 0.501 0.009 0.504 0.499
8 0.011 0.503 0.499 0.007 0.505 0.500 0.008 0.504 0.496

LiRA

2 0.013 0.506 0.497 0.009 0.506 0.501 0.008 0.504 0.491
4 0.014 0.513 0.505 0.013 0.505 0.495 0.008 0.510 0.501

6 0.017 0.514 0.511 0.011 0.505 0.493 0.009 0.510 0.504

8 0.011 0.504 0.497 0.009 0.513 0.505 0.009 0.507 0.492

Canary

2 0.016 0.519 0.513 0.011 0.504 0.497 0.009 0.506 0.495
4 0.016 0.510 0.504 0.020 0.512 0.498 0.013 0.512 0.509

6 0.015 0.523 0.528 0.011 0.510 0.507 0.009 0.507 0.500
8 0.010 0.521 0.518 0.015 0.516 0.507 0.012 0.511 0.509

Table 5 highlights the effectiveness of various noise mechanisms

in mitigating membership inference attacks. Both attacks show

that the Staircase noise addition under UDP-FL consistently yields

the lowest False Positive Rate (FPR), indicating superior privacy

preservation. The Laplace baseline also effectively reduces FPR,

although not as consistently low as the Staircase, suggesting good

but variable privacy protection. In terms of Accuracy and AUC, the

Staircase and Laplace mechanisms demonstrate moderate success

in maintaining model utility while ensuring privacy.

Data Reconstruction Attacks. We evaluate the data reconstruc-

tion attacks on UDP-FL on CIFAR-10. These attacks aim to recon-

struct training data points from a target model. Instead of training

a separate reconstruction model, we directly optimize synthetic

inputs to match the gradient information obtained from the target

model, following [26]. To evaluate multi-image attacks, we average

the gradients from batches of up to 100 images before running the

reconstruction. We assess the attack’s efficacy by measuring the

mean squared error (MSE) and Structural Similarity (SSIM) between

the reconstructed and original images.

The evaluation of data reconstruction attacks onCIFAR-10 demon-

strates the efficacy of UDP-FL against DRA threats. Notably, across

varying privacy budgets (𝜖 values), Staircase noise consistently

results in higher MSE and lower SSIM, substantially reducing the

attackers’ ability to reconstruct original images accurately. While

both DP-SGD and UDP-FL with Laplace baseline offer comparable

levels of protection, evidenced by similar MSE and SSIM values.

Further experiments reveal that UDP-FL’s protection against

reconstruction attacks [23] remains robust even under varying at-

tack conditions. The adversary first trains a separate reconstruction

model on a dataset from a similar distribution as the target model’s

training data. The reconstructionmodel learns to generate synthetic

inputs that closely match real samples, using the predictions from

the target model as feedback. By optimizing the synthetic inputs to

minimally change the target model’s outputs, the reconstruction

attack extracts information about the original training data. We as-

sess the attack’s efficacy by measuring the MSE and MAE between

the reconstructed and original images. The result in Table 7 empha-

sizes the effectiveness of the UDP-FL framework, particularly with

its Staircase mechanism, in mitigating data reconstruction attacks.

This configuration consistently exhibits slightly higher MSE and

MAE compared to both DP-SGD and UDP-FL with Laplace baseline,

suggesting a more robust defense against reconstruction attacks.

Table 6: Evaluation on the SOTA InvGradDRA [26] onCIFAR-
10. The MSE, PSNR and SSIM for the Non-private method are
1.7104, 9.79, and 0.0751, respectively.

𝜖
DP-SGD

UDP-FL

(Laplace baseline)

UDP-FL

(Staircase)

MSE PSNR SSIM MSE PSNR SSIM MSE PSNR SSIM

2 2.2646 8.51 0.0195 2.2686 8.63 0.0573 2.3399 8.37 0.0096
4 2.2058 8.69 0.0414 2.1840 8.68 0.0629 2.2405 8.39 0.0204
6 2.1532 8.76 0.0417 2.1532 8.83 0.0692 2.1910 8.54 0.0207
8 2.1463 8.78 0.0519 2.1290 8.95 0.0746 2.1832 8.73 0.0225

Table 7: Evaluation for data reconstruction attacks [23] on
CIFAR-10.

𝜖
DP-SGD

UDP-FL

(Laplace baseline)

UDP-FL

(Staircase)

MSE MAE MSE MAE MSE MAE

2 2.40 1.26 2.42 1.27 2.44 1.28
4 2.35 1.24 2.38 1.25 2.40 1.26
6 2.30 1.22 2.33 1.23 2.35 1.24
8 2.25 1.20 2.28 1.21 2.30 1.22

6 Discussion
Diverse DP Mechanisms. Our experiments mainly evaluate the

Staircase, Laplace and Gaussian mechanisms with UDP-FL. As a

universal DP-FL work, UDP-FL is flexible and can be extended to

incorporate more advanced DP mechanisms, such as the Matrix

Variate Gaussian (MVG) mechanism [9], R
2
DP mechanism [59],

DP Boosting [18, 20], and more. Moreover, UDP-FL is designed to

be flexible and adaptable to various FL settings. One of the key

aspects of this flexibility is the compatibility of our framework

with other aggregation functions commonly used in FL, beyond the

widely-used FedAvg and FedSGD algorithm [55, 56].

Support Diverse Aggregation Functions. Several aggregation
functions have been proposed to address the limitations of FedAvg,

such as dealing with non-IID data, mitigating the effects of strag-

glers, or improving convergence rates. Some of these alternative
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aggregation functions include Scaffold [40], FedMed [78], FedProx

[82]. To show the possibility of integrating alternative aggregation

functions into UDP-FL, we have conducted another experiments to

evaluate it. We use a wind forecasting dataset [35], and train a sim-

ple CNN to predict hourly power generation up to 48 hours ahead

at 7 wind farms. The baselines use NON-DP Scaffold aggregation

functions in the FL frameworks. The sampling rate is 0.05, and the

client number is 10, and the clipped gradient value is 10.
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Figure 5: Accuracy results on FLwith the Scaffold aggregation
[40]. On small training epochs, UDP-FL with the Staircase
mechanism can achieve better accuracy more quickly.

From Figure 5, we can see UDP-FL with the Staircase mechanism

still outperforms the STOA DP-FL-based NbAFL [75]. Moreover,

when 𝜖 is smaller than 5, the performance of UDP-FL is better than

FedAvg without DP. One possible reason is that each class of noise

is optimal for one specific metric and Staircase is designed for ℓ1 and

ℓ2 metrics, and the noise may serve as a regularization to mitigate

the unbiased distribution of clients’ data.

DP Accounting Extensions. UDP-FL can also be extended for

other accounting of differential privacy. Recent work has proposed

using characteristic functions of the privacy loss random variable as

an alternative approach for optimal privacy accounting [71, 74, 89].

This technique provides a natural composition similar to RDP

while avoiding RDP’s limitations. UDP-FL’s architecture is flexible

enough that it could potentially be extended to incorporate charac-

teristic functions instead of just Rényi divergence. Specifically, the

Harmonizer could be adapted to compute and track characteristic

functions for each mechanism. The analytic Fourier accountant

method could also replace the MA for conversion to (𝜖, 𝛿)-DP. With

these modifications, UDP-FL could achieve tighter accounting and

flexibility by leveraging characteristic functions. The modularity

of UDP-FL makes these extensions possible without changing the

overall existing framework.

Future Works. A crucial direction for future work is the develop-

ment of a comprehensive theoretical convergence analysis frame-

work for UDP-FL. The primary challenge lies in developing a unified

theoretical framework that can handle the diverse nature of differ-

ent DP mechanisms within the same analysis. This would require

novel mathematical tools to bridge the gap between privacy ac-

counting methods and optimization theory. The framework would

need to establish formal convergence bounds for UDP-FL across

different DP mechanisms while analyzing the impact of mecha-

nism switching on convergence behavior. Of particular interest is

understanding convergence rates under varying privacy budgets

and client distributions, especially in heterogeneous data scenarios.

Such theoretical foundations would strengthen UDP-FL’s applica-

bility in practice by providing guarantees on performance across

diverse FL environments.

7 Related Works
Differential Privacy and Rényi Differential Privacy. Differen-
tial privacy [16, 17] has been widely studied and applied to ensure

privacy protection in data analysis and machine learning tasks.

Since the introduction of DP-SGD [1], significant research has fo-

cused on tightly tracking privacy loss during training. The formal-

ization of Rényi Differential Privacy (RDP) [57] has facilitated easier

quantification of privacy loss, leading to further advancements in

mechanisms to preserve RDP [28, 58, 59, 72, 74].

In FL, RDP has been employed to enhance privacy protection. Re-

search [3, 68] explored RDP and shufflers [19, 30, 31] in FL systems

for improved privacy and utility tradeoffs. Geyer et. al. [29] propose

a client-sided DP approach for federated optimization. Bhowmick

et al. [6] demonstrate scalable, locally private model training with

minimal utility loss in large-scale image and language tasks. Li et

al. [47] investigate the feasibility of applying differential privacy

techniques to protect patient data in an FL setup.

Differentially Private Federated Learning. DP-FL is evolving

rapidly. Li et al. [46] introduced FedMask, which protects both

data and model privacy using gradient masking and perturbation.

Wei et al. [76] tackled heterogeneity in FL with a personalized DP-

FL framework that adapts to client characteristics while ensuring

strong privacy. Xu et al. [80] proposed FedCORP, a communication-

efficient personalized FL framework incorporating DP. Zhu et al.

[87] developed a DP-FL algorithm with optimal sample complexity

and theoretical guarantees.

Integrating DP-FL with other privacy-preserving technologies

has also been explored. Chen et al. [13] combined DP with secure

multi-party computation, and Fort et al. [22] examined privacy am-

plification by iteration in FL. Theoretical advances have emerged,

with Liu et al. [50] improving privacy accounting methods for sub-

sampledmechanisms, and Ding et al. [15] introducing an LDP-based

approach enhancing both privacy and communication efficiency.

Ding et al. [15] and Varun et al. [70] further enhanced DP-FL with

local differential privacy approaches that improve communication,

model accuracy, and robustness against attacks.

Recent efforts have also addressed data heterogeneity. Luo et al.

[53] combined DP with multi-task learning for personalized models

across diverse clients. Zhou et al. [86] refined privacy composition

bounds, enabling better privacy loss tracking over multiple rounds.

In the realm of large language models, Dagan et al. [14] proposed a

DP-FL framework tailored to high-dimensional models. Sun et al.

[67] introduced an adaptive DPmechanism that dynamically adjusts

privacy levels, optimizing the privacy-utility trade-off. Zheng et

al. [85] introduced federated 𝑓 -DP, specifically designed for the

federated setting, while Khanna et al. [42] presented a simple FL

algorithm implementing DP for privacy across different institutions.

Privacy Attacks in FL. Chen et al. [12] proposed generative mod-

els for private data generation, focusing on the effectiveness of DP

in defending against model inversion and GAN-based attacks. In

the context of 5G networks, Liu et al. [51] developed a blockchain-

based secure FL framework, enhancing privacy preservation for
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participants. Naseri et al. [60] conducted a comprehensive eval-

uation of Local and Central DP in FL, assessing their impact on

privacy and robustness. Yang et al. [81] propose a robust distributed

backdoor attack in federated learning inspired by secret sharing

to evade detection and maintain attack efficacy. Sun and Lyu [66]

proposed FEDMD-NFDP, a federated model distillation framework

incorporating a Noise-Free DP mechanism, effectively eliminat-

ing the risk of white-box inference attacks. Kerkouche et al. [41]

introduced a new FL scheme, offering a balance between robust-

ness, privacy, bandwidth efficiency, and model accuracy. Chen et

al. [11] developed a decentralized, privacy-preserving global model

training protocol for FL in P2P networks. Hossain et al. [37] demon-

strated how DP could be exploited for stealthy and persistent model

poisoning attacks in FL. Feng et al. [21] evaluated user-level DP

in FL, specifically in the context of speech-emotion recognition

systems. Lastly, Wang et al. [73] proposed a platform-free proof

of FL consensus mechanism, focusing on sustainable blockchains

and privacy protection in FL models. Salem et al. [63] proposed a

game-based framework to unify definitions and analysis of privacy

inference risks. They use reductions between games to relate no-

tions like MIA and RIA. Nie et al. [62] develop an efficient federated

learning algorithm that is provably privacy-preserving and resilient

to Byzantine adversaries.

8 Conclusion
In this paper, we introduced UDP-FL, a novel framework for DP-

FL that addresses the critical challenge of optimizing the tradeoff

between privacy and accuracy. A key innovation in UDP-FL is the

integration of the Harmonizer, which dynamically selects the most

appropriate DP mechanism for each client, considering their pri-

vacy requirements, etc. By harmonizing various DP mechanisms

with Harmonizor, UDP-FL achieves tighter privacy bounds and

faster convergence compared to SOTA methods. Our experimen-

tal results demonstrate the superior performance of UDP-FL in

terms of both privacy guarantees and model accuracy. Furthermore,

we proposed a mode connectivity-based method for analyzing the

convergence of DP-FL models, providing valuable insights into the

faster convergence. Through extensive evaluations, we also showed

that UDP-FL exhibits substantial resilience against advanced pri-

vacy attacks, further validating the significant advancement in data

protection in FL environments.
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