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ABSTRACT

In recent decades, the smart cities are incorporating with Internet-of-Things

(IoT) infrastructures for improving the citizens’ quality of life by leveraging infor-

mation/data. The huge amount of data is extracted and generated from the devices

(e.g., mobile applications, GPS navigation systems, urban traffic cameras, etc.), or

city sectors such as Intelligent Transportation Systems (ITS), Resource Allocation,

Utilities, Crime Detection, Hospitals, and other community services.

This dissertation aims to systematically research the Data Analysis in IoT

System, which mainly consists of two aspects: Utility and Efficiency. First, ITS as a

representative system in IoT in the smart city, I present the work on privacy preserv-

ing for the trajectories data, which is achieved by the differential privacy technique

with a novel sanitation framework. Moreover, I have studied the resource allocation

problem in two different approaches: Cryptographic computation and Hardware en-

claves with the utility and efficiency accordingly. For the Cryptographic computation

approach, I utilize Secure Multi-party Computation (SMC) technique for achieving

the privacy-aware divisible double auction without a mediator. Besides, I also pro-

pose a hardware-based solution Trusted Execution Environment (TEE) for perfor-

mance improvement. At the same time, integrity and confidentiality are also able

to be guaranteed. The proposed hybridized Trusted Execution Environment (TEE)-

Blockchain System is designed for securely executing smart contract. Finally, I have

studied the Cryptographic Video DNN Inference for the smart city surveillance, which

privately inferring videos (e.g., action recognition, and video, and classification) on

3D spatial-temporal features with the C3D and I3D pre-trained DNN models with

high performance. This dissertation proposes the privacy preserving frameworks and

mechanisms are able to be applied efficiently for IoT in the real-world.

x
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CHAPTER 1

INTRODUCTION

The purpose of the the smart cities is to improve the people’ quality of life via

heterogeneous data sources, which are collected by IOT infrastructures and devices.

With respect to the Intelligent Transportation System (ITS) area, the fine-grained

vehicle trajectory data can be collected from the GPS navigation system, mobile

application, urban traffic cameras. After that, it can be analyzed to significantly

promote the development of ITS and urban traffic optimization (e.g., optimizing the

mobility of urban traffic, and learning the signalized phases of traffic lights [1]) and

the smart cities. Detecting the optimization allocation of divisible resource is one

of purposes for the smart cities. Divisible resources (e.g., electricity, mobile data,

and computation and storage resources in the cloud) have been frequently traded or

allocated in a peer-to-peer mode for the smart cities. In order to seek the optimization

for the resource allocation, the resource data are collected from different markets

(e.g., electricity markets, cloud markets, financial markets and wireless network). All

the agents can purchase or sell any amount of the resources in such markets. The

strategies are made to improve the resource allocation performance, even make the

reactive processes to become predictive as well. The crime prevention and community

safety are also domains of the smart cities with IOT support. In fact, as number of

the crimes and violence are increasing dramatically, it leads to the ubiquitous usage

of surveillance cameras in the smart cities. Smart surveillance cameras are needed

to monitor and distinguish the anomalies in real-time. Equipped with the neural

network technique, the surveillance cameras are able to identify automatically the

violent attack for deterring criminals.

Analyzing such fine-grained data (e.g., vehicle trajectories data, resource al-

location data and surveillance cameras data) would significantly benefit the develop-
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ment of smart cities, however, severe privacy and security problems are posed during

the process. In ITS, trajectory data record the temporal pattern of locations, speeds

and accelerations in multi-dimensional way. However, directly releasing or sharing

such datasets for analyses would pose severe privacy concerns to vehicles and their

drivers [2,3]. Specifically, sequences of locations can reveal a driver’s frequently visited

positions (e.g., residence, hospital) and preferred routes. Other attributes (i.e., speed

and acceleration) can reveal his/her driving habits. Although vehicle/driver identities

(i.e., VIN number and driver license numbers) have been replaced with pseudo-IDs in

such datasets, privacy risks have not been addressed as re-identification attacks can

still be applied to the dataset with certain background knowledge. For instance, if

an adversary knows that a driver has visited some locations at specific times, even

a small part of known traces can make the individual’s entire data vulnerable to

re-identification. After re-identification, it will be readily to track the driver/vehicle

over any time period, learning all visited locations (e.g., hospital, gas station, office

and residence) as well as his/her driving habits. For this reason, in the past decade,

privacy concerns in some similar datasets have attracted significant interests [2,4–7].

That most of the existing work either do not rely on a formal privacy notion (e.g.,

VTLs based techniques [2, 8]), or result in very limited utility (e.g., not fine-grained,

without moving attributes and timestamps). To address all the above limitations,

a novel privacy preserving technique is proposed to sanitize fine-grained vehicle tra-

jectories (all the attributes) with differential privacy [9, 10], which provides rigorous

privacy guarantee in datasets against arbitrary background knowledge. It ensures

that adding or removing all trajectory of each vehicle (all the attributes) does not

result in significant privacy risks. More details can be found in the chapter 2.

In the chapter 3, the generic divisible resource allocation in the smart cities is

studied. There are a set of agents and divisible resources (i.e., electricity, computa-

tion and storage resources, stock shares, bandwidth). Since all the agents generally
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compete with each other to maximize their payoffs, divisible double auction mecha-

nisms [11] are designed to allow both buyers and sellers to dynamically submit their

prices until convergence (e.g., achieving the Nash Equilibrium [12,13]) and then com-

plete the transaction with resource allocation.

In such markets, each agent may sell resources with arbitrary amounts to any

other buyers, and all the agents generally compete with each other by seeking for

their maximum payoffs. Then, auction mechanisms have been extensively studied for

exchanging such divisible resources to achieve the Nash Equilibrium [12, 13]. Since

auctions request all the potential buyers to propose bid prices [13, 14] (in particu-

lar, double auction [15] requests both potential buyers and sellers to simultaneously

submit their prices), a trusted-third party is established as the market mediator to

coordinate the bidding and resource allocation in the auctions. The establishment

of the mediator may result in high operational costs, extra charges to buyers/sellers,

high computation burden, and high demand of trust on the mediator.

If directly eliminating the mediator in the auction, severe privacy concerns

may occur since all the agents should disclose their local private data for completing

the auction. In addition, some agents may try to win more payoffs in the auction by

reporting untruthful bids, especially in sealed-bid auctions [16]. Even worse, agents

(aka. potential buyers or sellers) may collect such information from their competitors

[17], and misuse such private data, e.g., reselling the data (a mediator may also do

so).

In the chapter 3, a novel auction framework (namely PANDA) is proposed by

designing an efficient cryptographic protocol among all the buyers and sellers to pri-

vately execute double auction for divisible resources. Specifically, the cryptographic

protocol is constructed with the fundamental cryptographic primitives: Homomor-

phic Encryption (HE) [18, 19] and Secure Function Evaluation (SFE) [20]. Then,
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the cryptographic protocol enables all the agents to securely communicate with each

other and complete the transactions with limited information disclosure. Per the se-

cure multiparty computation (MPC) theory [21, 22], the cryptographic protocol can

be proven to be equivalent to a mediator. Furthermore, a double auction [11] is de-

signed based on the Vickrey-Clarke-Groves (VCG) [23, 24] mechanism in PANDA to

ensure truthfulness.

Compared with other types of secure and private solutions (e.g., Secure Multi-

party Computation (SMC) [18,25,26]), hardware-based solution TEE achieves stronger

security and high efficiency for blockchain execution [27]. Thus, in the chapter 4, an

efficient and privacy preserving divisible double auction with the TEE-Blockchain hy-

bridized system (e.g., on the Intel SGX, which is a TEE supported by an architecture

extension of Intel [28]) is proposed.

Moreover, the privacy concerns issue related to the smart surveillance video

will be studied. To ensure public safety, the smart cities use the smart surveillance

cameras to identify the violent attack for deterring criminals. The Surveillance video

collects several realistic anomalies in real time. Due to the application of deep neural

network, smart surveillance cameras are able to detect the real-time crime by human

action recognition and classification. Yet, privacy leakage may be the paramount

problem. These sensitive information, such as human face, users’ home location,

workspace and even the license plates of car, are recorded via surveillance video during

the monitoring. In the chapter 5, the privacy of video inference is studied. Deep neural

network (DNN) services have been widely deployed for efficient and accurate learning

in many different domains. For instance, a client may send its private input data (e.g.,

images, text messages and videos) to the cloud, which provides the inferences (e.g.,

classification and prediction) with the pre-trained DNN models. However, significant

privacy concerns would emerge in such use cases due to data or model sharing with
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the cloud. Secure inferences with cryptographic techniques have been proposed to

address such issues, and the system can perform secure two-party inferences between

each client and cloud. However, most of the existing cryptographic systems only focus

on DNNs for extracting 2D features for image inferences, which have major limitations

on latency and scalability for extracting spatio-temporal (3D) features from videos for

accurate inferences. To address such critical deficiencies on cryptographic DNN for

video inferences, we design and implement the first cryptographic two-party inference

system, Crypto3D, which privately infers videos on 3D features with rigorous privacy

guarantees. More details can be found in chapter 5.
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CHAPTER 2

DIFFERENTIAL PRIVACY ON TRAJECTORY DATA

With the rapidly growing deployment of intelligent transportation systems

(ITS) and smart traffic applications, vehicle trajectory data are ubiquitously gen-

erated, e.g., from GPS navigation systems, mobile applications, and urban traffic

cameras. Analyzing such fine-grained data would greatly benefit the development of

ITS and smart cities, yet pose severe privacy risks due to the recorded drivers’ visited

locations, routes, and driving habits. Recently, some privacy enhancing techniques are

proposed to sanitize such data. However, such schemes have some major limitations

– they either lack formal privacy notions to quantify and bound the privacy risks, or

result in very limited utility, e.g., only a sequence of locations or aggregated informa-

tion can be released (without retaining the speeds, accelerations and the timestamps

of vehicles). In this chapter, we propose a novel framework to sanitize the fine-grained

vehicle trajectories with differential privacy (VTDP), which provides rigorous privacy

protection against adversaries who possess arbitrary background knowledge. Our

VTDP technique involves three phases of differentially private sampling, which se-

quentially generate all the three categories of data (besides a pseudo identity for

each vehicle) – position, moving, timestamps. It also includes a vehicle trajectory

interpolation procedure to further improve the output utility with the properties of

fine-grained vehicle trajectory data.

The work presented in this chapter have been published at [29]1.

2.1 Background

With the rapidly growing deployment of intelligent transportation systems

1©2019, IEEE, Reprinted, with permission from Bingyu Liu, Shangyu Xie, Han
Wang, Yuan Hong, Xuegang Ban, Meisam Mohammady, VTDP: Privately sanitizing
fine-grained vehicle trajectory data with boosted utility
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(ITS) and smart traffic applications, vehicle trajectory data are ubiquitously gener-

ated from GPS navigation systems, mobile applications (e.g., Uber), urban traffic

cameras, roadside unit and connected vehicles to record temporal pattern of loca-

tions, speeds and accelerations for each vehicle in a fine-grained manner [30]. Such

fine-grained time series data can be collected and analyzed to significantly promote

the development of intelligent transportation systems, urban traffic optimization (e.g.,

optimizing the mobility of urban traffic, and learning the signalized phases of traffic

lights [1]) and smart cities.

However, directly releasing or sharing such datasets for analyses would pose

severe privacy concerns to vehicles and their drivers [2, 3]. Specifically, sequences of

locations can reveal a driver’s frequently visited positions (e.g., residence, hospital)

and preferred routes. Other attributes (i.e., speed and acceleration) can reveal his/her

driving habits. Although vehicle/driver identities (i.e., VIN number and driver license

numbers) have been replaced with pseudo-IDs in such datasets, privacy risks have

not been addressed as re-identification attacks can still be applied to the dataset

with certain background knowledge [31]. For instance, if an adversary knows that

a driver has visited some locations at specific times, even a small part of known

traces can make the individual’s entire data vulnerable to re-identification. After

re-identification, it will be readily to track the driver/vehicle over any time period,

learning all visited locations (e.g., hospital, gas station, office and residence) as well

as his/her driving habits.

For this reason, in the past decade, privacy concerns in some similar datasets

have attracted significant interests [2, 4–7, 32]. The existing techniques can be clas-

sified into two different categories: (1) data sanitization techniques [4–6], and (2)

virtual trip lines (VTLs) [2, 8]. In the former category, each of the data sanitization

techniques defines a privacy notion and proposes an algorithm to anonymize indi-
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viduals or obfuscate the location traces while satisfying the defined privacy notion

(e.g., generalization, suppression, or differential privacy [4–6]). However, most of such

privacy preserving techniques can only generate either spatially aggregated data (e.g.,

traffic statistics [33–35]) or a sequence of locations (by omitting the vehicle moving

attributes, e.g., speed and acceleration, and even the timestamps) [4–6]. Thus, the

output utility would be constrained, and the privately released data (without indica-

tors for traffic flow) may not function many urban traffic analyses for developing smart

cities, which request the fine-grained data disclosure with moving/traffic information

and timestamps [30, 36].

In the latter category, Hoh et al. [8] proposed the idea of virtual trip lines

(VTLs) for protecting privacy, which are geographic markers that indicate where ve-

hicles should provide location updates in their trajectories (which are only a small

subset of the trajectories around the signalized traffic intersections in general). Ban

and Gruteser [2] further showed that VTLs can be utilized to regulate location and

speed reports, such that the data needs for intersection modeling (e.g., signal perfor-

mance measurement) can be satisfied while simultaneously protecting privacy. How-

ever, the VTLs have the following limitations. First, the privacy risks in the output

data cannot be formally quantified and bounded (e.g., via a privacy notion). Second,

the output data are collected based on specific areas, and cannot span over the entire

vehicle trajectories. Thus, the utility of the output data might be limited to only a

few applications.

In summary, we argue that most of the existing work either do not rely on a

formal privacy notion (e.g., VTLs based techniques [2, 8]), or result in very limited

utility (e.g., not fine-grained, without moving attributes and timestamps). To address

all the above limitations, we propose a novel privacy preserving technique to sanitize

fine-grained vehicle trajectories (all the attributes) with differential privacy [9, 10],
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which provides rigorous privacy guarantee in datasets against arbitrary background

knowledge. It ensures that adding or removing all complete trajectory of each vehicle

(all the attributes) does not result in significant privacy risks. Our differentially pri-

vate scheme randomly samples the output data without aggregation while satisfying

the defined rigorous privacy notion. Therefore, the major contributions of this paper

are summarized as follows.

• To the best of our knowledge, this is the first work that sanitizes fine-grained

vehicle trajectory data under differential privacy guarantee to generate vehicle

pseudo IDs, coordinates, speeds, accelerations, and timestamps. We note that

our technique can output one record-per-0.1 second fine-grained trajectories for

vehicles, the existing work on trajectory sanitization [4–6] or privacy preserving

traffic flows [37, 38] mainly consider incomplete or coarse-grained data., e.g.,

counts and occupancy times measured by the installed loop detectors on high-

ways.

• We propose a novel sanitization framework (namely, VTDP) that includes three

phases to sample all the attributes in sequence with differential privacy. Our

framework also interpolates data to further improve the output utility by any

untrusted data recipient.

• Our VTDP framework is proposed based on sampling mechanisms, which satisfy

non-interactive differential privacy [39–42].

Then, the non-aggregated output data (from non-interactive mechanisms) can

be utilized for any utility-driven vehicle trajectory analysis such as traffic light

signal phase learning and queue length estimation [43]. Furthermore, we propose

a novel multi-phase sampling scheme which can efficiently compute the output

trajectories from our fine-grained data, which ensuring both privacy and utility

(see Example 1).
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Figure 2.1. Data sanitization framework for VTDP (after preprocessing)

• We conduct experiments on real world vehicle trajectory datasets [44] (e.g., the

NGSIM data 2) and validate the effectiveness of our scheme.

2.2 Preliminaries

Let us use an example of the fine-grained vehicle trajectory data, e.g., the

NGSIM data collected from traffic cameras. Such datasets include vehicle IDs (pseudo

identities), lane ID �, lateral/longitudinal coordinates of a position (x, y), speed v,

acceleration a, day d, and time t, which belong to four different categories (V-ID,

position, moving and time). Specifically, position consists of “lane” �, “lateral/longi-

tudinal coordinates” x and y where the coordinates x and y can uniquely determine

its lane � (thus we skip the lane in this paper).

2.2.1 Fine-grained Vehicle Trajectory Data. Moreover, we integrate “speed”

(v) and “acceleration” (a) as the moving attributes, and the time includes “day”

(d) and “time” (t). It is worth noting that all the position coordinates, speeds and

accelerations are real numbers while the timestamps are discrete (e.g., with interval

0.1 second). To improve the output utility, all the position coordinates, speeds and

accelerations can be approximated to discrete values (see Section 2.7.1).

Definition 1 (Vehicle Trajectory Data). A collection of vehicles’ fine-grained trajec-

2https://data.transportation.gov/api/views/8ect-6jqj
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tories, each of which includes a pseudo-ID Vr denoting a vehicle, lane ID, coordinate

(x, y), and moving speed v and acceleration a in day d at time t.

Vehicle trajectories can be formulated as above. In intelligent transportation

systems (ITS), both vehicle speed and acceleration are considered as a part of vehicle

trajectory data [2,8,30,45]. Thus, we define “vehicle trajectory data” to differentiate

it from the definition of “trajectories” in the existing trajectory sanitization works

(related to location-based services) [4–6].

2.2.2 Privacy Notion. Before giving the definition of privacy notion, we first

define vehicle trajectory in the dataset.

Definition 2. (vehicle trajectory) Given a vehicle trajectory dataset D of n

vehicles V1, . . . , Vn, vehicle trajectory Θr, r ∈ [1, n] is defined as all the tuples in D

w.r.t. vehicle Vr.

With the definition of vehicle trajectory, we consider two datasets D and

D′ as neighboring inputs if they differ in one vehicle trajectory Θr, which is the

complete traveling data corresponds to any vehicle Vr. Thus, our differential privacy

definition [4,39,44] would provide the guarantee that adding or removing any vehicle

trajectory does not result in significant risk to the privacy of dataset. Although two

neighboring inputs D and D′ differ in only one vehicle trajectory, the possible sets

of outputs for applying a randomization algorithm A to D and D′ might be different

since the extra vehicle trajectory Θr may generate items in the output that cannot be

derived from D or D′ with A (e.g., the pseudo-ID of vehicle Vr, an extreme speed, or

a unique timestamp in Θr). In this case, a relaxed differential privacy [42,46] notion

can be defined:

Definition 3 ((ε, δ)-differential privacy). A randomization algorithm [47] A satisfies

(ε, δ)-differential privacy if for all neighboring inputs D and D′ and any set of possible
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outputs S, we have Pr[A(D) ∈ S] ≤ eεPr[A(D′) ∈ S] + δ and Pr[A(D′) ∈ S] ≤

eεPr[A(D) ∈ S] + δ.

V-ID Position Moving Time
x y v a d t

10
1001
1001
1005
10
10

1001
1001
1005
…

-72.2
4.23
6.3
-5.1

-73.38
-75.54

-5.3
-76.5
4.52
…

1181.4
163.73
163.7
130.3
1181.3
1181.2
130.5
1181.2
163.13

…

15
18.4
21.6
22.2

0
0

15.1
17.3
13.2
…

0
1.2
1.4
-1.9

0
2

-2.3
0.3
1.1
…

1
1
1
1
1
1
1
1
1
…

6.8
57.8
57.9
60.2
12.9
13.1
15.5
2.1
66.3
…

V-ID Position

x y

10
10
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1001
1005
…

-72.2
-73.38
4.23
-76.5
-5.1
…

1181.4
1181.3
163.73
1181.2
130.3
…

One-phase
Sampling
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10

1001
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1001
1001
1005

…

-72.2
4.23
6.3
-5.1

-73.38
-75.54
--5.3
-76.5
4.52
…

1181.4
163.73
163.7
130.3
1181.3
1181.2
130.5
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163.13

…

15
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21.6
22.2

0
0

15.1
17.3
13.2
…

0
1.2
1.4
-1.9

0
2

-2.3
0.3
1.1
…

1
1
1
1
1
1
1
1
1
…
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57.8
57.9
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12.9
13.1
15.5
2.1

66.3
…Phase I

Sampling
(DP)

Optimal Output 
Counts (number of tuples)
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(since every tuple is unique) 

Phase II & III
Sampling (DP)

V-ID Position Moving Time
x y v a d t

10
10

1001
1001
1005

…

-72.2
-73.38
4.23
-76.5
-5.1
…

1181.4
1181.3
163.73
1181.2
130.3

…

15
0

18.4
17.3
22.2
…

0
0.3
-1.9
0.3
0

…

1
1
1
1
1

…

6.8
2.1
60.2
2.1

12.9…

Figure 2.2. An example of sampling fine-grained vehicle trajectory data (one-phase
vs multi-phase).

2.2.3 Sanitization Framework. We now present the framework for our vehicle

trajectory data sanitization with differential privacy (VTDP). The overview of the

framework is shown in Figure 5.1. Sampling the dataset is a way to achieve differen-

tial privacy. Accordingly, we propose a novel multi-phase sampling mechanism that

randomly generates true values from the original input in three phases. Notice that,

multi-phase sampling could improve the output utility in two folds: (1) generating

complete attributes in the output (identical to the input) which can be used for any

analysis, and (2) more tuples can be retained while satisfying the same differential

privacy guarantee (as demonstrated in Example 1 and Figure 2.2).

• Phase I: Sampling the combinations of V-ID 3and Position (Vr, Pi) from the

3V-ID refers to vehicle pseudo identity in this paper.
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input data D with the specified output count for each position. The optimal

output counts of different positions will be derived (maximizing the utility while

satisfying the constraints of differential privacy guarantee for phase I ) to sam-

ple the V-IDs for each distinct position. Then, the output schema in phase I

(denoted as O1) is “V-ID, Position, Count”.

• Phase II: Sampling the combinations of V-ID, Position and Moving (Vr, Pi,

Mj) from the original input data D with the phase I output O1. Then, the

output schema in phase II (denoted as O2) is “V-ID, Position, Moving, Count”.

• Phase III: Sampling the original tuples (especially the timestamps) from the

original input data D with the phase II output O2. Then, the output schema

in phase III (denoted as O3) is “V-ID, Position, Moving, Timestamp”.

Note that swapping the order of the three phases can also return a private

output dataset but may result in reduced utility in vehicle trajectory data sanitization

(determined by the characteristics of the attributes). For instance, if phase I samples

V-IDs for timestamps, phase II samples positions based on the timestamps, and finally

phase III samples moving values, the retained number of tuples would be less since

many timestamps are associated with only a few vehicles during night time.

The following example based on Figure 2.2 further demonstrates the need for

exerting the multi-phase sampling in scenarios when the dataset is fine-grained and

diversified.

Example 1. Figure 2.2 shows an excerpt of our vehicle trajectory dataset which

goes under two different sampling mechanisms with the goal of achieving differential

privacy. In the first mechanism, each record is independently sampled (all attributes

together). As we use multinomial sampling in our scheme, all the records are going
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to be suppressed with a high probability (only those that have identical copies for all

the attributes can be possibly retained).

In the second mechanism, by breaking down the dataset into three sets of at-

tributes (corresponding to three phases of sampling), the number of copies for each

unique attribute significantly increases, e.g., as illustrated in the figure, the coordinates

in four records (−72.2, 1181.4), (−73.38, 1181.3), (−75.54, 1181.2), (−76.5, 1181.2)

are very close (which can be approximated as the same position; close coordinates

that are approximated as the same position are marked with the same color). This

enhances the utility of the scheme through increasing the chance of retaining individ-

ual records. Accordingly, vehicle 10 can be picked with probability of 0.75 in every

single sampling as it includes the same location (with very close coordinates) for three

times and vehicle 1001 also includes it.

Subsequent phases of sampling are then applied to estimate the values for the

remaining attributes in a utility preserving manner.

Note that, the multi-phase sampling is expected to randomly generate a subset

of the original dataset, in which each of the phases satisfies differential privacy (also

detailed in the upcoming sections).

Boosting Utility. Our sanitization framework includes the following components to

improve the output utility.

• Multi-phase sampling improves the utility.

• Multinomial sampling in phase I and II generates counts by preserving their

original distribution (e.g., the distribution of vehicles visiting the same position,

the distribution of moving values at the same position) in the output.
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• Utility is maximized in phase I for multinomial sampling with differential pri-

vacy.

• Trajectory interpolation. Since each fine-grained trajectory posed by one

vehicle has an equal-length interval between consecutive timestamps (e.g., 0.1

second), if any vehicle has sampled tuples in the output O3, its complete output

vehicle trajectory (at all the times given in the input data) can be approximately

interpolated with the properties of vehicle trajectories (i.e., the formulas between

speed, acceleration and times). This further improves the output utility, and

can be conducted by any untrusted data recipient (without affect the privacy

guarantee).

2.3 Phase I: Sampling (V-ID, Position) VTDP in phase I, as shown in

Figure 2.2, exerts sampling over the pair of vehicle IDs and their visited positions

in the dataset. To preserve the distribution of vehicle IDs for each visited position,

multinomial sampling is employed in phase I (as illustrated in Section 2.3.1). Next,

as detailed in Section 2.3.2, we show that this notion of randomization can guarantee

differential privacy with parameters ε and δ.

On the other hand, to boost the utility of the output, phase I in VTDP formu-

lates a utility maximizing problem in which the optimal counts of specific positions

emerge in the output, will be computed under the differential privacy constraints.

Finally, we also ensure that no privacy violation from the optimization procedure

occurs (see the discussion at the end of Section 2.3.3). Algorithm 2.3 presents the

key steps for sampling phase I (denoted as A1).

2.3.1 Multinomial Sampling. Given any output count xi for position Pi, multi-

nomial sampling runs xi independent trials to randomly pick V-IDs for Pi. Specifi-

cally, in every trial, a pair of V-ID and position (Vr, Pi) can be generated, and the
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Table 2.1. Frequently used notations in phase I

Notions Description

Vr the rth vehicle ID, r ∈ [1, n]

Ω the set of distinct positions

Φ the set of distinct moving values

Ψ the set of distinct timestampes

Pi ∈ Ω the ith position, ∀i ∈ [1, |Ω|]

Mj ∈ Φ the jth moving value, j ∈ [1, |Φ|]

Tk ∈ Ψ the kth timestamp, k ∈ [1, |Ψ|]

D,O1 input data and output of phase I

|D|, |O1| the size of D and O1

ci count of position Pi in the input

xi count of position Pi in the output

cri count of pair of (Vr, Pi)

probability for generating (Vr, Pi) is
cri
ci

where the total count of Pi is referred to

ci =
∑n

r=1 c
r
i . After all the xi trials, we denote the count of Vr in the output as

xr
i where

∑n
r=1 x

r
i = xi. For example, in the input data D, V1 has visited P1 for 6

times, V2 has visited P1 for 2 times, V3 has visited P1 for 5 times, and V4 has not

visited P1. Then, while sampling V-IDs for position P1, in any trial, the probabilities

for sampling V1, V2, V3, V4 are 6
6+2+5+0

, 2
6+2+5+0

, 5
6+2+5+0

and 0. With the properties

of multinomial sampling, the portion of the output counts for different pairs of V-ID

and position (e.g., (V1, P1), (V2, P1), (V3, P1), and (V4, P1)) lies similar to those in the



17

Data: input D, privacy budgets ε, δ
Result: output O1 as (V-ID, Position, Count)

1 for vehicle r ← 1 to n do
2 for position i ← 1 to |Ω| do
3 retrieve count cri from D
4 end
5 end
6 for r ← 1 to n do

// DP for the Sampling
7 derive constraints with the privacy budgets (ε, δ) for variables

∀i ∈ [1, |Ω|], xi (the output count of all the vehicles for position
Pi)

8 end
9 compute the optimal counts ∀i ∈ [1, |Ω|], x∗

i (while satisfying the
constraints in Line 6-8)

10 for position i ← 1 to |Ω| do
11 randomly sample x∗

i V-IDs for position Pi using multinomial
distribution: x∗

i independent trials (randomly picking a V-ID in
each trial), where the probability of picking Vr in each trial is

cri∑n
r=1 cr

i
12 end

// (Vr, Pi) is sampled for xr
i times

13 return the output O1 as (Vr, Pi, x
r
i )

l i h S l h A
Figure 2.3. Sampling phase I Algorithm A1

input data simply because ∀r ∈ [1, |Ω|], the expectation E(xr
i ) = xi · c

r
i

ci
is proportional

to
cri
ci

(as the same xi is applied).

2.3.2 Differential Privacy Guarantee. To investigate the differential privacy

guarantee of multinomial sampling, we should explore the set of all possible outputs

for any given input data D and any of its neighboring input data D′ (differing in one

vehicle Vr’s vehicle trajectory Θr). As a result, we have two cases for neighboring

inputs D and D’: D = D′ ∪Θr and D′ = D ∪Θr.

As discussed in Section 2.2.2, ε-differential privacy may not be achieved in

the sampling since the probabilistic output O1 may include item from D′ yet cannot

be from D (or vice-versa), e.g., V-ID Vr. Then, the relaxed notion (ε, δ)-differential

privacy will be employed for phase I. Without loss of generality, we let D = D′ ∪Θr
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(the other case D′ = D ∪Θr will be discussed at the end of this subsection).

Now we divide the arbitrary output set S ⊆ Range(A1) into S+ and S− where

Vr ∈ S+ and Vr /∈ S− (note that S+ is formed with all the possible outputs with Vr

while S− does not include Vr). Therefore, we can derive a sufficient condition for the

randomization algorithm A1 and possible output O1 (phase I) to bound Pr[A1(D′)∈S]
Pr[A1(D)∈S]

and Pr[A1(D)∈S]
Pr[A1(D′)∈S] (Gotz et al. [46] also conducted similar study):

Theorem 1. Given any neighboring inputs D and D′, if ∀O1 ∈ S−, inequality

Pr[A1(D′)=O1]
Pr[A1(D)=O1]

≤ eε holds, then Pr[A1(D′)∈S]
Pr[A1(D)∈S] ≤ eε also holds.

Proof. Since ∀O1 ∈ S+, Pr[A1(D
′) = O1] = 0, we have

Pr[A1(D
′) ∈ S] =

∫
∀O1∈S+

Pr[A1(D
′) = O1]dO1 +

∫
∀O2∈S−

Pr[A1(D
′) = O2]dO2

≤eε
∫
∀O2∈S−

Pr[A1(D) = O2]dO2

=eεPr[A1(D) ∈ S−]

≤eεPr[A1(D) ∈ S]

This completes the proof.

Similarly, we can prove that Pr[A1(D) ∈ S] ≤ δ + eεPr[A1(D
′) ∈ S]. This

shows that we can ensure differential privacy by letting ∀O1 in any S− (viz. any

output in Range(A1) without Vr),

Pr[A1(D
′) = O1]

Pr[A1(D) = O1]
≤ eε

in multinomial sampling, detailed as below.

Case (1): ∀O1 ∈ Range(A1) where Vr /∈ O1
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Due to Vr /∈ O1, we have Pr[A1(D
′) = O1] > 0 and Pr[A1(D) = O1] > 0

(O1 can be generated from both D and D′ with multinomial sampling). At this time,

we only need to sample V-IDs for the positions ∀Pi ∈ D′, which is a subset of D

(otherwise, Vr might be included in O1). Since sampling V-IDs for different positions

is independent, we now examine two situations of all the positions in D′.

1. Position Pi ∈ D′ \ Θr. The probabilities for sampling any V-ID for Pi from D

and D′ are equal (since vehicle Vr’s trajectory Θr does not include Pi). Thus,

Pr[(A1(D(Pi)) = O1(Pi)]

Pr[(A1(D′(Pi)) = O1(Pi)]
= 1 (2.1)

where D(Pi) and O1(Pi) denote the position Pi’s share of the input D and

output O1.

2. Position Pi ∈ D′∩ Θr. At this time, sampling V-IDs for position Pi should

ensure that the probability of picking V-ID Vr (out of all the vehicle IDs in

D′ and Vr) with multinomial sampling is bounded. Since picking V-IDs for xi

times trials is independent using multinomial distribution, we have following

equations:

Pr[A1(D
′(Pi)) = O1(Pi)]

Pr[A1(D(Pi)) = O1(Pi)]

=
1

(1− cri
ci
)xi

= (
ci

ci − cri
)xi (2.2)

Given the output count ∀i ∈ [1, |Ω|], xi for the ith position Pi, sampling vehicle

IDs for each of the distinct position Pi is independent. For instance, while sampling

for P1, the sampling results can be “(P1, V1, 5), (P1, V2, 3)” where counts 5 and 3 are

random. While sampling for P2, the sampling results would be “(P2, V1, 2), (P2, V2, 1)”
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where counts 2 and 1 are random. Therefore, the privacy budget can be allocated

for each sampling with sequential composition [48]. As a result, for each of the

|Ω| different multinomial sampling (w.r.t. |Ω| different positions, respectively), the

following constraint can be generated:

max
∀Θr∈D

∏
∀Pi∈Θr

(
ci

ci − cri
)xi ≤ eε (2.3)

Case (2): ∀O1 ∈ Range(A1) where Vr ∈ O1

In this case, the output O1 would include item(s) from D but not D′, e.g.,

Vr ∈ Θr. Then, δ is defined to bound such probability Pr[A1(D) ∈ S] ≤ δ, which

means

Pr[A1(D) ∈ S] ≤ δ =⇒ Pr[Vr ∈ A1(D)] ≤ δ (2.4)

We now examine the probability Pr[A1(D) ∈ S] while

Pr[A1(D
′) ∈ S] equals 0 (output includes Vr) as applying multinomial sampling to

D and D′, respectively.

max
∀Θr∈D

∏
∀Pi∈Θr

[1− (
ci − cri

ci
)xi ] ≤ δ (2.5)

Per Definition 3, while specifying a small number δ, our algorithm ensures

ε-differential privacy with high probability (1− δ). Thus, we can simply remove the

vehicle trajectories whose data results in a violation of Equation 2.5. Then, satisf-

cation of Equation 2.3 can ensure (ε, δ)-differential privacy for our Phase I sampling

A1.
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Discussion. In case of D′ = D ∪ Θr, adding any vehicle trajectory Θr to input D

to generate D′. Similarly, as long as the given ∀i ∈ [1, |Ω|], xi satisfy Equation 2.3

(now ci is derived from D′ and cri is the count of Pi in Θr), differential privacy is

guaranteed.

2.3.3 Optimal Differentially Private Sampling. As analyzed in Section 2.3.2, if

the output counts for all the positions ∀i ∈ [1, |Ω|], xi satisfy inequality 2.3 (inequality

2.5 will be employed in data preprocessing for small δ), then the multinomial sampling

to generate the output with schema (V-ID, Position, Count) would satisfy (ε, δ)-

differential privacy.

Theorem 2. Sampling in Algorithm 2.3 (Line 10-12) is (ε, δ)-differentially private

if and only if inequalities 2.3 hold for all Θr.

Proof. It is straightforward to prove that the probabilities that results in Case (2) for

all the vehicles and positions are bounded by δ if inequality 2.5 holds (by setting δ

in the preprocessing). In addition, as analyzed in Case (1), if inequality 2.3 holds for

all Θr, per Theorem 1, we have:

e−ε ≤ Pr[A1(D) ∈ S]

Pr[A1(D′) ∈ S]
≤ eε (2.6)

where S represents any set of possible outputs (without data from Θr). This

completes the proof.

Notice that, in a special case ci = cri (the position in Θr is unique, and cannot

be found in D′), xi should be 0, otherwise, inequality 2.3 cannot hold.

Therefore, we should look for the output counts ∀i ∈ [1, |Ω|], xi that satisfy

Equation 2.3. Note that ∀i ∈ [1, |Ω|], xi should be derived from D (or D′) by subject-

ing to:
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s.t.

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∀Θr ∈ D,
∏

∀Pi∈Θr
( ci
ci−cri

)xi ≤ eε

∀Θr ∈ D,
∏

∀Pi∈Θr
[1− (

ci−cri
ci

)xi ] ≤ δ

∀xi ≥ 0 and xi is an integer

(2.7)

While satisfying differential privacy, ∀i ∈ [1, |Ω|], xi can have many possible

results. We now seek for the optimal output counts for the differentially private

sampling. A generic way of evaluating the utility is to measure the difference between

the count distribution of all the positions in the input and output using distance

metrics, e.g., �1-norm or �2-norm. However, the utility optimization based on such

metrics may generate biased results towards the frequently visited positions (and the

diversity of the positions may not be effectively preserved) [49].

To address such limitation, we define a universal utility measure (for multi-

ple applications) for all the variables ∀i ∈ [1, |Ω|], xi by following the KL-divergence

4 [42, 51], which evaluates the entropy-based distance between all the positions’ dis-

tributions in the input data ( c1
|D| ,

c2
|D| , . . . ,

c|Ω|
|D| ) and the output data ( x1

|O1| ,
x2

|O1| , . . . ,
x|Ω|
|O1|)

where |D| and |O1| represent the total number of records in the input and output

|D| = ∑|Ω|
i=1 ci and |O1| =

∑|Ω|
i=1 xi.

DKL =

|Ω|∑
i=1

ci
|D|

[
log(

ci
|D| ·

|O1|+ |Ω|
xi + 1

)
]

(2.8)

4Optimizing the utility with KL-divergence can address the count bias as an
entropy-based measure [49]. The optimization can preserve more distinct positions
in the output as well as minimize the deviation between the distributions of all the
positions in the input and output (ensuring that the data distribution in the output
still lies close to that in the input). Notice that, KL-divergence is also used as the
distance metric in case of similar scenarios. For instance, Acs et al. [50] measure
the distance of the two probability distributions (count distribution in the input and
output histograms).
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Recall that minimizing the KL-divergence can maximally preserve the distri-

bution/portion of each position in the output. Then, with multinomial sampling, the

distribution/portion of each combination of V-ID and position is expected to be pre-

served in the output as well. Since xi may equal to 0 (in case of unique positions), the

output counts in the KL-divergence are captured by approximating xi with a close

value (xi + 1) to avoid zero denominator.

Therefore, we can formulate an optimization problem to find the optimal multi-

nomial sampling.

min :

|Ω|∑
i=1

ci
|D|

[
log(

ci
|D| ·

|O1|+ |Ω|
xi + 1

)
]

s.t.

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∀Θr ∈ D,
∏

∀Pi∈Θr
( ci
ci−cri

)xi ≤ eε

∀Θr ∈ D,
∏

∀Pi∈Θr
[1− (

ci−cri
ci

)xi ] ≤ δ

∀xi ≥ 0 and xi is an integer

(2.9)

We can solve the above nonlinear programming (NLP) problem using pairwise

linear approximation by converting the objective function to linear (the constraints

can be simply converted to linear constraints) [42].

Differential Privacy for the Optimization. While applying Algorithm 2.3 to

D and D′ (solving the optimization problem 2.9) to get two sets of output counts

∀i ∈ [1, |Ω|], x∗
i , and ∀i ∈ [1, |Ω|], x∗′

i , respectively. In case that D = D′ ∪ Θr,

∀i ∈ [1, |Ω|], x∗
i can ensure (ε, δ)-differential privacy for multinomial sampling. In

case that D′ = D ∪ Θr, ∀i ∈ [1, |Ω|], x∗′
i can ensure (ε, δ)-differential privacy. Apart

from such privacy guarantee, we also need to make such two computed set of counts

indistinguishable.

Specifically, we can consider the problem solving process as a query over the
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input data D or D′, then the generic Laplace noise [52] Δ
ε′ can ensure ε′-differential

privacy for the process of solving the problem [41,42], where ε′ is an additional privacy

budget for this step, and sensitivity Δ = max∀D,D′ |x∗
i − x∗′

i | [53, 54]. Due to space

limit, we skip the details of such generic mechanism here. In summary, we have the

differential privacy guarantee for Algorithm 2.3.

Theorem 3. Phase I is (ε+ ε′, δ)-differentially private.

Proof. This can be proven by the sequential composition [48] of solving the optimal

problem and sampling.

2.4 Phase II: Sampling Moving

In this section, we present the sampling phase II of our VTDP framework:

randomly generating moving values by breaking down the counts for different pairs

of V-IDs and positions to the counts for the triplets of V-IDs, positions and moving

values. Furthermore, we study the differential privacy for phase II. Note that the

required notations for sampling phase II are listed in Table 2.2.

2.4.1 Dirichlet-Multinomial Sampling. Similar to sampling phase I, the pair

of visited position and moving values (i.e., speed and acceleration) for each vehicle in

the trajectory data can be sampled with multinomial distribution which is expected

to preserve the distribution of moving values associated with each position. More

specifically, in phase II, for each vehicle, each moving data should be sampled from

each of its visited positions (generated in phase I). Note that any count value for

vehicle Vr and for position Pi is sampled as xr
i in phase I, then xr

i moving values

(may include duplicates) will be sampled using an individual multinomial sampling

in phase II.

Given n vehicles in the original input, after phase I, we denote the number of
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Table 2.2. Frequently used notations in phase II

Notation Description

x∗
i optimal count for Position Pi in phase I

xr
i sampled count of (Vr, Pi) in phase I

n′ number of vehicles in the output of phase I

γr cardinality of sampled positions in phase I visited by Vr

θi(j) prior probability of sampling Mj for Pi (all vehicles)

θi prior probability vector θi = (θi(1), . . . , θi(|Φ|))

θri (j) posterior probability of sampling Mj for Pi and Vr

θri posterior probability vector θri = (θri (1), . . . , θ
r
i (|Φ|))

D1, D2 two datasets extract from the input D

λi(j) count of (Pi,Mj) in D1 (all the sampled vehicles)

xr′
i count of all the moving for (Vr, Pi) in D2

xr
i (j)

′ count of (Vr, Pi,Mj) in D2

O2 output of phase II

xr
i (j) sampled count of (Vr, Pi,Mj) in phase II

vehicles in the output as n′ where n′ ≤ n (since some V-IDs might not be randomly

picked). Denoting the number of unique positions sampled for Vr in phase I as γr,

there are
∑n′

r=1 γ
r independent multinomial sampling in phase II, each of which is

allocated for a unique pair of vehicle and one of its visited position. While sampling

any moving values Mj ∈ Φ at position Pi for vehicle Vr, x
r
i independent trials will be
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tossed where the probabilities of possible sampling outcomes in every trial (denoted

as “probability vector” θri = (θri (1), θ
r
i (2), . . . , θ

r
i (|Φ|))) will be learned from Dirichlet-

Multinomial distribution [55] for the following reasons.

First, the distribution can integrate observations (drawn from the moving

patterns posed by each vehicle in a particular position) and prior parameters (drawn

from all the moving patterns at the same position). Therefore, considering the huge

volume of moving patterns existed in the data, the posterior probability vector θri

learned by the Dirichlet distribution would become significantly more accurate (e.g.,

in vehicle trajectory interpolation and analyses performed on the sanitized data).

Second, sampling moving values with Dirichlet-Multinomial distribution does not

result in false moving values. Specifically, if Vr has not visited Pi with moving value

Mj, then the probability θri (j) would be 0 (since the corresponding observation is 0).

2.4.1.1 Probability Vector Learning. Before learning the probability vector,

we extract two datasets from the input D (which can minimize the privacy bound for

phase II, as illustrated in Section 2.4.2):

1. Prior Data D1: a bipartite graph for every pair of position and moving (Pi,Mj)

and the corresponding count λi(j) – for deriving the prior distribution θi(j).

The generation of D1 includes two steps: (1) removing all the tuples inside each

of the the unsampled trajectories (keeping only sampled data for n′ vehicles),

and (2) for every pair of position and moving (Pi,Mj), aggregating all the

vehicles and timestamps’ corresponding tuples to get count di(j). Note that

removing unsampled vehicles’ data could ensure a tight privacy bound (e.g.,

ε = 0) for phase II (as analyzed in Lemma 1).

2. Observation Data D2: for each vehicle Vr, extracting its bipartite graph for

each pair of its position and moving (Pi,Mj). Specifically, for each vehicle
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Vr, we extract sampled positions of Vr in phase I (γr distinct positions) and

the corresponding tuples in D (tuples including unsampled positions will be

removed), and aggregate all the timestamps for the corresponding tuples for

(Vr, Pi,Mj) to get xr
i (j)

′.

Then, ∀j, λi(j) and θi(j) can be derived from data D1 while ∀j, θri (j) can be

derived from data D2. Per the Bayes rule, we can learn the posterior distribution for

the probability vector: for each Vehicle Vr and its position Pi.

Pr(θri |M1, . . . ,M|Φ|) ∝ P (M1, . . . ,M|Φ||θri )Pr(θri )

∝
Γ(
∑|φ|

j=1 λi(j))∏|φ|
j=1 Γ(λi(j))

|φ|∏
j=1

(θri (j))
λi(j)−1 n!

xr
1(1)! · · · xr

i (|φ|)!

φ∏
j=1

θ
xr
i (j)

′
i (j)

∝
|φ|∏
j=1

θri (j)
λi(j)−1+xr

i (j)
′

where constant∏|φ|
j=1 Γ(λi(j))

Γ(
∑|φ|

j=1 λi(j))
=

Γ(λi(1))Γ(λi(2)) · · ·Γ(λi(|φ|))
Γ(λi(1) + λi(2) + · · ·+ λi(|φ|))

and Gamma function

Γ(λi(j)) = (λi(j)− 1)!

Notice that, the same prior probability vector θri is adopted for position Pi for

all the vehicles, thus θi and θri are interchangeable. In addition, for Vr, the prior and

posterior probabilities for most of moving values M1, . . . ,M|Φ| are 0 in practice. For

simplicity of notations, we still use M1, . . . ,M|Φ| to represent the moving values.

2.4.1.2 Sampling Algorithm (Phase II). We now present our sampling algorithm

for phase II. First, the algorithm extracts D1 and D2 based on the output of phase I

(O1) and the original input D. Recall that,
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1. D1 is a bipartite graph with aggregated counts (in D) for every pair of (Pi,Mj)

where the data of unsampled vehicles (∀Vr ∈ D \D2) are not aggregated. Note

that D2 is the dataset including all the original tuples corresponding to the

sampled output after phase I.

2. D2 includes n′ bipartite graphs (for n′ sampled vehicles in O1). Each vehicle’s

bipartite graph is extracted as its aggregated counts (in D) for every pair of

(Pi,Mj) in O1 (the output of phase I).

Second, the algorithm derives the prior probability vector of Dirichlet distri-

bution and likelihood using D1 and D2. Thus, the posterior probability vector can be

obtained using Bayes rule (using the expectation of the Dirichlet distribution [56]).

Finally, for each vehicle Vr and each of its visited position (e.g., Pi) in O1,

we apply multinomial sampling with its posterior probability vector and xr
i trials.

Algorithm 2.4 presents the details of sampling phase II.

2.4.2 Privacy Bound for Phase II. We now investigate the privacy bound for

phase II, which samples xr
i moving values for every pair of V-ID and position (Vr, Pi)

where its count xr
i is derived in phase I.

Lemma 1. Phase II does not leak any additional information by sampling with the

output of Phase I.

Proof. We explore the privacy leakage by integrating phase I and II. Again, for two

neighboring inputs D and D′, w.l.o.g., we let D = D′∪Θr. In phase I, the probability

of generating Case (2) (per Definition 3) is bounded by δ, which can be a negligible

probability. Then, we only need to discuss Case (1) in phase I: ∀O1 ∈ Range(A1)

where Vr /∈ O1, and investigate the privacy bound in phase II.

After phase I, the outputs (without Vr) derived from inputs D and D′ are
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Data: input D, phase I output O1

Result: output O2 as (V-ID, Position, Moving, Count)
1 extract D1 and D2 from D (using the Vehicles in O1).
2 for j ← 1 to n do
3 prior P (θi(j)) ← E[θi(j)|λi(j)] where

E[θi(j)|λi(j)][θij ] =
λi(j)

∑|Φ|
j=1

λi(j)

4 likelihood← xr′
i (j)

xr′
i

5 end
6 Posterior (θr

i (j)) ← prior (θi(j)) × likelihood xr′
i (j)/(xr′

i )
7 foreach Vr ∈ O1 do
8 for i ← 1 to n do
9 randomly sample xr

i times moving values for vehicle Vr and
position Pi using multinomial distribution: the probability
of picking Mj in each trial is the posterior probability of
θr
i (j)

10 end
11 end
12 return the output O2 as (Vr, Pi,Mj , x

r
i (j))

l i h S l h A
Figure 2.4. Sampling phase II Algorithm A2

(ε+ ε′)-indistinguishable. Denoting the output for phase II as O2, we first explore the

multiplicative difference between probabilities Pr[A2(D) = O2] and Pr[A2(D
′) = O2].

Specifically, as illustrated in Section 2.4.1, both D1 and D2 are extracted from D (or

D′ in the neighboring input case) in phase II (for learning the probability vector of

multinomial sampling). In both D1 and D2, V-IDs is the baseline for extracting the

tuples, whereas in the output of phase I: O1, the position is the baseline. Since O1 is

indistinguishable for both inputs D and D′ (both without Vr), each of two datasets

D1 and D2 makes no difference in case of both D and D′ (though D differs from D′

in any vehicle trajectory Θr in phase I and II). Then, the probability vector would

be indistinguishable for D and D′, and thus we have:

∀O2 ∈ Range(A2),
P r[A2(D) = O2]

Pr[A2(D′) = O2]
= 1 (2.10)
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Note that even if a new vehicle trajectory Θ′
r is added to D at the beginning

of phase II to form D′, data in Θ′
r will be suppressed while generating D1 and D2 for

sampling (due to O1). In this case, Equation 2.10 still holds. Similar to Theorem 1,

given any possible output set S in phase II, we have Pr[A2(D′)∈S]
Pr[A2(D)∈S] = 1.

Therefore, Phase II ensures 0-indistinguishability to randomly generate the

output O2.

2.5 Phase III: Sampling Timestamps

In this section, we discuss how to sample the timestamps based on phase II

output O2, which includes the output count xr
i (j) for each pairs of position and moving

(Pi,Mj) for Vr. Then, the timestamps sampling for the triplet (Vr, Pi,Mj) in phase

III will be based on count xr
i (j). Indeed, phase III is not the same as the previous

two phases, due to the uniqueness of timestamps. Specifically, for each timestamp,

there exists exactly only one vehicle at the same position (which has been validated

in our experimental data). On the contrary, one vehicle may visit the same location

every day or stay at the one position over a period, thus the triplet of (Vr, Pi,Mj)

may have multiple unique timestamps Tk ∈ {T1, T2, ...T|Ψ|} in D (denoting such count

as cri (j)). We then present our algorithm A3 by considering the above facts. Similar

to phase II A2, phase III also extracts a dataset D3 from D based on O2:

• For all vehicles ∀Vr ∈ O2, extract trajectories Θr from D to generate D3.

For each triplet (Vr, Pi,Mj), the algorithm in phase III randomly picks xr
i (j)

timestamps out of cri (j) unique timestamps from D3 (note that cri (j) are identical in

D and D3). However, since x
r
i (j) was randomly generated with multinomial sampling

in phase I and II, xr
i (j) may exceed cri (j), though the probability of generating such

extreme case is fairly low. Thus, we have to handle such extreme case in our algorithm
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Data: input D, phase II output O2

Result: output O3 as (V-ID, Position, Moving, Timestamp)
1 extract D3 from D (using the Vehicles in O2).
2 foreach Vr ∈ O2 do
3 for i ← 1 to n do
4 if xr

i (j) ≤ cri (j) then
5 randomly pick xr

i (j) unique timestamps from cri (j) in
D3

6 else
7 randomly pick xr

i (j) unique timestamps from cri (j) in
D3

8 randomly picks xr
i (j) − cri (j) timestamps from other

tuples in D3 which include position Pi and moving
Mj (other vehicles)

9 end
10 end
11 end
12 return the output O3 as (Vr, Pi,Mj , Tk)

A
Figure 2.5. Sampling phase III Algorithm A3

A3 in the following two situations.

• If xr
i (j) ≤ cri (j), the algorithm simply picks xr

i (j) timestamps out of cri (j) unique

timestamps from D3.

• If xr
i (j) > cri (j). The algorithm first picks all cri (j) timestamps out of cri (j)

unique timestamps from D, and then randomly picks xr
i (j)− cri (j) timestamps

from other tuples which include position Pi and moving Mj (other vehicles).

Note that the associated V-IDs for the latter picked timestamps will not be Vr.

This ensures that all the tuples randomly selected from D are true tuples.

2.5.1 Privacy Bound for Phase III. Similar to phase II, phase III also ensures

indistinguishability for any neighboring inputs D and D′.

Lemma 2. Phase III does not leak any additional information by sampling with the

output of Phase II.
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Proof. Given two inputs data D and D′ where D = D′∪Θr (or D
′ = D∪Θr), similar

to D1 and D2 in phase II, the datasets (denoted as D3) extracted from D and D′ for

sampling are indistinguishable, since O2 is indistinguishable for D and D′ after phase

I and II, and data in Θr is suppressed in D3 in any case. Then, the probabilities of

randomly picking any timestamp (tuple) from the D3 of D and D′, and the count

xr
i (j) are indistinguishable for any neighboring inputs D and D′. Thus, we have:

∀O3 ∈ Range(A3),
P r[A3(D) = O3]

Pr[A3(D′) = O3]
= 1 (2.11)

Similar to Theorem 1 and Lemma 1, given any possible output set S in phase III, we

have

Pr[A3(D
′) ∈ S]

Pr[A3(D) ∈ S]
= 1

Therefore, phase III also ensures 0-indistinguishability to randomly generate the out-

put O3.

2.6 Discussions

To further improve the output utility of our three-phase sampling, we propose

a vehicle trajectory interpolation procedure in the VTDP framework to approximately

estimate the missing values at different times.

2.6.1 Vehicle Trajectory Interpolation. As shown in Figure 5.1, the vehicle

trajectory interpolation can be conducted by the untrusted data recipients (without

affecting the privacy guarantee). Specifically, the interpolation is executed based on

every two consecutive sampled tuples in trajectory θr (for the missing tuples between

them). For instance, at time T1 and T6, two tuples are sampled in θr are sampled:

“�, (x1, y1), v1, a1, T1” and “�′, (x6, y6), v6, a6, T6”. Then, all the tuples at T2, T3, T4, T5
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can be interpolated using the two tuples at T1 and T6 (all the timestamps have equal

intervals) with the following rules.

• The lane number of the first half of the tuples between T1 and T6 (viz. T2 and T3

in this example) is assigned as � (same as T1) while the second half (viz. T4 and

T5) is assigned as �′ (same as T6). If there are odd number of timestamps between

two consecutive sampled tuples, the timestamp in the middle is considered as

the first half.

• The position (x, y) for timestamps T2, T3, T4, T5 will be interpolated with equal

distance between any two adjacent timestamps: (x2, y2) = (x1 +
x6−x1

6−1
, y1 +

y6−y1
6−1

), (x3, y3) = (x1 +
2(x6−x1)

6−1
, y1 +

2(y6−y1)
6−1

), . . . , (x5, y5) = (x1 +
4(x6−x1)

6−1
, y1 +

4(y6−y1)
6−1

).

• The interpolation for acceleration a2, . . . , a5 follows the same way as position.

• Speed v for timestamps T2, T3, T4, T5 will be interpolated with the formula be-

tween speed, acceleration and moving time. Then, v2 = v1 + a1(T2 − T1),

v3 = v2 + a2(T3 − T2), . . . , v5 = v2 + a2(T3 − T2).

It is worth noting that the above examples for vehicle trajectory interpolation

are illustrated in case of driving in the same lane. If vehicles make turns or switch

lanes, the missing values in the output data can also be interpolated in a similar

manner.

Privacy Analysis. For any neighboring inputs D and D′, since the probabilities

of generating any O3 from D and D′ are bounded, adversaries (e.g., untrusted data

recipient) cannot identify whether any vehicle trajectory Θr is included in the input

or not – indistinguishability. Since such trajectory interpolation is a deterministic

procedure (after receiving the output O3) without any additional information, the
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adversaries cannot distinguish the interpolated outputs from D and D′ either. Thus,

the vehicle trajectory interpolation does not affect the differential privacy guarantee

of our VTDP framework (and it can be performed by any untrusted data recipient).

2.6.2 Composition of Differential Privacy. Overall, the differential privacy for

all the four major components of VTDP (computing optimal counts, sampling phase

I, II and III) follows sequential composition [48]. We now discuss the composition

and the privacy bounds step by step in our framework.

1. Computing the optimal counts (for sampling phase I): this step satisfies ε′-

differential privacy.

2. Multinomial sampling to generate O1 (sampling phase I). Sampling V-IDs for

each position is independent but associates multiple positions with each V-ID.

Thus, sampling phase I for each position follows sequential composition (as

discussed in Section 2.3.2). This step satisfies (ε, δ)-differential privacy.

3. Dirichlet-Multinomial sampling to generate O2 (sampling phase II). Sampling

moving values for every pair of position and vehicle ID is independent (gener-

ating disjoint outputs), thus sampling phase II for every pair of position and

vehicle ID follows parallel composition of differential privacy. This step has also

been proven to satisfy 0-differential privacy (per Lemma 1).

4. Sampling timestamps to generate O3 (sampling phase III). Similar to phase II,

sampling timestamps for every pair of position and moving in θr also follows

parallel composition of differential privacy. This step has also been proven to

satisfy 0-differential privacy (per Lemma 2).

Theorem 4. VTDP satisfies (ε+ ε′, δ)-differential privacy.
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Proof. This can be proven by the sequential composition [48] of three sampling phases.

2.6.3 Protection against Re-identification. We now discuss the re-identification

attack to the sanitized dataset of VTDP. Assume that an adversary possesses arbi-

trary background knowledge on a specific vehicle Vr, e.g., knowing a large portion

of places that the vehicle/driver has visited. While providing the differential privacy

guarantee by VTDP, the probabilities of generating any output from D (with such

vehicle’s data) and D′ (without such vehicle’s data) are indistinguishable. Thus, the

adversary cannot identify if such vehicle is included in the dataset from the output

(since such output can also be obtained even if all the known places are not included

in the input). At this time, knowing a large portion of places the vehicle/driver has

visited cannot facilitate the re-identification.

2.6.4 Application to Sanitizing Other Datasets. Recall that phase I in

our VTDP samples a probabilistic output with the attributes V-ID, position and

count. Then, phase II samples the moving values to be associated with the V-ID

and position. Finally, phase III samples the timestamps to be associated with the

V-ID, position and moving values. The sanitization is not dependent on the number

of fixed attributes. In other words, if more attributes are attached with the vehicle

trajectories (e.g., distance to the traffic signal [1]), an output can be generated with

the same number of tuples as the output of phase I. Following the above property of

VTDP, we can apply our VTDP (via multi-phase sampling) to sanitize other datasets,

such as generic microdata [57] and network data [58].

2.7 Experimental Results

We conduct experiments on the NGSIM dataset [59], which is a real world

fine-grained vehicle trajectory data with “lane, coordinates (x, y), speed, acceleration,
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day, time”. The experimental dataset includes 1,809 distinct vehicles, each of them

consists of 479,763 tuples in an arterial road (Peachtree Street in Atlanta, GA). The

time interval for collecting data from each vehicle is 0.1 second. Table 2.3 presents

the characteristics of our experimental dataset.

Table 2.3. Characteristics of the dataset

Distinct # Min Max

Vehicles ID 1,809 n/a n/a

Lane ID � 7 (in multiple roads) n/a n/a

x (lateral) 66,336 -325.65 160.90

y (longitudinal) 372,003 0.0 2094.07

speed v 5,250 0.0 55.82

Acceleration a 2,451 -12.27 12.27

Day d 3 1 3

Time t 10,326 0.3 1,032.8

2.7.1 Experimental Setup. Due to the fine-grained property of vehicle trajec-

tories, two different values of any attribute might be extremely close, and can be

approximated as the same value. For instance, since the distance between two coor-

dinates (-72.2,1181.4) and (-73.38,1181.3) is very small, they can be approximated as

the same location. Furthermore, moving values (20ft/s, 1.2ft/s2) and (22ft/s, 1.1ft/s2)

may represent very similar moving attributes on the road. Therefore, we preprocess

such fine-grained dataset by approximating close values in the raw data.

• First, all the positions (different combinations of �, x, and y) can be partitioned

with the equal size blocks (e.g., using the average length of vehicles), each of
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(a) Coordinates of Positions

(b) 50 Clusters for Speed and Acceleration (c) 100 Clusters for Speed and Acceleration

Figure 2.6. Positions (x ft and y ft), speed (v ft/s) and acceleration (a ft/s2) in the
experimental data (Peachtree Street in Atlanta, GA)

which can be approximated as a distinct position. All the coordinates falling

into each block share the same position (e.g., the centroid coordinates). Then,

we denote such positions as P1, P2, . . . , P|Ω| ∈ Ω where Ω represents the universe

of positions and |Ω| represents its cardinality.

• Second, we can also cluster all the moving values (different combinations of v

and a) to approximate the moving status of vehicles (e.g., identify K different

groups of moving status using K-means clustering [60]). All the combinations

of speed and acceleration in the same cluster share the same moving data (e.g.,

the mean of the cluster). Then, all the distinct approximated moving values are

denoted as M1,M2, . . . ,M|Φ| ∈ Φ where Φ represents the universe of the approx-
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(a) KL vs. ε (K=100) (b) KL vs. Vehicle # n (ε = 0.65) (c) KL vs. K (ε = 0.65)

(d) Output Count vs. ε (e) Output Count vs.Vehicle # (f) Output Count vs. K

Figure 2.7. Output utility vs. different parameters

imated combination of speed and acceleration, and |Φ| denotes its cardinality.

Note that K can tune the granularity of the data in the approximation.

• Finally, the day and time are also fine-grained with equal length interval (e.g.,

0.1 sec in the NGSIM data), then we consider them as the index of each vehicle’s

trajectories, and all the unique combinations of day and timestamp are denoted

as T1, T2, . . . , T|Ψ| ∈ Ψ where Ψ is the universe of day and time and |Ψ| denotes

its cardinality.

As a result, some representative positions are plotted in Figure 2.6(a) which

demonstrates the traffic flow of the arterial road (note that many vehicles make turns

at the intersections). For such fine-grained data, we approximate close values using

clusters (described above). The coordinates of the positions are approximated by the

equal size blocks (16.6ft×16.6ft) in coordinate axes. Since every pair of coordinates

(x, y) can uniquely identify a position and the corresponding lane, we skip the lane in
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the plots. Furthermore, all the combinations of speed and acceleration are plotted in

Figure 2.6(b) and 2.6(c) (clustered by K-Means where K=50 and 100 in the prepro-

cessing while approximating each cluster as a distinct moving value) where the data

points inside each cluster are marked with the same color.

We evaluate the utility of our VTDP technique with different privacy bounds

for (ε + ε′, δ)-differential privacy. We set ε ∈ [0.05, 0.65] and δ = 0.01. In addition,

since ε′-differential privacy for computation of optimal counts in phase I follows generic

Laplace mechanism [53], we do not evaluate the utility on different ε′. Instead, we set

ε′ = ln(2). We also test the output utility on different number of vehicles, and different

K used in approximating speed and acceleration. Then, we set vehicle number n ∈

[100, 200, 300, . . . , 1800] and K ∈ [10, 15, . . . , 95, 100].

All the programs were implemented in Python 3.6.4 and tested on an HP PC

with Inter Core i7-7700 CPU 3.60GHz and 32G RAM running Windows 10 OS.

2.7.2 Utility Evaluation. . We first evaluate the output utility using the KL-

divergence measure and the total output counts (after interpolation). Notice that, in

our VTDP framework, phase I determines the V-IDs and the total output count for

each vehicle in O1, O2, O3 while phase II and III sample other attributes by expanding

the full tuples based on the output of phase I and the data distribution in the input.

Therefore, the minimized KL-divergence in phase I (the objective function of the

optimization problem) can be an effective measure for the overall output utility.

Figure 2.7(a) shows the KL-divergence results on varying privacy bound ε

(given δ and ε′) in case of different size of the input (different number of vehicle

trajectories). As the number of vehicles n increases (from 450 to 1800), the utility

performs better given the same privacy bound. However, as large privacy bounds

are given, the KL-divergence results are quite close for different number of vehicles
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(a) Position Counts (b) Moving Counts (c) Timestamp Counts

Figure 2.8. Retained counts (top 50 frequent) in the output data (VTDP vs. VTL)

(a) Original (V-ID 95) (b) VTDP vs. VTL (V-ID 95)

(c) Original (V-ID 1170) (d) VTDP vs. VTL (V-ID 1170)

Figure 2.9. Output trajectory comparison (two representative vehicles)

(as shown in Figure 2.7(a) and 2.7(b)). We observe that the KL-divergence for ap-

proximating the speed and acceleration is almost steady when K changes (see Figure

2.7(c)).
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Our VTDP framework can generate a large number of output tuples via data

interpolation where most of the interpolated tuples can be close to the original tuples

(since the sampled tuples span over the entire trajectory for most of the vehicles). In

the same group of experiments as Figure 2.7(a)-2.7(c), we plot the corresponding out-

put counts in Figure 2.7(d)-2.7(f). The total count of tuples increases as the privacy

bound ε, and/or number of vehicles n increases. The parameter K for approximating

moving values does not affect the output counts. Note that the output utility slightly

fluctuates since our VTDP is a multi-phase randomization framework (though the re-

sults have been averaged for 5 times). It is worth noting that the total output count

is not very close to the input count in case of strong privacy guarantee (i.e., small ε

for differential privacy). This may also occur in many other high-dimensional data

sanitization (e.g., search queries [41], and trajectories [4]) and the output counts can

be further enlarged by relaxing the privacy budget due to the tradeoff between privacy

and utility. Indeed, since the data distributions of the input and output can be close

after the sanitization, the output can still accurately function many applications, as

illustrated in Section 2.7.3.

2.7.3 Trajectories Comparison. Besides quantitatively measuring the output

utility, we also compare the utility of our VTDP technique with the existing privacy

preserving approach (“VTL”) [2, 8].5 We perform two groups of comparisons. First,

in Figure 2.8(a)-2.8(c), we plot the top 50 frequent distinct positions (coordinates),

moving values (approximated combinations of speed and acceleration), and times-

tamps (day and time) in one of our experimental results (ε=0.65, n=1800, K=100).

The counts of such positions, moving values, and timestamps are well preserved af-

ter interpolation in our VTDP framework. Note that the interpolation is based on

5The utility of VTDP and other differentially private trajectory sanitization
techniques (e.g., [4–6]) are incomparable, since the output of VTDP is generated
with more attributes (and not aggregated).
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(a) Released Trace (50%) (b) Success Rate (50%)

(c) Released Trace (100%) (d) Success Rate (100%)

Figure 2.10. Queue length estimation – penetration rate (50% or 100%): percent of
vehicles in data collection (e.g., by mobile sensors, traffic cameras)

timestamps in the input (considering timestamps as the index of tuples), the counts

of all the distinct timestamps are quite close, but slightly smaller (compared to VTL)

than that in the input simply because some of the tuples for each vehicles have not

been sampled.

Second, we apply the same interpolation to both VTDP and VTL (discussed in

Section 2.6.1), and then we compare the results obtained for the output data posed by

each specific vehicle. More specifically, in Figure 2.9, we plot a part of the trajectories

of two representative vehicles (e.g., Vehicle 95 and 1170) in the arterial road. The y

axes in Figure 2.9 show the longitudinal coordinates of the positions (note that lateral
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coordinates have negligible changes in the trajectories in that arterial road, we thus

skip it for better visualization). The x axes in Figure 2.9 show the timestamps in

sequence. The color bar presents the speed at different times. The results demonstrate

that our VTDP technique can well preserve the trajectories and moving data (e.g.,

speed) – the trajectories for the two vehicles lie very close to the input compared to

the interpolated results of VTL.

2.7.4 Comparison via Queue Length Estimation. We also evaluate that

sanitized vehicle trajectories can still be effectively used for traffic modeling. Then,

we apply real world traffic modeling applications, e.g., queue length estimation [2,

43] (which predicts the queue length at the traffic intersections) to our sanitized

vehicle trajectories (generated by VTDP) and the output data generated from VTL

techniques [8]. Thus, we compare the queue length estimation results derived from

the VTDP output with the VTL outputs.

In literature, there are three different VTL techniques established based on

different criteria (e.g., sampling, entropy, and probability) [8]. First, sampling based

VTL technique randomly captures a portion of the traces (say 50%) at each VTL

zone. Second, probability based VTL technique treats tracking probability as a privacy

metric to generate the VTLs. It ensures that the released traces should have low

tracking probability, e.g., 0.2 probability indicates that no more than one out of five

vehicles can be successfully tracked. Third, entropy based VTL technique calculates

the entropy value for a specific location trace for all possible vehicles that previously

passed for specific VTL zones. Higher level of entropy gives higher confusion and

better privacy.

In Figure 2.10, we demonstrate the queue length estimation results (VTDP

vs. different VTLs) with measures percentage of released trace and Success Rate. The

success rate of queue length estimation (also adopted in [2]) indicates the performance
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of traffic modeling application, which defines as the percentage of cycles that the

proposed algorithms can be successfully applied (i.e., cycles that have 2 or more

samples of queued vehicles) [2]. Specifically, the “Baseline” results are captured

with all the data around the VTL zones. While testing our sanitized data using

queue length estimation application with different ratios of vehicles involved in the

data collection (50% and 100% penetration rate), the results are very close to the

baseline (as shown in Figure 2.10). Furthermore, compared to three different VTL

techniques with different parameters (e.g., 90% sample, 50% sample, 0.5 probability,

0.1 probability, 2.5 entropy, 0.95 entropy), the vehicle trajectories generated by VTDP

can provide better success rates for queue length estimation at signalized intersections.

We can also observe that both the percentage of released trace and success rate lie

closer to the baseline as ε increases (better utility with increased privacy budget).

Overall, our VTDP technique can generate vehicle trajectories with better

utility than the state-of-the-art while ensuring stronger privacy guarantee. Recall

that, applying some existing techniques (e.g., [4–6]) to fine-grained vehicle trajectories

generates either incomplete attributes (suppressing moving values and timestamps)

or aggregated data (e.g., for locations/positions). Thus, the results are incomparable

with our VTDP technique.

2.7.5 Computational Costs. Since our VTDP algorithm has O(n2) complexity:

O(n2) for optimal counts computation, O(n) for three phases of sampling, and O(n)

for data interpolation, the vehicle trajectory data can be sanitized with high efficiency

and scalability. Thus, we do not present such low computation costs due to space

limit.

2.8 Related Work

Vehicle trajectory data generated in mobile apps, traffic monitoring cameras,
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and GPS navigation system have great values to function intelligent transportation

systems and smart cities. However, the privacy concerns in such data have received

much attention, and have never been adequately addressed. In the prior work, some

privacy techniques (including data sanitization [4–6, 61] and VTLs [2, 8]) are pro-

posed to moderate the privacy issues. However, VTL techniques cannot fully protect

the privacy (with provable guarantee) and existing data sanitization techniques can-

not generate satisfactory fine-grained vehicle trajectory data for urban traffic mod-

eling [36]. To address such limitations, our proposed VTDP technique satisfies the

differential privacy with boosted utility.

Dwork et al. [9,53] first proposed the rigorous privacy definition of differential

privacy, which is a randomization algorithm which guarantees that for any two neigh-

boring input datasets, the probabilities of generating any output from two inputs

are bounded. This notion provides sufficient privacy protection for users regardless

of the prior knowledge possessed by the adversaries. In the past decade, this has

been extended to data release in different contexts. For instance, McSherry et al. [62]

solved the problem of producing recommendations from collective user behavior while

providing differential privacy for users. Wang et al. [63, 64] proposed a differentially

private schemes for video analytics. In particular, some non-interactive differentially

private data sanitization techniques [41, 57, 65] are very relevant to our work. Li et

al. [57] identified the weakness of k-anonymity and proposed a privacy notion of safe

k-anonymization to address such vulnerability by applying random sampling to meet

k-anonymity and differential privacy. Bild et al. [65] proposed an approach for imple-

menting the traditional data anonymization algorithm (k-anonymity) with differen-

tially private components where k-anonymization was employed in order to reduce the

added noise. Both techniques generate sanitized outputs for generic datasets while

satisfying k-anonymity and differential privacy simultaneously. In addition, Hong

et al. [41] proposed a multinomial sampling based approach to generate sanitized
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search logs while maximizing the output utility. Phase I in our VTDP framework is

inspired from such work where trajectory data (e.g., position coordinates) are sub-

stantially different from the search logs. Also, phase II and III (in VTDP) sample

additional values (e.g., speed, acceleration and timestamps) based on the output of

the multinomial sampling and the original input (whereas the timestamps in [41] are

not published). Also, vehicle trajectory data provides properties to further improve

the output utility via data interpolation.

Furthermore, previous work on preserving privacy in practical transportation

systems is sparse. Hoh et al. [43] rely on a notion of privacy, k-anonymity, that is not

particularly strong at preserving location privacy [66]. In particular, they focus on

privacy for individual measurements, and thus do not directly offer formal protection

for users transmitting time series such as location traces. Some research on privacy

for location-based services, e.g., [34], can be considered somewhat related to our work.

These works are typically concerned with perturbing GPS location traces to provide

privacy while reconstructing some aggregate statistics, e.g, average density. However,

they generally either do not rely on a formal definition of privacy, or consider simply

the minimization of mutual information between the users’ private data and the

published data, which ignores the crucial issue of side information. In addition, Li

et al. [67] has quantified the privacy leakage while sharing the locations in mobile

social networks, and proposed a system-level solution (i.e., SmartMask) to prevent

the location privacy breaches. Similar to our work, Ny et al. [38, 68] consider more

traditional static sensors, e.g., single loop detectors. However, such techniques do not

collect the fine-grained trajectory data, and fine-grained vehicle trajectories are not

generated for output, either.

In intelligent transportation systems, privacy preserving VANET (Vehicular

Ad-hoc Networks) applications [69, 70] may generate similar datasets. However, our
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VTDP significantly differs from such works. Specifically, our VTDP focuses on the

differentially private vehicle trajectory (including speed and acceleration) data saniti-

zation. In such case, a data curator applies the proposed offline algorithm to generate

a publishable dataset, which can be shared to any untrusted party. However, VANET

focuses more on real-time communications between vehicles and/or infrastructure in

a short range (e.g., real time computation/communication for road safety, and navi-

gation) where privacy is generally ensured by cryptographic schemes [70].

2.9 Summary

As the rapidly growing deployment of intelligent transportation systems (ITS)

and smart traffic applications, fine-grained vehicle trajectory datasets are generated

from everywhere in our real life, e.g., GPS navigation systems, mobile applications,

and urban traffic cameras. Although these data are extremely valuable for the ITS

development, privacy risks also arise if such data are not properly sanitized before

release for analysis. Recently, some researchers have proposed techniques to guarantee

the privacy of vehicle trajectory data, but still have some limitations.

In this chapter, we take the first step to propose a differentially private ve-

hicle trajectory data sanitization framework that can guarantee both strong privacy

protection and high output utility. Differential privacy ensures the protection against

inferences (whether any vehicle is involved in the input data) by the adversaries with

arbitrary background knowledge. Our VTDP framework follows the sequential com-

position of multiple phases (parallel composition also exists in sampling phase II and

phase III) but with limited overall bounds (ε + ε′, δ). Our VTDP also greatly im-

proves the output utility with the proposed vehicle trajectory interpolation based on

the attributes of vehicle trajectory data. As validated in our experimental results,

our VTDP framework generates fine-grained vehicle trajectory data with high utility,

compared to the existing techniques (i.e., the VTL based techniques).
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CHAPTER 3

SECURE MULTI-PARTY COMPUTATION (SMC) ON DIVISIBLE DOUBLE
AUCTION

Auction mechanism generally requires a trusted-third party as the market mediator

to coordinate bidding and resource allocation via collecting private data from the

agents, which may arouse severe privacy concerns and high computation overheads.

To address such issues, we propose a novel privacy-aware double auction framework

(namely PANDA) by designing an efficient cryptographic protocol to privately execute

double auction for divisible resources among all the agents. To ensure privacy and

truthfulness, PANDA delicately co-designs VCG auction and cryptographic protocol,

which is equivalent to a mediator for sealed-bid auction of divisible resources.

The work presented in this chapter have been published at [71] 6

3.1 Background

In the past decade, divisible resources have been frequently exchanged in the

electricity markets (e.g., electricity [72–75]), cloud markets (e.g., computation and

storage resources [76]), financial markets (e.g., stock shares [77]), wireless networks

(e.g., bandwidth [78]), among others. In such markets, each agent may sell resources

with arbitrary amounts to any other buyers, and all the agents generally compete

with each other by seeking for their maximum payoffs. Then, auction mechanisms

have been extensively studied for exchanging such divisible resources to achieve the

Nash Equilibrium [12,13]. Since auctions request all the potential buyers to propose

bid prices [13, 14] (in particular, double auction [15] requests both potential buyers

and sellers to simultaneously submit their prices), a trusted-third party is established

6©2020, IFAAMAS, with permission from Bingyu Liu, Shangyu Xie, and Yuan
Hong. PANDA: Privacy-Aware Double Auction for Divisible Resources without a
Mediator, 2020.
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as the market mediator to coordinate the bidding and resource allocation in the

auctions. The establishment of the mediator may result in high operational costs,

extra charges to buyers/sellers, high computation burden, and high demand of trust

on the mediator.

If directly eliminating the mediator in the auction, severe privacy concerns

may occur since all the agents should disclose their local private data for completing

the auction. In addition, some agents may try to win more payoffs in the auction by

reporting untruthful bids, especially in sealed-bid auctions [16]. Even worse, agents

(aka. potential buyers or sellers) may collect such information from their competitors

[17], and misuse such private data, e.g., reselling the data (a mediator may also do

so).

In this chapter, we propose a novel auction framework (namely PANDA) by

designing an efficient cryptographic protocol among all the buyers and sellers to pri-

vately execute double auction for divisible resources. Specifically, we construct the

cryptographic protocol with the fundamental cryptographic primitives: Homomor-

phic Encryption (HE) [18, 19] and Secure Function Evaluation (SFE) [20]. Then,

the cryptographic protocol enables all the agents to securely communicate with each

other and complete the transactions with limited information disclosure. Per the se-

cure multiparty computation (MPC) theory [21, 22], the cryptographic protocol can

be proven to be equivalent to a mediator. Furthermore, we design a double auc-

tion [11] based on the Vickrey-Clarke-Groves (VCG) [23, 24] mechanism in PANDA

to ensure truthfulness.

3.2 Double Auction

We denote a set of buyers as B and sellers as S in the auction, where each buy-

er/seller submits a two-dimensional bid profile (bid price, and the maximum amount
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to buy/sell) as follows: 1) buyer m ∈ B: bm = (αm, dm), and 2) seller n ∈ S:

sn = (βn, hn). Also, we denote the valuation function of each buyer m as V̂m(Am)

with its amount to buy Am and the cost function of each seller n as Ĉn(An) with

its amount to sell An. Moreover, the valuation function V̂m follows a generic set-

ting [23, 24]: (1) V̂m is differentiable and V̂m(0) = 0 , and (2) V̂ ′
m is non-increasing

and continuous.

We also denote the payoff function for buyer m and seller n as fm(r) and

fn(r), respectively. In a VCG mechanism [23, 24], transfer payment is defined as

the difference between all the agents’ aggregated valuation if any agent is not in the

auction minus the aggregated valuation if such agent is in the auction [11]. We denote

the transfer payments for buyer m and seller n as ρm(r) and ρn(r), where r is the set

of bid profiles. Thus, we have:

ρm(r) =
∑
m �=i

αm[Am(0; r−i)− Am(ri; r−i)] (3.1)

ρn(r) =
∑
n �=j

βn[An(0; r−j)− An(rj; r−j)] (3.2)

Then, given the optimal allocation profile for buyers/sellers A∗
m(r), A

∗
n(r), we

can get the payoff of the buyer/seller:

fm(r) = V̂m(A
∗
m(r))− ρm(r), ∀m ∈ B (3.3)

fn(r) = −Ĉn(A
∗
n(r))− ρn(r), ∀n ∈ S (3.4)

Definition 4 (Nash Equilibrium in PANDA). Given the bid profiles r, a Nash Equi-
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librium (NE) holds such that:

∀m ∈ B, fm(b∗m, r∗−m) ≥ fm(bm, r
∗
−m) (3.5)

∀n ∈ S, fn(s∗n, r∗−n) ≥ fn(sn, r
∗
−n) (3.6)

3.3 Privacy-Aware Double Auction

The proposed protocol ensures that all the bid profiles are encrypted and

privately computed in multiple iterations to achieve the best responses for the Nash

Equilibrium (NE).

3.3.1 Overview of Framework. Figure 5.1 shows the major steps of the PANDA

framework. In the initialization of each auction, PANDA first executes Init() to

privately derive an initial bid profile while ensuring valid conditions for the auction

via secure function evaluation (SFE) and Aggre(). Then, IterUpdate() is executed to

privately update the potential amount C and BestRespon() is sequentially executed to

privately compute the best response in each (current) iteration k. Finally, the auction

reaches Nash Equilibrium after iteratively updating the potential amount and the best

response. The details of each algorithm will be illustrated in the following section.

Properties of PANDA. First, PANDA inherits the properties of auction [79], i.e.,

budget balance, Pareto efficiency, and existence of NE. Our proposed framework works

under semi-honest model that all the agents follow the protocol but may curious

to infer others’ private information. [21, 22]). While addressing the above threats,

PANDA has the following properties.

1. Decentralized: no central market mediator or operator to coordinate agents

to finish the auction.

2. Privacy: each agent’s bid profile (the bid price and amount) is kept private; ev-

ery pair of potential buyer and seller only know the amount in their transaction
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Figure 3.1. PANDA Framework

(and the clearing price).

3. Truthfulness: each agent truthfully participates in the auction would gain

more payoff than the untruthful response.

3.3.2 Algorithms. In this section, we present three main procedures as below:

Init() PANDA first executes Init() to privately generate valid initial condi-

tions. Specifically, secure function evaluation (SFE) is executed to privately ensure

{αm}max < {βn}min: such bid profiles would result in a valid auction (if not evaluated

to be true, then all the agents execute it again). This step also calls another algo-

rithm Aggre(), which is used to securely sum up the amounts of all the buyers and

sellers. Aggre() mainly uses the additive property of Homomorphic Cryptosystem

for the aggregation. Thus, the potential amount C (the common amount allocated

in each side of the double auction) can also be determined. Note that C (which is

initialized before the auction) is smaller than the total amounts. The auction moves

to the next step once meeting the initial constraints.
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IterUpdate() It privately updates the potential amount as C̃(r, C) with the

following equation:

C̃(r, C) = Q(r, C) +
pb(r, C)− ps(r, C)

ωmax + σmax

(3.7)

ωmax and σmax are denoted as the upper bound of the gradients. With the

gradients of buyers’ marginal valuations and sellers’ marginal costs, the potential

amount can reach the NE more efficiently. The minimum aggregated amounts of

buyers and sellers Q(r, C) can be obtained by SFE. It is assumed that the matched

prices pb(r, C) = min{αi, Ai ≥ 0} and ps(r, C) = max{βj, Aj ≥ 0} can be known to

the other agents. Note that pb(r,C)−ps(r,C)
ωmax+σmax

is a private coefficient for the gradients of

marginal valuations (costs).

Then, in iteration k, each agent locally updates the best response w.r.t. the

bid profile of the others, and then jointly finds the optimal allocation using the SFE

as below:

A∗
m(b, C) = min{dm,max{[C −

∑
i∈Tm

di], 0}} (3.8)

A∗
n(s, C) = min{hn,max{0, [C −

∑
j∈Tn

hj]}} (3.9)

where Tm = {i ∈ M ; s.t. αi > αm} ∪ {αi = αn ∧ i < m} and Tn(s) = {j ∈

N ; s.t. βj > βn} ∪ {βi = βm ∧ j < n}.

BestRespon() It is executed to derive the best response for buyer m ∈ B

and seller n ∈ S (denoted as b∗m and s∗n, respectively). Then, we can calculate the
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optimal profiles:

b∗m = argmax{fm(bm, b−m)} (3.10)

s∗n = argmax{fn(sn, s−n)} (3.11)

Recall that IterUpdate() iteratively returns the optimal allocation with SFE

for every buyer/seller, then PANDA finally converges in the auction with the best

responses of all the agents under Nash Equilibrium (NE). The matched prices from

buyers and sellers eventually coverage to the clearing price.

3.4 Summary

In this chapter, we have proposed a novel framework PANDA that securely

executes double auction for divisible resources by integrating the VCGmechanism and

cryptographic protocol, which is equivalent to a market mediator. PANDA ensures

privacy and truthfulness in the distributed computation among all the agents.
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CHAPTER 4

TRUSTED EXECUTION ENVIRONMENT (TEE) ON DOUBLE AUCTION

Double auction mechanisms have been designed to trade a variety of divisi-

ble resources (e.g., electricity, mobile data, and cloud resources) among distributed

agents. In such divisible double auction, all the agents (both buyers and sellers) are

expected to submit their bid profiles, and dynamically achieve the best responses. In

practice, these agents may not trust each other without a market mediator. Fortu-

nately, smart contract is extensively used to ensure digital agreement among mutu-

ally distrustful agents. The consensus protocol helps the smart contract execution

on the blockchain to ensure strong integrity and availability. However, severe pri-

vacy risks would emerge in the divisible double auction since all the agents should

disclose their sensitive data such as the bid profiles (i.e., bid amount and prices in

different iterations) to other agents for resource allocation and such data are repli-

cated on all the nodes in the network. Furthermore, the consensus requirements

will bring a huge burden for the blockchain, which impacts the overall performance.

To address these concerns, we propose a hybridized TEE-Blockchain system (system

and auction mechanism co-design) to privately execute the divisible double auction.

The designed hybridized system ensures privacy, honesty and high efficiency among

distributed agents. The bid profiles are sealed for optimally allocating divisible re-

sources while ensuring truthfulness with a Nash Equilibrium. Finally, we conduct

experiments and empirical studies to validate the system and auction performance

using two real-world applications.

The work presented in this chapter have been published at [80]7 and [81]8

7©2021, IEEE, with permission from Bingyu Liu, Yuanzhou Yang, Rujia Wang
and Yuan Hong, Poster: Privacy Preserving Divisible Double Auction with A Hy-
bridized TEE-Blockchain System

8©2021, Springer, with permission from Bingyu Liu, Shangyu Xie, Yuanzhou



56

4.1 Overview

Divisible resources (e.g., electricity, mobile data, and computation and stor-

age resources in the cloud) have been frequently traded or allocated in a peer-to-

peer mode. All the agents can purchase or sell any amount of the resources in such

markets. Since all the agents generally compete with each other to maximize their

payoffs, divisible double auction mechanisms [11] are designed to allow both buyers

and sellers to dynamically submit their prices until convergence (e.g., achieving the

Nash Equilibrium [12, 13]) and then complete the transaction with resource alloca-

tion. Recently, smart contracts (as decentralized and self-enforcing contracts) can be

designed for distributed agents to trade divisible resources with digital agreements.

The blockchain-based platform supports the execution of smart contracts for strong

integrity and availability, which maintain the transparency, traceable and consensus

properties.

However, severe privacy concerns may arise in both double auction [82] and

blockchain-based systems [83]. For instance, during the auction, all the agents report

their bidding profiles, including sensitive data such as their bidding amount and

bidding prices. As rival agents, they may want to win competitive advantages in

the market (more payoffs) by reporting untruthful bids if they know the others’ bid

profiles. Then, the market [16] would be deviated. Even worse, such private data

might be collected and resold [82] to other untrusted parties.

To this end, it is desirable to propose a truthful divisible double auction mech-

anism while preserving all the agents’ privacy (at least sealing all the bid profiles).

Specifically, smart contracts on the blockchain system can be designed for the divisible

double auction. However, the blockchain system has limitations on preserving privacy

Yang, Rujia Wang, Yuan Hong: Privacy preserving divisible double auction with a
hybridized TEE-blockchain system.
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for sensitive data and high performance execution. To complement the blockchain

system, the Trusted Execution Environment (TEE) [28] could address such limita-

tions by executing the core functionality (e.g., computation for the smart contract)

in the enclave, which protects the data against malicious attacks. Compared with

other types of secure and private solutions (e.g., Secure Multiparty Computation

(SMC) [18,25,26]), TEE achieves stronger security and high efficiency for blockchain

execution [27]. Thus, in this paper, we propose an efficient and privacy preserving

divisible double auction with the TEE-Blockchain hybridized system (e.g., on the In-

tel SGX, which is a TEE supported by an architecture extension of Intel [28]). Then,

the hybridized system is co-designed in three aspects.

• First, the blockchain-based platform is expected to ensure integrity and avail-

ability while it interacts with other components (i.e., TEE) for the transaction,

which helps data/state recovery if the execution/protocol is broken or inter-

rupted by accidents.

• Second, the smart contract can be loaded and executed within a protected

environment in Intel SGX, (namely enclave) [84]. All the agents’ sensitive data

can be protected during the computation.

• Third, we propose an efficient, individually rational and weakly budget balanced

double auction based on the Progressive Second Price (PSP) [23] auction, de-

rived from the Vickrey-Clarke-Groves (VCG) [24] auction. The proposed divis-

ible double auction ensures truthfulness for all the agents by achieving a Nash

Equilibrium.

Furthermore, we conduct experiments for both off-chain procedures (executing

the TEE program computation) and on-chain procedures (the interaction between

the blockchain and TEE) in the hybridized system to evaluate the system and auction
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performance using two real-world applications: (1) energy trading, and (2) wireless

bandwidth allocation.

4.2 Background

4.2.1 Divisible Double Auction. In a divisible double auction, let B and S

be the sets of buyers and sellers, respectively. The bidding information includes two-

dimensional bid profiles, denoted as bm for buyers and sn for sellers. During the

auction, the bid profiles are submitted as follows: (1) buyer m ∈ B: bm = (αm, dm)

with bid price αm and amount dm to buy, and (2) seller n ∈ S: sn = (βn, hn) with

bid price βn and amount hn to sell. b = (bm,m ∈ B) denotes the bid profiles of all the

buyers while s = (sn, n ∈ S) denotes the bid profiles of all the sellers. In addition, r =

(b, s) is defined as a strategy profile, which represents the bid profiles for all the agents.

These are private information to be sealed amongst all the agents in the auction. A

strategy profile without agent i is denoted as r−i = (r1, ...ri−1, ri+1, ..., r|m+n|), then

r = (ri; r−i).

From the global viewpoint, the main goal of the divisible double auction mech-

anism is to seek the maximum social welfare for optimal allocation. We use Am and

An to denote the allocation of buyer m and seller n, respectively. In the current

iteration (k-th iteration) of the double auction, A
(k)
m and A

(k)
n represent the allocation

for buyer m (amount to purchase) and seller n (amount to sell), respectively.

4.2.2 Trusted Execution Environment (TEE). TEE provides a fully isolated

environment to prevent others (e.g., software, OS, and hosts) from tampering with

or learning the state of an application running in it.

Intel SGX [85]: it is an instance of TEE that enables process execution in a pro-

tected address space enclave. The enclave ensures confidentiality and integrity for

the process against attacks. An enclave is not allowed to make system calls, but can
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read/write memory outside the enclave region. Thus, the isolated execution can be

viewed as an ideal model which guarantees to be correctly executed with confiden-

tiality. We denote the double auction program inside the enclave as Progx.

Remote Attestation: it allows to remotely verify if the pieces of code or program

are running within the TEE or not. In Intel SGX, CPU can measure the trusted

memory, cryptographically sign the computed results, and generate the signatures

for the attesting party. The private key is only known to the hardware over the

program. Group signatures (EPID) [86] are used for setting up a secure channel for

remote attestation.

4.2.3 Smart Contract. Cryptocurrencies are traded on the decentralized network

of peers which stores all the transactions via a public ledger. Through the consensus

protocol, the ledger is stored as a chain of blocks with the agreement state. Smart

contract is a machinery built on top of cryptocurrencies, and it defines and executes

the contract on the blockchain. In other words, the smart contracts work as pieces

of code or program digitally among distributed agents [87]. Based on the decentral-

ized cryptocurrencies, the integrity and availability can be guaranteed. In our work,

privacy will be ensured by TEE.

4.3 Auction Mechanism Design

We represent the strategy of each agent with a non-negative valuation function

V̂m(·) for buyers, which indicates the willingness to pay, or value for buyers to obtain

the amount of divisible item. Similarly, we have negative cost function Ĉn(·) for

sellers. In the auction design, we adopt generic assumptions [23,24] for the valuation

function V̂m(·): (1) V̂m is differentiable, concave and V̂m(∅) = 0 , and (2) V̂ ′
m(·) is

non-increasing and continuous; for the cost function Ĉn(·): (1) Ĉn is differentiable,

convex and Ĉn(∅) = 0 , and (2) Ĉ ′
n(·) is increasing and continuous;



60

In our settings, buyers have diminishing marginal utility while sellers have

increasing marginal cost. This indicates that V̂m(A
k
m) > V̂m(A

k+1
m ) (∀m ∈ B) where

Ak
m < Ak+1

m while Ĉn(A
k
n) < Ĉn(A

k+1
n ) (∀n ∈ S) where Ak

n < Ak+1
n .

4.3.1 Problem Formulation. Assuming that each agent is selfish with the goal

to maximize their own payoff. Therefore, they may untruthfully modify their bids in

the auction. With the blockchain-based system to realize the smart contract for the

auction, untruthful responses could be detected, and thus penalty will be applied to

the cheating agent.

Thus, valuation function will be converted to V̂m(·) − μp(·) where μp(·) is a

anti-monotonic function for measuring the penalty applied to the cheated amount for

the buyers [88]. Note that μp(0) = 0 means if the valuation is submitted and penalty

will be exempted. Similarly, the cost function will be updated as Ĉn(yn)+μp(·) where

μp(·) is a monotonic function (and increasing derivative) for measuring the penalty

applied to the sellers [88] and μp(0) = 0 (exempting the penalty for truthful response

of the sellers).

Payoff Functions. Then, the payoff functions are defined for buyer m and seller n

as fm(r) and fn(r), to represent their payoffs w.r.t. the bid profiles of all the agents

r. Specifically, ρm is the payment made by buyer m while ρn is the payment received

by seller n. Moreover, ρ(ri, r−i) is defined as the difference between all the buyers’

aggregated valuation if any buyer i is absent in the auction minus the aggregated

valuation if i is included the auction [11,23,89]. Similarly, ρ(rj, r−j) is defined as the

difference between all the sellers’ aggregated cost if any seller j is absent minus the

aggregated cost if j is included. Thus, we have:
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ρ(ri, r−i) =
∑
m �=i

αm[Am(0; r−i)− Am(ri; r−i)]

ρ(rj, r−j) =
∑
n �=j

βn[An(0; r−j)− An(rj; r−j)] (4.1)

Then, given the optimal allocation profile for buyer m ∈ B and seller n ∈ S

as A∗
m and A∗

n, we can define the payoffs for the buyer m and seller n as:

fm(r) = V̂m(A
∗
m)− ρ(ri, r−i), ∀m ∈ B

fn(r) = ρ(rj, r−j)− Ĉn(A
∗
n), ∀n ∈ S (4.2)

Definition 5 (Individual Rationality). The divisible double auction mechanism achieves

individual rationality if the following holds: fm(r) ≥ 0 and fn(r) ≥ 0.

It ensures that the all the agents obtain non-negative payoff while participating

in the auction mechanism.

Definition 6 (Incentive Compatibility). The divisible double auction mechanism

achieves incentive compatibility if the following holds: fm(r) ≥ fm(r) and fn(r) ≥

fn(r) where r and r are denoted as the true bid profile and false bid profile.

It ensures that all the agents in the auction will obtain the maximum payoff

if they report the truthful bid.

Definition 7 (Weak Budget Balance). In the divisible double auction, for ∀m ∈ B

and ∀n ∈ S, if there exists:
∑

∀m∈B(αm · dm) ≥ ∑
∀n∈S(βn · hn), then the auction

mechanism satisfies weak budget balance.

It ensures “no budget deficit” in the auction.
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Definition 8 (Clearing Price). The price θ is defined as the clearing price for an

optimal allocation A∗(·), if there exists a feasible and efficient allocation, such that,

the best response is achieved for the maximum social welfare, denoted as F (·) =∑
m∈B V̂m(Am)−

∑
n∈S Ĉn(An).

We say that the clearing price θ [90] supports the optimal allocation A∗(·) with

the maximum social welfare.

Definition 9 (Nash Equilibrium). In the divisible double auction, Nash Equilibrium

holds if given the bid profile r∗ such that:

fm(b
∗
m, r

∗
−m) ≥ fm(bm, r

∗
−m), ∀m ∈ B

fn(s
∗
n, r

∗
−n) ≥ fn(sn, r

∗
−n), ∀n ∈ S (4.3)

where r−m = {r} \ {bm} is a bid profile for all the buyers excluding buyer m

from B and r−n = {r} \ {sn} is a bid profile for all the sellers except seller n from S.

Our divisible double auction mechanism will find the optimal allocation for

all the agents to achieve the maximum social welfare. Moreover, the truthfulness of

bids will be ensured in the smart contract via individual rationality and incentive

compatibility. To preserve privacy, all the agents’ bid prices and amounts (bid pro-

files), as well as the valuation/cost functions can be protected in the auction. The

clearing price and trading amount will only be disclosed to every pair of potential

sellers/buyers at the end of the auction (after convergence).

4.3.2 Divisible Double Auction Mechanism. We now design the divisible

double auction mechanism (DA), which will be executed as a smart contract inside

the TEE. The procedures are detailed as below:
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1 Initialization. Denoting the double auction program as Progda, while executing

Progda in the enclave, the decrypted bid profiles of all the agents will be checked

if they satisfy the initial condition (i.e, (αi)max ≥ (βj)min). Otherwise, the state of

auction will be turned from “active” into “fail”. Then, it requires all the agents to

update their bid profiles. Meanwhile, the potential amount of the resources C should

be smaller than the overall demand/supply.9 The auction will be active if and only

if satisfying the above conditions.

2 Iteration. Once the iteration starts, the potential amount Ĉ(r, C) is updated as

below:

C̃(r, C) = Q(r, C) +
pb(r, C)− ps(r, C)

ωmax + σmax
(4.4)

where Q(r, c) = min{∑m∈B A
∗
m,

∑
n∈S A

∗
n}, pb(r, C) = min {αi, Ai ≥ 0},

ps(r, C) = max{βj, Aj ≥ 0} and P̂ = pb(r,C)−ps(r,C)
ωmax+σmax

.

We denote Q(r, C) as the minimum value of total demand and total supply;

A coefficient P̂ is used for gradients of marginal valuations or costs; Two variables

pb(r, C) and ps(r, C) are defined to stimulate the much faster coverage in each iteration

with the updated potential amount. We use ωmax and σmax to denote the upper

bound for buyers’ valuations (ωmax ≥ max supAm
{|∂V̂m(Am)

∂Am
|}) and the upper bound

for sellers’ costs (σmax ≥ max supAn
{|∂Ĉn(An)

∂An
|}). Note that the valuation function

V̂m(Am) and cost function Ĉn(An) are updated with the penalty functions in the

smart contract. The potential amount is expected to achieve a Nash Equilibrium

quickly with the gradients of marginal valuations and costs.

The optimal allocation A∗
m and A∗

n are updated in each iteration, and agent

9The potential amount is used for computing and updating the allocation buyers
and sellers in each iteration).



64

derive their best responses. Given (r, C), the optimal allocations (for buyers/sellers)

are

A∗
m = min{dm, {[C −

∑
i∈Bm(b)

di], 0}max}

A∗
n = min{hn, {0, [C −

∑
j∈Sn(s)

hj]}max} (4.5)

where dm and hn are the updated amount for buyer m to purchase and for

seller n to sell, respectively; Bm(b) = {i ∈ B|αi > αm} ∪ {αi = αn and i < m} and

Sn(s) = {j ∈ S|βj > βn} ∪ {βi = βm and j < n}.

The updated potential amount C̃(r, C) can be iteratively derived based on the

given potential amount C.

3 Best Response. We use b∗m and s∗n to represent the best response of buyer m ∈ B

and seller n ∈ S. With the bid profiles r = (b, s) and a pair of potential amounts

(C, Ĉ), the best response can be derived as below:

b∗m(r, C, Ĉ) = argmax{fm(bm, b−m)}

s∗n(r, C, Ĉ) = {fn(sn, s−n)} (4.6)

In the divisible double auction program Progda, the best response will be com-

puted in each iteration and finally converge to a Nash Equilibrium. Notice that, in

different applications (e.g., different divisible resources), the valuation and cost func-

tions would be different, as discussed in Section 4.5.2. In this dynamic auction game,

all the agents recompute their best response to the current strategies (bid profiles) of

other agents.
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Double Auction Mechanism Progda(B,S, r)

Initialize: ∀m ∈ B, ∀n ∈ S, r = (b, s)

Require: (αi)max ≥ (βj)min and C < min{
∑
i∈B

di,
∑
j∈S

hj}

1 : set iteration k := 1

2 : while true do

3 : A∗
m(b, C) := min{dm, {[C −

∑
i∈Bm(b)

di], 0}max}

4 : A∗
n(s, C) := min{hn, {[C −

∑
i∈Sn(s)

hj ], 0}max}

5 : Q(r, C) := min{
∑
i∈B

A∗
i (r, C),

∑
j∈S

A∗
j (r, C)}

6 : P̂ :=
pb(r, C)− ps(r, C)

ωmax + σmax

7 : C̃(r, C) := Q(r, C) + P̂

8 : b∗m = argmax{fm(bm, b−m)}, m ∈ B

9 : s∗n = argmax{fn(sn, s−n)}, n ∈ S

10 : repeat until convergence

11 : set iteration k := k + 1

12 : endwhile

13 : return b∗m(∀m ∈ B), s∗n(∀n ∈ S)

Figure 4.1. Double Auction Mechanism
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Figure 4.2. Hybridized TEE-Blockchain System

Theorem 5. The divisible double auction (as program Progda) achieves individual

rationality and incentive compatibility.

Proof. First, suppose that the truthful bid profile provided by buyer m ∈ B, then

we could obtain the non-negative payoff function fm(r) = V̂m(A
∗
m) − ρ(ri, r−i).

Correspondingly, given the truthful bid profile provided by seller n ∈ S, fn(r) =

ρ(rj, r−j) − Ĉn(A
∗
n), ∀n ∈ S. Thus, the truthful bid profiles show that the non-

negative payoffs are guaranteed for all the agents in the auction (individual rationality

is proven).

Second, we define the Am and An as allocation of buyer m ∈ B and seller

n ∈ S, separately. And Ak
m and Ak

n represent the allocation for k-iteration. We will

verify the incentive compatibility for all buyers m ∈ B first for incentive compatibility.

Suppose there is truthful bid profile bm = (αm, d
k
m) where αm = ∂V̂m(dkm)

∂dkm
,which can

make fm(b
k
m, r−m) ≥ fm(bm, r−m), ∀m ∈ B, there are two cases involved: Case (A):

assuming that αm < ∂V̂m(dm)
∂dm

, if there is bid bkm, which makes dkm = Am ≤ dm. Then,

we could have αk
m ≥ ∂V̂m(dm)

∂dm
> αm, due to the diminishing marginal utility of the

valuation function. Thus, we have fm(b
k
m, r−m) ≥ fm(bm, r−m), ∀m ∈ B, since we have

obtained the maximum social welfare; Case (B): suppose that αm > ∂V̂m(dm)
∂dm

. If there

is bid bkm, then we have dkm = ∂V̂m(dkm)
∂dkm

= dm, then we get αm > ∂V̂m(dm)
∂dm

= αk
m. It is
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known that Ak
m ≤ Am for the maximum social welfare. If Ak

m = Am, then we get

fm(b
k
m, r−m) = fm(bm, r−m), ∀m ∈ B. If we have Ak

m < Am, the below holds:

fm(bm, r−m)− fm(b
k
m, r−m)

= V̂m(Am)− V̂m(A
k
m) + ρ(Ak

m, r−m)− ρ(Am, r−m)

≤ αk
m(Am − Ak

m) + F (r)− αmAm − F (rk) + αk
mA

k
m

≤ αk
m(Am − Ak

m)− αk
m(Am − Ak

m) = 0 (4.7)

Thus, we could have fm(b
k
m, r−m) ≥ fm(bm, r−m), ∀m ∈ B with Case (A) and

(B). Also, incentive compatibility can be proven for all the sellers ∀n ∈ S in a similar

way.

4.4 Hybridized System Design

4.4.1 Threat Model and Properties. To ensure data privacy and integrity for

the auction computation, we use the TEE’s attestation [91], where the computation

is executed correctly inside the enclave trusted by all the agents. However, the

remaining software stack outside the enclave and the hardware are not trusted. The

adversary may corrupt any number of agents, assuming that honest agents will trust

their own codes and platform (leakage resulted from its software bugs are out of

the scope). Furthermore, we assume that all the agents do not trust each other

in the auction while being potentially malicious, such as stealing the bid profiles

information. During the execution, each agent may send, drop, modify and record

arbitrary transactions. Note that the side-channel attacks against enclave and DoS

attacks are not considered in this paper.

In our proposed hybridized TEE-Blockchain system, the TEE compensates for

the privacy issue with respect to the smart contract, i.e., our system can address the

privacy issue for the double auction by utilizing the TEE for isolating the contract



68

(auction process) execution inside the enclave, shielding it from potential malicious

agents. From the system aspect, the following properties are addressed:

• Correctness. The correctness of computation in the TEE can be guaranteed

and verified by the remote attestation based on the given state and inputs.

• Privacy and Security. Our system protect and verify the sensitive inputs

(e.g., bid profiles) and outputs of all the agents.

4.4.2 Architecture. Figure 5.1 illustrates the main architecture of our hybridized

system. There are five main components in hybridized system:

• All the agents P (buyers and sellers) are the end users of the smart contract.

Th manager PM is the delegation to compute all the incoming private agents’

input and deliver results as the administrator. PM further leverages Relay to

trigger the enclave to be initialized for computation (will be explained as the

following). Note that the manager PM is considered to be malicious, which may

collude with other agents or interrupt the computation.

• TEE (T ) is responsible to run the smart contact to processes the double auction

computation among the agents (requested by the manager PM) in the enclave

E , which protects the privacy and integrity of computations. It also generates

remote attestations (computation correctness) for state updates. To further

improve the functionality and security of our system, we design the only inter-

face component Relay R to provide indirect access to enclave. Relay can also

provide the message passing with the Blockchain.

• Blockchain (BC) maintains a distributed append-only ledger via running a con-

sensus protocol. The state of BC and attestations are stored on the chain.



69

SGX Functionality Model: FSGX [Progx,R]

Initialize:

1 : Upon receiving (Init) from R :

2 : Set outp := Progx.initalize()

3 : ψatt :=
∑
sgx

·Sig(sksgx, (Progx, outp))

4 : Output (outp, ψatt)

Resume:

5 : Upon receiving Authen(tx) from R :

6 : Set outp := Progx.resume()

7 : Output outp

Figure 4.3. Enclave Functionality Model

Moreover, the validity of state update are checked by the blockchain with the

TEE attestations.

• Key Management (KM) generates keys for both private agents’ inputs and

state encryption. All the agents and TEE can directly interact with the KM

for the key pairs via a key distribution protocol.

4.4.3 Enclave Functionality Model. Enclave (E) protects the code of program

and data during the computation for the auction. Specifically, the program running

inside the enclave is completely isolated from an adversarial OS as well as other

processes on the host. We formalize and integrate the Intel SGX [92] as TEE in our

hybridized sytem.

In order to model the ideal functionality channel with some proprieties such

as privacy and authenticity, we utilize a global universal composability (UC) frame-

work functionality [93] to instantiate the SGX Functions. More formally, we de-
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note the program X which runs inside the SGX enclave as Progx, which can be

Progda (Figure 4.1) for double auction. The SGX function can be expressed as

FSGX(
∑

sgx)[Progx,R], where
∑

sgx is a group signature scheme and R is Relay. As

shown in Figure 4.3, the program Progx is loaded into enclave via the “init” call from

Relay. When Relay calls “resume”, the program is executed based on the incom-

ing requests or inputs, denoted as inp, and computes the output with an attestation

ψatt :=
∑

sgx ·Sig(sksgx, (Progx, outp)). The signature under TEE hardware key sksgx

and pksgx could be obtained from the SGX Functions (FSGX).

4.4.4 Workflow. Figure 4.4 depicts that the designed system is executed with

three phases: (1) Initialization, (2) ExecProg, and (3) Finalization. We denote the input

and output for the TEE as inp and outp, respectively. Also, regarding the deposit,

we use ξ̃bm , ξ̃sn and ξ̃PM
for all buyers, sellers and managers.

1 Initialization. Prior to the auction phase, all the agents (buyers and sellers) are sup-

posed to prepare for their deposits ξ̃bm , ξ̃sn . Besides, the manager also needs to deposit

ξ̃PM
(if the manager or any agent is identified to deviate the computation, then the

deposit will be charged as penalty). Then the TEE will set state := init as confirm-

ing that the deposits in the blockchain. Otherwise, the TEE will set state := abort

for preparing next auction and refund the deposit to the agents. For the auction

computation, the TEE will fetch the key pair (pksgx, sksgx) from Key Management for

attestation, where the key (pksgx) is bundled to the executing progx instance (auction)

for checking the correctness of computation. Besides, the attestation with current

state [state, ψatt] are posted on the blockchain BC (as described in Section 4.4.3).

Next, to tackle the large inputs of agents, the manager PM will handle the

transaction tx := [Encpk(inp), lid, ξ̃bm ,ξ̃sn ] from all the agents where inp denotes the

inputs of all the agents, and lid represents a unique identifier (ID). Then, PM will

send tx to the Relay for executing the auction computation. Note that all the agents
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send the transactions through secure channels. The tx is a transaction to deliver the

input and output data among different system components.

2 ExecProg. To execute the auction requested from PM , the Relay will retrieve

the state information from the blockchain and Relay will trigger TEE to execute

the requested service (auction) with the “resume” call if the state can be verified.

Then TEE first decrypts the input data (from the Manager) with the private key

sk obtained from the Key Management and launch the auction smart contract code

(Figure 4.1) as Progx in the enclave (a sandboxed environment). Thus, a adversary

cannot interrupt the execution or monitor data inside the enclave considering the

natural merit of enclave. The final results output of the program (auction smart

contract) Progx will be securely returned to the manager.

3 Finalization. Once manager receives the final result outp from TEE and check the

correctness with the Blockchain. If the result outp is accepted by the Blockchain

via checking the new state state′, the auction result (outp, ψsgx, lid, ξ̃bm , ξ̃sn) will be

delivered to all the agents via Manager and Blockchain will store the new state

state′.

4.5 Discussions

4.5.1 Security. Based on the key feature of isolation in enclave, Intel SGX enables

the program (data) to be executed inside the secure container (enclave) for confiden-

tiality and integrity. The adversary cannot interrupt the computation executed in a

sandboxed environment (enclave). Note that enclave is created in its virtual address

space by an untrusted hosting application with OS support. Once enclave starts ini-

tialization, data and codes inside it will be isolated from the rest of the system. Note

that the encrypted data are sent from agents to enclave through secure channels.

However, other malicious servers cannot eavesdrop on the encrypted data and even
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Execution Procedure (P, BC, T )

InitRequest() :

1 : deposit ξ̃bm , ξ̃sn and ξ̃PM

2 : invoke procedure initEnclave() via request

3 : (pk, sk) ←$ KGen(1n)

4 : publish pk to all agents for Encpk(inp)

InitEnclave() :

5 : receive(init(), request) to load Progx inside E

6 : boost enclave with Progx.initialize()

7 : distribute (pk, ψsgx) for attestation

InitAgent() :

8 : tx := (Encpk(inp), lid, ξ̃bm , ξ̃sn) are sent to PM

9 : if receive Authen(tx) then

10 : BC.post(state, ψatt, lid)

11 : else

12 : set state := failand refund ξ̃bm , ξ̃sn and ξ̃PM

ExecProg() :

13 : boost enclave with resume() to load and run Progx

14 : retrieve and decrypt the previous state from BC

15 : decrypt encrypted inputs(Encpk(inp), lid)

16 : load and compute Progx

17 : outp := TEE(Progx)

Finalization() :

18 : Vf the correctness of outp with ψatt

19 : ψsgx :=
∑
sgx

·Sig(sksgx, (Progx, outp))

20 : BC.post(state′, ψatt, lid)

Figure 4.4. Hybridized System Procedure
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tamper with the communication.

During the execution, if any agents abort/skip this step or behave dishonestly

during the initialization, the execution will be terminated and refunds to the honest

agents within the time threshold T1. Afterwards the computation starts, all agents

send the encrypted inputs to the interface of SGX. In this phase, if no malicious

behaviors are detected by the manager, the RelayR will forward the encrypted inputs

to the enclave E . However, it is hard to determine if the agents behave dishonest (i.e.,

fail to send message) or the Relay behave malicious (i.e, dropping message) during the

execution if the enclave E does not receive any incoming requests. Thus, all agents

P and Relay R both receive the challenge request (we denote as requestchal). Within

the certain time threshold T2, if agents response with inputs and procedure will move

to the next steps. Otherwise, the agents are proved to be malicious. Similarly, if the

Relay R is proven to be the malicious one, the protocol is terminate and set up state

is fail. In terms of the last phase Finalization, the TEE will return the final results to

all the agents and publish the states on the blockchain. Note that during all the data

flow, the deposits of malicious agents are not refunded for punishment.

4.5.2 Applications. In practice, divisible resources which could be privately

traded using our system, e.g., electricity [94], cloud resources [95, 96], and wireless

spectrum [97]. We now discuss two of them as representative applications. Note

that different valuation/cost functions will be defined and implemented in different

applications.

Energy Trading. There is demand from power grid for trading the excessive locally

generated energy, e.g., the renewable energy resources [98, 99]. The proposed hy-

bridized system is able to implement the privacy preserving divisible double auction

for energy trading, due to the divisible of electricity resource. The valuation/cost

functions are defined as V̂m(xm) = ζm log(xm + 1) and Ĉn(yn) = any
2
n + bnyn [100],
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where ζm is a parameter leveraged by the behavior preference of buyer. The param-

eter of an and bn are used for leveraging how much the sellers incline to sell. The

valuation/cost functions follow the general assumption illustrated in Section 4.3.1.

Eventually, hybridized system only generate the clearing price for the auction to all

the agents. The energy amount of each pair of buyer and seller will only obtain the

amount traded between them.

Wireless Bandwidth Allocation. We can model the wireless bandwidth alloca-

tion [78,101] based on our proposed hybridized system for network traffic and services.

In terms of a MVNO (Mobile Virtual Network Operator), the valuation function for

buyer m is defined as V̂m(xm) = ζm ln(xm) where ζm defined as a positive-valued

parameter. This indicates that buyers willing to pay for the bandwidth. Mean-

while, the cost function of seller n, an InP (Infrastructure Provider) is denoted as

Ĉn(yn) = αne
yn , where yn presents the bandwidth it can supply and αn as another

positive-valued parameter (bandwidth) for the seller n. As expected, the valuation/-

cost functions are also follow the general assumptions in Section 4.3.1, and execute

privately and truthfully via hybridized system for such divisible double auction.

4.6 Experimental Evaluations

4.6.1 Experimental Setup. In this section, the system performance of both off-

chain and on-chain procedures in the hybridized system will be evaluated. To support

the smart contacts execution within the enclaves, we use Graphene10 on the Microsoft

Azure.11 A manifest is adopted to support the enclave initialization, and it protects

the smart contract execution in the host process. For the on-chain implementation,

10Graphene [102] is a lightweight guest OS, which replaces the Intel SDK for the
enclave and host process.

11https://azure.microsoft.com/en-us/solutions/confidential-compute/
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(a) Runtime vs. Number of Agents

(b) Frequency vs. Latency (c) Throughput vs. Number of Agents

Figure 4.5. Off-chain System Performance Evaluation (1024-bit key)

we use the Hyperledger Fabric12, which is designed for distributed ledger technologies

with multiple modules for the blockchain platforms. As a distributed ledger platform,

it includes a highly modular and configurable architecture, which supports the smart

contract execution. Note that the Hyperledger Fabric is deployed on the VM with

Ubuntu 18.04 on the Microsoft Azure for the on-chain procedures.

Applications. We conduct experimental evaluations for two real-world applications:

(1) energy trading/auction [98], and (2) wireless bandwidth allocation [78,101] among

up to 200 agents. Each agent can be either a buyer or seller in the auction for both

applications.

12https://hyperledger-fabric.readthedocs.io/en/latest/index.html
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(a) Allocation vs. Iterations

(b) Potential Amount vs. Iterations (c) Social Welfare vs. Iterations

Figure 4.6. Energy Trading: Off-chain Double Auction Computation

In the experiments of energy trading/auction, we utilize the valuation function

V̂m(xm) = ζm log(xm+1) and cost function Ĉn(yn)=any
2
n+bnyn, as detailed in [11]. We

adopt the same parameters ζm = 50, an = 30 and bn = 0 as [11]. Similarly, wireless

bandwidth allocation is implemented with the valuation function V̂m(xm) = ζm ln(xm)

and cost function Ĉn(yn) = αne
yn , where ζm = 50 and an = 2 [78]. For the energy

trading, real datasets from the UMASS Trace Repository [103] are adopted while

synthetic datasets are generated per [78, 101] for the wireless bandwidth allocation.

4.6.2 Off-Chain Performance Evaluation. We first evaluate system perfor-

mance for securely perform computation for the auction (the off-chain computation

for the optimal allocation). The system performances for the above two applications

are quite similar, thus we only give the results for one application (w.l.o.g., the energy
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(a) Allocation vs. Iterations

(b) Potential Amount vs. Iterations (c) Social Welfare vs. Iterations

Figure 4.7. Wireless Bandwidth Allocation: Off-chain Double Auction Computation

trading). Figure 4.5(a) presents the total runtime of the off-chain computation while

varying the number of agents (from 50 to 200) for the auction while setting the key

size as 1024-bit. It shows that the runtime increases as the number of agents in-

creases. Compared with the cryptographic protocol based double auction system [71]

(“PANDA”), the runtime of our hybridized TEE-blockchain system (“Hybrid”) has

been significantly reduced. With a strong security guarantee, it takes only up to

5 minutes for 200 agents to perform the computation. In addition, Figure 4.5(b)

presents the latency of 720 different auctions. The latency of our hybridized system

is less than 1 second for most auctions, which is also significantly lower than the

cryptographic protocols (PANDA). Finally, Figure 4.5(c) illustrates the throughput

(bits/sec) of the system on a varying number of agents (1024-bit key). The through-
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put of “Hybrid” increases slower than “PANDA” as the number of agents increases.

Furthermore, we conduct empirical studies for the two applications (energy

trading and wireless bandwidth allocation), respectively, in case of 20 agents, in-

cluding 12 buyers and 8 sellers. Figure 4.6 and 4.7 demonstrate the detailed results

on (1) allocation, (2) potential amount, and (3) social welfare, for the two different

applications.

First, Figure 4.6(a) and 4.7(a) show the allocation for five randomly picked

agents (three buyers and two sellers) in different iterations. The allocation of both

buyers and sellers increase and finally achieve the optimally allocated amount after

several iterations. In Figure 4.6(b) and 4.7(b), the potential amount of the auction

(used for updating the allocation for buyers and sellers in each iteration) grows until

convergence while moving to new iterations. Finally, the social welfare (F (·)) is

derived based on equation F (·) =
∑

m∈B V̂m(Am) −
∑

n∈S Ĉn(An). Figure 4.6(c)

presents an increasing trend in multiple iterations and the social welfare of energy

trading converges to the maximum value $38 while the social welfare of the wireless

bandwidth allocation in Figure 4.7(c) converges to the maximum value $75.

4.6.3 On-Chain Performance Evaluation. Besides the off-chain compu-

tation, we demonstrate the performance of on-chain transactions. Figure 4.8(a)

shows the runtime for different package functionalities. The functionality of the

pkg:client takes 909.22 seconds (most of the on-chain runtime), the processes

of functionality include preparing/creating channel and client context, and commu-

nicating with the Fabric network via the channel. Compare with the e2e:orgs, the

pkg:discovery takes relatively longer time (636.58 seconds). It is implemented

on the DiscoveryFilterService package and the discovery service with filter

is returned. Also, pkg:ledger takes 118.77 seconds while pkg:fab takes around

180.67 seconds. Furthermore, pkg:event (60.63 seconds) works for users to receive



79

events such as block, filtered block, contracts, and transaction status events. The

pkg: resmgmt (61.11 seconds) enables the creation and update of resources on a

Fabric network, and it also allows the administrators to create/update channels, query

peer for channels, and perform some operations, i.e., installing, instantiating and up-

grading the smart contracts. Finally, pkg: gateway (44.49 seconds) enables users

to update the application based on Hyperledger Fabric programming model. Finally,

Figure 4.8(b) presents the on-chain runtime on a varying number of transactions. The

runtime is only up to 350 seconds in case of 8000 transactions.

(a) Runtime vs. Functionality

(b) Runtime vs. Transaction

Figure 4.8. On-Chain Performance Evaluation
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4.7 Related Work

There were some other auction mechanisms for allocating divisible resources,

i.e., spectrum allocation [104, 105]. Combinatorial auctions [105] was discussed for

cognitive radio networks. Strategy-proof mechanism for multi-radio spectrum buyers

was proposed by Wu and Vaidya [104]. A sealed-bid reserve auction was modeled for

the radio spectrum allocation problem. Hoefer et al. [106] investigated the combinato-

rial auctions with a conflict graph via an approximation algorithm (LP formulation).

Other studies related to divisible resources auctions focused on the revenue maxi-

mization [107] or the efficiency of social maximization [105,108].

The privacy concerns in auction mechanism for divisible resources have been

raised in [109, 110]. In [111]cryptographic techniques were proposed for achieving

the privacy and security in the auction game. A cryptographic scheme for one-side

auctions was proposed in Huang et al. [112]. In addition, Ekiden [113] presented

the complementary characters for blockchain and TEE, the rigorous security proofs

are provided to support the confidentiality of the hybrid system. Also, the Hawk

system [114] was designed as a decentralized smart contract framework for running the

contracts off-chain while posting zero-knowledge proofs on-chain. Zhang et al. [115]

proposed a system Town Crier that authenticates data feed using smart contracts

supported by the Ethereum platform. It enables data fetching from existing HTTP-

enabled data sources, and utilizes TEE to execute its core functionality and protect

its data against malicious attackers.

In the context of double auction, a recent scheme was proposed to protect pri-

vacy for the bids [71]. However, it requires heavy computation burden by composing

the cryptographic primitives. Instead, the proposed hybridized system can efficiently

perform secure computation for the double auction.
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4.8 Summary

In this chapter, we design a hybridized TEE-Blockchain system to securely ex-

ecute divisible double auction among distributed agents within the enclave in a highly

efficient way. Meanwhile, it interacts with the blockchain for validation and storage.

The proposed divisible double auction mechanism guarantees individual rationality,

incentive compatibility, weak budget balance and pareto efficiency. The input private

data of all the agents in the divisible double auction can also be protected in the

hybridized system. The experimental results have demonstrated both effectiveness

and efficiency for the designed hybridized system to privately compute the optimal

allocation and execute the divisible double auction.
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CHAPTER 5

CRYPTOGRAPHIC INFERENCES FOR VIDEO DEEP NEURAL NETWORKS

Deep neural network (DNN) have been widely deployed for efficient and accu-

rate learning in many different domains. For instance, a client may send its private

input data (e.g., images, text messages and videos) to the cloud, which provides

the inferences (e.g., classification and prediction) with the pre-trained DNN models.

However, significant privacy concerns would emerge in such use cases due to data or

model sharing with the cloud. Secure inferences with cryptographic techniques have

been proposed to address such issues, and the system can perform secure two-party

inferences between each client and cloud. However, most of the existing cryptographic

systems only focus on DNNs for extracting 2D features for image inferences, which

have major limitations on latency and scalability for extracting spatio-temporal (3D)

features from videos for accurate inferences.To address such critical deficiencies on

cryptographic DNN for video inferences, we design and implement the first crypto-

graphic inference system, Crypto3D, which privately infers videos on 3D features

with rigorous privacy guarantees.

The partial work in this chapter have been published at 2022 ACM CCS

Poster session 13.

5.1 Overview

In the past decade, deep neural networks (DNNs) have been increasingly de-

ployed in practical applications for object detection, image and action classification,

anomaly detection, etc. In a client-server model for DNNs (e.g., deep learning as a

service), the client may send its data to the cloud service provider, which provides

13©2022, ACM, with permission from Bingyu Liu, Rujia Wang, Zhongjie Ba,
Shanglin Zhou, Caiwen Ding and Yuan Hong, Poster: Cryptographic Inferences for
Video Deep Neural Networks
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the inference services (e.g., classification and prediction) using its pre-trained DNN

models. However, severe privacy concerns may occur between the client and cloud.

In the domain of video inferences, the users’ videos involve considerable amounts of

sensitive information (e.g., human face, identities, activities, and workspace). Di-

rectly disclosing them to the cloud would compromise the privacy of users. Indeed,

the pre-trained DNN model should also be considered as the proprietary information

for the cloud, which cannot be revealed to clients.

To eliminate such privacy risks, cryptographic protocols [21, 116, 117] are de-

signed for secure inferences A secure inference protocol allows the client to send its

private input data (encrypted), and privately obtain the learning result from the

cloud. Neither party can learn anything regarding the model weights and private

inputs from each other. Many existing works [116] use one or more cryptographic

techniques such as Fully Homomorphic Encryption (FHE) [117], Garbled Circuits

(GC) [21] and Secret Sharing (SS) to compose the protocols. FHE can provide higher

privacy guarantees, but it brings expensive computational overheads. Moreover, some

non-polynomial functionalities (e.g., Non-linear Activation Functions ReLU) cannot

be supported. Garbled circuits support arbitrary functionality, but it results in sig-

nificant computation and communication overheads for multiplication. In addition,

Trusted Execution Environment (TEE) [118–120] provides secure enclave for the iso-

lated sensitive computation with attestation. It ensures data privacy and integrity

without provable guarantees, and it is also vulnerable to side-channels attacks [121].

Moreover, current TEEs are not scalable enough for processing large amount of data.

Thus, directly using such protocols or systems are not ideal for secure DNN inferences.

The Delphi system [122] was recently proposed as one of the state-of-the-

art efficient cryptographic inference systems. It outperforms other protocols in both

latency and communication cost for image DNN with a hybrid cryptographic protocol.
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Figure 5.1. Secure two-party inference for private video classification between client
C and cloud service provider S.

It builds the framework based on the Gazelle [123] system, which contains the sub-

protocols for linear and non-linear layers separately, and minimizes the computational

and communication costs with offline. Unfortunately, securely inferring images based

on 2D features by Delphi (the state-of-the-art) is far from enough for video-based

applications in the real world. Compared with the 2D ConvNets, most 3D ConvNets

have to infuse the temporal information of the videos after each convolution/pooling

operations. Performing 3D convolution and pooling operations are supposed to deliver

temporal information across all the neural network layers to the end. Integrated

with both spatial and temporal information in each feature, 3D ConvNets (e.g., C3D

and I3D networks) have proven to be more accurate on video inferences than 2D

ConvNets [124,125]. However, to our best knowledge, cryptographic inferences based

on 3D features for video DNNs have not been studied yet in literature.14

To fill this gap, we design and implement the first cryptographic inference sys-

tem (namely “Crypto3D”) that privately infers videos based on 3D spatial-temporal

14Visor [121] provides confidentiality for analyzing video streams via a hybrid
secure hardware-based Trusted Execution Environment (TEE) system. However, it
still privately infers data (e.g., object detection and tracking) based on 2D features.
PPVC [126] presents the private preserving on the video classification based on Secure
Multiparty Computation, but it still utilizes the 2D ConvNets without fully preserving
temporal information.
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features (both C3D [124] and I3D [125]). It enables the client and cloud to privately

perform the cryptographic inference for video classification, video action recognition

and prediction, as well as visual anomaly detection. Also, we further boost the system

efficiency with optimized matrix operations and ciphertext packing technique.

Specifically, as shown in Figure 5.1, in Crypto3D, the cryptographic network

inference
∏

SecureINF is first constructed by a offline protocol
∏

SecureOFL and an online

protocol
∏

SecureOFL with C3D or I3D model. It enables the client to send private input

video to the cloud, and then privately obtain the learning results from the cloud.

Contributions. Therefore, the major contributions of this paper are summarized as

below:
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Figure 5.2. The flow diagram of the video inference based on C3D neural network.
The upper bar represents video streams, and then it is uniformly divided into 16
frames as a clip for the feature extraction via C3D model.

• To our best knowledge, we design and implement the first cryptographic infer-

ence system for privately inferring videos with spatio-temporal (3D) features.

• We propose the mixed cryptographic system by co-designing and composing

cryptographic primitives based on homomorphic encryption (HE), garbled cir-

cuit (GC), and secret sharing (SS). In addition, we optimize the matrix multi-
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plication with HE and integrate ciphertext packing to further boost the overall

system efficiency.

• We theoretical prove the security for Crypto3D, and conduct extensive exper-

iments to evaluate the performance of Crypto3D for C3D and I3D inferences

on UCF-101 and HMDB-51 datasets while benchmarking with the extended

cryptographic inference systems.

• Crypto3D significantly outperforms existing systems. 15

5.2 Background

5.2.1 Video Inferences as a Service. Nowadays, video application services are

prevalent in all aspects of daily-lives with the influence of the internet. Specifically,

there is an increasing interest in video analyses for human actions, such as action

recognition, localization, and human behavior prediction. For example, the home

monitoring security system aims at keeping the property and users’ safety via video

monitoring. The video streams are recorded and transmitted to the cloud server

for further analysis. The user receives notifications once the system detects any

anomalous behaviors. However, the privacy of the video contents, such as the home

location, users’ faces, activities and daily life might be exposed. Therefore, the video

streams need to be confidential and not be revealed to any other parties. Such use

cases motivate us to design a secure video analytics framework. As shown in the

Figure 5.1, we propose a secure two-party inference framework for 3D video input

15Existing cryptographic inference systems with 2D features (e.g., Delphi,
Gazelle, and HEANN3D) cannot be directly applied to privately infer videos with
3D features. We significantly modified most of the state-of-the-art methods (Cryp-
toDL, HEANN, MP-SPDZ, E2DM, Intel SGX, and Gazelle) to privately infer videos
with 3D features (C3D and I3D) as benchmarks. Note that Delphi cannot be ex-
tended to 3D inferences due to its end-to-end 2D architecture, and source codes for
GALA are not available.
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streams. Our model details can be found in Section 5.3.

Deep learning works as a powerful tool for modeling and predicting input data

by learning the complex features with artificial neural networks. Deep neural networks

(DNNs) consist of a number of layers. Each layer computes the input data and sends

the output to the next layer as input. While there are many different types of DNNs,

they share the similar model structure. In this paper, we adopt the C3D [124] model

structure for 3D video input inference, as shown in the Figure 5.2. We also extend the

cryptographic inference system based on the I3D model [125] for further performance

evaluations.

Video Classification Models. The purpose of video classification is that a video

V containing N frames (F0, F1, ..., FN−1) needs to identify the classes to which the

video belongs. Each of the m classes is denoted as p(yi|V). The following equation

defines the probability of neural network prediction function:

P (yi|V) = f(F0, F1, ..., FN − 1) (5.1)

C3D Neural Network. Figure 5.2 shows a deep 3D CNN with a homogeneous

architecture. It consists of 3×3×3 convolutional kernels followed by 2×2×2 pooling

at each layer. The C3D model is trained on a large scale video dataset such as UCF101

[127] and Sports 1M [128]. With respect to the generic feature extraction, the 3D

convolutions are able to extract both spatial and temporal components information in

the videos, e.g., the motion of objects, human action and human-object interactions.

It directly encodes the temporal structure with 3D convolutional network instead

of 2D. The involved 3D kernel is able to extract information from both spatial and

temporal dimensions and fuse them into the same feature [124]. Compared with

2D ConvNet, 3D ConvNet provides a better modeled temporal information with 3D
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convolution and 3D pooling operations for more accurate video recognition.

5.2.2 Cryptographic Primitives. The mixed cryptographic protocol used for

privacy-preserving DNN composes cryptographic primitives such as Homomorphic

Encryption (HE), Garbled Circuit (GC), Secret Sharing (SS), etc. Before introducing

the cryptographic primitives, we first define R as a finite ring. We denote a group of

schemes for the HE = (KGen,Enc,Dec,Eval) as the linearly homomorphic encryption

(LHE) over the plaintext space R. We define the DNNs model owned by server

privately as P = (P1,P2, ...,P|l|) with l layers. Vector x ∈ R
n represents the input

from the client.

Homomorphic Encryption. A homomorphic encryption of x enables the com-

puting encryption of f(x) without any knowledge of the decryption key. A Linearly

homomorphic public-key encryption [25,129] includes a set of probabilistic polynomial-

time algorithms
∏

HE = (KGen,Enc,Dec,Eval):

• HE.KGen → (pk, sk), where the pair of keys (pk, sk) is generated by the ran-

domized algorithm.

• HE.Enc(pk,m) → c. The ciphertext c is generated by the encryption algorithm

HE.Enc with the pk and message m, where the message space is a finite ring R.

• HE.Dec(sk, c) → m. The message m can be obtained by the decryption algo-

rithm HE.Dec with the sk.

• HE.Eval(pk, c1, c2,L) → cl. The new ciphertext cl is generated by the HE.Eval

with the pk, two encrypted messages c1 and c2 and the linear function L, where

L maps (m1,m2) to km1 +m2 (∃k ∈ R).

It has the following properties:
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Correctness : given the ciphertext c from

HE.Enc(pk,m), it holds that Dec(sk, (Enc(pk,m))) = m.

Semantic Security : the {pk,HE.Enc(pk,m)} ≈c {pk, HE.Enc(pk,m
′
)} are re-

quired for ∀m,m′ ∈ M , where two distributions are over the random choice of pk and

the random coins of the encryption algorithm.

Function privacy : there exists a simulator Sim such that for ∀ adversary A,

linear function L, and messages m1, m2, then we have computationally indistinguish-

able distributions as below:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(r, r1, r2) ← {0, 1}λ

(pk, sk) ← HE.(1λ; r)

c1 ← HE.Enc(pk,m1; r1)

c2 ← HE.Enc(pk,m2; r2)

c
′ ← HE.Eval(pk, c1, c2,L)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

≈c Sim(1
λ,m1,m2,L(m1,m2))

Secret Sharing. With Secret Sharing (SS) schemes, a secret can be securely shared

among multiple parties. SS schemes ensure that each share does not reveal any

information about the secret. A 2-of-2 additive secret sharing of x where x ∈ Zp

and p is a prime. Then, we have a pair (x1, x2) = (x − r, r) ∈ Z
2
p, where a random

r ∈ Zp, such that x = x1 + x2. Given the share of x1 and x2, the value x is perfectly

hidden. The Beaver Multiplication Triples [130] extend the additive secret sharing

for the Multiplication performance.

Beaver’s multiplication: Beaver’s multiplication triples are widely applied for

secure computation. Let F be the finite field. A multiplication triple is a tuple

([a], [b], [c]), where a, b ∈ F are random elements such that c = a · b. We assume

that the [x] is an additive sharing of x and each party holds the share xi, so that
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∑n
i=1 xi = x. Then, the private multiplication (i.e., multiplying secret-shared values

[x · y]) can be performed by revealing these multiplication triples. Also, the triples

generation procedure is a two-party protocol for triples (a, b, c) secret shares output.

We have the [a]1, [b]1, [ab]1 for the first party and [a]2, [b]2, [ab]2 for the second party.

In this paper, the linearly homomorphic encryption scheme will be used for Beaver’s

triples generation. We provide further details for the protocol Crypto3D in Section

5.3.

Garbled Circuits. It was proposed by Yao [21], which is the first two-party se-

cure computation protocols. The garbled circuit generator (one party) prepares the

encrypted circuit computing f while the garbled circuit evaluator (the other party)

computes the output of the circuit without learning any intermediate values. Denot-

ing the Boolean circuit as C, for the input x, a Garbling scheme includes a group of

algorithms GS = (Garble,Eval) as below:

• GS.Garble(C) → (C̃, {labeli,0, labeli,1i∈[n])}, where labeli,b is the assigned value

b ∈ {0, 1} to the i− th input label. Given input a boolean circuit C, the Garble

outputs a garbled circuit C̃ and a set of labels {labeli,0, labeli,1i∈[n])}.

• GS.Eval(C̃, {labeli,xi
}) → y. TheEval outputs y = C(x) given labels {labeli,xi

}

with an input x ∈ {0, 1}n and input garbled circuit C̃.

It has the following properties:

Completeness : the Eval output is equal to C(x).

Privacy : given C̃ and {labeli,xi
}, only the size of |C| and the output C(x) can

be known by the evaluator.

Security : given input 1λ, 1|C| and C(x), the outputs of C̃, {labeli}i∈[n] is com-
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putationally indistinguishable to (C̃, {labeli,xi
} generated the GS.Garble.

Oblivious Transfer. Oblivious Transfer (OT) [131] works as a fundamental crypto-

graphic building block in MPC, which executes between the two parties client (called

sender) and server (called receiver). Specifically, the sender has two inputs x0 and x1

while the receiver wants to obtain the xb (a selection bit b) without any revealing b or

learning anything to the server. In this setting, (⊥; xb) ← ObliviousTransfer(x0, x1; b)

is used to represent this functionality.

5.3 Secure Inference Protocol Crypto3D

We assume the generic two-party secure inference setting for our work: the

client C and server S. The pre-trained 3D neural network model is held by the server S

while the input video that to be classified is held by the client C. The secure inference

can be achieved by the two-party interactions via the designed protocol. In this

protocol, the video data from the client and model’s parameters from the server are

kept confidential, and results from the secure computation will be eventually sent back

to the client. Neither party can learn or infer any knowledge based on the prediction

results. In this section, we first define the threat model and the security guarantees

for the secure inference protocol Crypto3D, and then illustrate the protocol design.

5.3.1 Threat Model and Security Definition. In Crypto3D, we assume that

the semi-honest client C and server S are honest to follow the protocol but curious to

learn private information from each other. They can be corrupted by an adversary

A, but not at the same time. Also, this semi-honest adversary A will not deviate

from the protocol but infer private information stead.

Each client holds its video streams and it expects not to disclose the content of

video to the cloud or other video analytics services. We assume that computing the

C3D and the DNN architecture are known to the public (i.e., dimensions and type of
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Figure 5.3. Overview of the Crypto3D framework including both offline and online
phase. The operation are preformed in the left hand side of the figure are executed
by the client while the right hand side are executed by the server.

each layer in the neural networks), except the parameter of model weights. Since it is

the proprietary information to the cloud service provider, the model weights are not

allowed to be revealed. Based on the proposed cryptographic protocols, the privacy

of input video and model weights are guaranteed.

Definition 10. A cryptographic inference protocol
∏

SecureINF between the client

with an input feature vector x and the server with pre-trained model parameters P =

(P1,P2, ...Pk) securely computes a function f , and satisfies the following properties.

• Correctness : For all set of model parameters P and all feature input vectors x,

the output at the end of protocol is the correct prediction in the cryptographic

inference.

• Security :

– Semi-Honest Server Security. There exists a simulator SimS such that

View
∏
S ≈c SimS(P), where View

∏
S denotes the view of the server in the
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protocol
∏
. SimS is able to simulate a view of the semi-honest server

without learning any private input vector x of client in polynomial time.

– Semi-Honest Client Security: There exists a simulator SimC such that

View
∏
C ≈c SimC(x, output), where View

∏
C denotes the view of the client

in the protocol
∏

and output represents the results of inference. SimC

is able to simulate a view of the semi-honest client without learning any

pre-trained model parameters P in polynomial time.

As shown in Figure 5.3, Crypto3D is designed to secure the two-party infer-

ence between the client and the cloud service provider. Given the input data from

the client, the cloud service provider executes the prediction with the neural network,

and then sends the inference results back to the client. In Cryto3D, the two parties

interact with each other for a secure inference together with the provided inputs. The

cloud service provider provides the 3D neural network model used for computation,

while the client offers the private input to be inferred by the 3D model.

5.3.2 Protocol Design. Figure 5.3 illustrates the secure two-party protocol

Crypto3D. In the offline
∏

SecureOFL phase, it can be executed independent of the

inputs: this phase can be executed offline. The data pre-computed by the client and

server can be used in the online execution for the
∏

SecureONL phase. Without loss of

generality, we present the design for the protocol based on the C3D [124], which can

be extended.

Overview. As shown in the Figure 5.3, the Crypto3D protocol contains two phases:

offline
∏

SecureOFL and online inference/predication
∏

SecureONL phase. Assume that

the pre-trained DNN model from the server will not be changed and updated. The

offline phase is supposed to be independent of the input data from the client. Once

the offline
∏

SecureOFL is completed, the input data given by the client will be sent to
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the cryptographic protocol for executing the online phase. However, the arithmetic

operations of the encrypted matrices are involved and it leads to the inefficiency for the

high-dimensional data tensors computation. To mitigate this issue, our Crypto3D

utilized the optimized matrix permutation [132] to efficiently perform the operation of

matrix computation with the ciphertext packing and parallelism [133]. The operation

of the matrix multiplication can be considered as the sum of component-wise products

with the specific permutations of the matrices themselves. We assume that there are

two square matrices with size n × n, the n permutations of the matrix A via the

followings symmetric permutations:

σ(A)i,j = Ai,i+j, τ(A) = Ai+j,j

φ(A)j,j = Ai,j+1, ψ(A) = Ai+1,j (5.2)

where φ and ψ are denoted as the shifting functions for column and row,

respectively. Then, the multiplication of two matrices (we denote A and B) with the

order d can be computed as below:

A · B =
d−1∑
k=1

(φk � σ(A))× (ψk � τ(B)) (5.3)

where � refers to the component-wise product and k is used to represent

the number of times for perturbation. As such, we can efficiently compute the two

matrix multiplications. In our protocol Crypto3D, we utilize the function Permu(·)

to represent the computation of the n permutation operations. To boost the efficiency,

we also utilize the vectorable homomorphic encryption “Ciphetext packing”. We use

the Encode(·) to refer to the matrix transformations, which transforms a matrix into

a plaintext vector with encoding map functions. Similarly, Decode(·) is used for



95

the plaintext vector transformations to the matrix. The equation 5.3 can be securely

computed with the multiplicative property of HE. Our Crypto3D uses the optimized

matrix multiplication and ciphertext packing [132] for the efficiency improvement.

Since we can pack all the inputs into a single ciphertext and perform layer computation

(e.g., convolutions) in parallel, we can enable the SIMD parallelism with the ciphertext

packing.

At the last phase, the inference results will be privately obtained. The follow-

ings are the details for the procedures.

Offline Phase (
∏

SecureOFL). Our Crypto3D provides the offline phase execution,

which can be executed before the input is known. First, (pk, sk) can be fetched via the

KGen algorithm. The input value x is independent of the offlinePhase() execution.

We denote ri ← R
n, i ∈ [1, .., l] and si ← R

n, i ∈ [1, .., l] as the random masking

vectors for the i-th layer. In the linear layer,the Enc(pk, ri) is sent to the server by

the client. With the Eval procedure, the server computes the Enc(pk, (Pi · ri − si))

and send its back to the client. Then, the client decrypts and obtains decrypted

value for all layers. Thus, the additive secret sharing of Pi · ri is held by both the

client and the server before the online phase execution. Regarding the non-linear layer

execution, the execution of activation function depends on what type of function. The

garbled circuit is constructed via GC schemes. It helps to solve the ReLu function by

exchanging the labels for input wires with ri+1 and Pi · ri − si. On the other hand,

the Beaver’s triples protocol is used for the polynomial approximation functions.

Online Phase (
∏

SecureONL). Given the input x, the server receives x − r1. At this

time, the additive secret shares of x are held by the client and server, respectively. At

the beginning of the i-th layer evaluation, xi can be fetched from the first (i−1) layers

of the neural network. The client holds ri while server holds xi−ri. For the evaluation
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of the linear layer(s), the server computes Pi ·(xi−ri), which ensures that the additive

shared secrets of Pi ·xi are held by the client and server, respectively. Once the linear

layer is completed, Pi · (xi − ri) + si and Pi · ri − si are held by the server and

client, respectively. Similarly, we use the garbled circuits and Beaver’s multiplication

for evaluating the non-linear layers. For the Garbled Circuits evaluation, the client

receives the garbled labels from the server, which is corresponding to the Pi · (xi −

ri)+si. With these labels, the garbled circuit is evaluated to return the output of one-

time pad (OTP (xi+1 − ri+1)) to the server. The xi+1 − ri+1 is obtained by the server

with one-time pad key. On the other hand, the Beaver’s multiplication procedure is

executed for the polynomial approximation evaluation. The client and sever will hold

the [xi+1]1 and [xi+1]2, separately after the Beaver’s multiplication procedure. At this

time, the client sends the results of the [xi+1]1 − ri+1 to the server. The xi+1 − ri+1

will be obtained by adding the [xi+1]2. Finally, the client learns the xl.

5.4 Security Analysis

Theorem 6. The secure two-party inference protocol
∏

SecureINF for Crypto3D (in-

cluding
∏

SecureOFL and
∏

SecureONL) is secure against semi-honest adversaries.

Proof. We prove this theorem by considering two cases separately: (1) the adversarial

client C, and (2) the adversarial server S. Then, we build polynomial simulators to

simulate the views of all the participants of the protocol under the secure multiparty

computation theory, detailed as below.

5.4.1 Adversarial Client C :.

In this case, assume that the simulator S̃ exists with the given client C and

input x.

1. Client chooses an uniform random tape via Simulator S̃.
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2. In the offline
∏

SecureOFL phase:

(a) Simulator S̃ receives pk and ciphertext C(ri) ← Enc(pk, ri). Then, simula-

tor S̃ sends ciphertext C(si)′ ← Enc(pk,−s
′
i) with random s

′
i ∈ Rn to the

server.

(b) Simulator S̃ runs on 1λ and 1|C| and sets the random value for the circuit

S̃GS output. The C̃ and {labeli} are the outputs from S̃GS. In the i − th

Oblivious Transfer (OT) execution, S̃ uses the lablei as the input and sends

C̃ to the client.

(c) S̃ runs the corresponding simulator with the Beaver’s triples procedure

under
∏

SecureINF.

3. Online phase: Simulator S̃ receives x− r1 from the offline phase, sends x to the

ideal functionality F and obtains the output y. The simulator S̃ performs the

corresponding evaluation as below:

(a) Simulator S̃ sends the simulated labels for GC layers.

(b) Simulator S̃ evaluates the polynomial approximation layer for Beaver’s

multiplication procedure.

4. Simulator S̃ sends output y − rl to the client.

We now present that the distribution of real world is computationally indis-

tinguishable to the simulator S̃ in the ideal world. We prove this by a sequence of

random experiments as following. It shows that the successive random experiments

are computationally indistinguishable. The server’s model weights will not be used in

the simulator S̃ for the final simulated distribution, thus nothing except the prediction

results and model architecture will be learned by the corrupted client.
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• Hybrid0: it corresponds to real world distribution with the actual input ma-

trices P = (P1,P2, ...Pk) from the honest server.

• Hybrid1: same as Hybrid0, except for a syntactic change. The simulator S̃

sends y − rk to the client in the output phase. With the knowledge of the

client’s random tape, the simulator S̃ begins the evaluation of the i − th layer

with x − ri. The distribution on the view of the A for above is identical with

this syntactic change.

• Hybrid2: in this hybrid, the inputs that server provides to each OT execution

are changed, in which it acts as the sender. The server provides labeli,b to replace

the labels corresponding to 0 and 1 in each OT execution, where b is inputted

from the client in that OT execution. In the semi-honest setting, b is a result

of setting the random tape and learning the input of corrupted client. Hybrid2

is indistinguishable from Hybrid1 with the sender security of OT execution.

• Hybrid3: in this hybrid, we generate C̃ using the S̃GS on input 1λ, 1|C| and C(z)

where z is the input corresponding to the circuits evaluation by the client.Also,

C(z) is an one-time pad (OTP) encryption, which is distributed identically to

a random string. Hybrid3 is indistinguishable from Hybrid2 with the followed

security of the garbled circuits.

• Hybrid4: in this hybrid, the multiplication triples in the offline phase is gen-

erated with the corresponding simulator S̃ for Beaver’s protocol. This follows

from the simulation security that Hybrid4 is indistinguishable from Hybrid3.

• Hybrid5: in this hybrid, we use simulator S̃ for the Beaver’s multiplication

procedure for every quadratic approximation layer. Note that in this hybrid, the

xi−ri, si and matrix Pi are no longer used for i− th layer evaluation. Similarly,

this follows from the simulation security that Hybrid5 is indistinguishable from
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Hybrid4.

• Hybrid6: the simulator S̃ is used for the function privacy with respect to each

homomorphic evaluation in the offline phase. Also, S̃ only requires the Pi · ri −

si for the homomorphically evaluated ciphertext generation. This follows the

function privacy of HE in which Hybrid6 is computationally indistinguishable

from Hybrid5.

• Hybrid7: in this hybrid, we set input −s
′
i instead of the true value (Pi ·ri−si).

It is given to the S̃ with randomly sampled s
′
i from Rn. The si is chosen

uniformly at random, this indicates that the Hybrid7 is identically distributed

to Hybrid6. Eventually, we note that Hybrid7 is identically distributed to the

simulator S̃’s output.

This completes the proofs for the case of adversarial client.

5.4.2 Adversarial Server S :. In this case, we assume that the simulator S̃ exists

as below once given the inputs P = (P1,P2, ...Pk) from the server.

1. Server chooses a uniform random tape via simulator S̃.

2. In the offline phase:

(a) Simulator S̃ sends Enc(pk, 0) to the server with chosen pk and receives the

ciphertext from the server.

(b) Simulator S̃ and works as the receiver from server and uses the fake input

with “0” as receiver’s choice bit.

(c) Simulator runs the corresponding simulator S̃ for Beaver’s triples generat-

ing.
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3. Online phase: simulator S̃ sends r1 from the offline phase with an uniformly

chosen r1. The simulator S̃ performs the corresponding evaluation as below:

(a) Simulator S̃ sends the random value back to sever for GC layers.

(b) S̃ uses simulator for Beaver’s multiplication to evaluate the polynomial

approximation. The random value is sent back to the server at the final

round.

We present that the distribution of real world is computationally indistin-

guishable to the simulated distribution by the following hybrid arguments. Since

the user’s input is not used by the simulator in the final simulated distribution, a

corrupted server will not know anything in the real world.

• Hybrid0: the simulator S̃ corresponds to the real world distribution with the

actual input x from client.

• Hybrid1: same as Hybrid0, except for a syntactic change. With respect to the

layer evaluation by the garbled circuits, we send the one-time pad encryption

OTP(xi+1 − ri+1) by the knowledge of x, Pi and random tape of the server,

instead of the circuits evaluation. Similarly, a share is sent in final round.

Thus, when the server adds it with its own share, it gets xi+1 − ri. Hybrid1 is

identical to the Hybrid0 with this syntactic change.

• Hybrid2: in this hybrid, the inputs that client provides to each OT execution

are changed, in which it acts as the sender. We provide the fake input with ’0’

to replace the real inputs. This follows the receiver security of obvious transfer

protocol, and Hybrid2 is computationally indistinguishable from Hybrid1.

• Hybrid3: in this hybrid, we generate the multiplication triples in the offline

phase with the simulator for Beaver’s multiplication protocol. With the followed
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simulation security, the Hybrid3 is computationally indistinguishable from Hy-

brid2.

• Hybrid4: in this hybrid, we use simulator S̃ for the procedure of Beaver’s

multiplication, with respect to each quadratic approximation layer of the neural

network. With the followed simulation security, the Hybrid4 is computationally

indistinguishable from Hybrid3.

• Hybrid5: in this hybrid, we update the ciphertexts sent by the client in the

offline phase. The client sends Enc(pk, 0) instead of Enc(pk, ri). The Hybrid5 is

computationally indistinguishable from Hybrid4 since this follows the semantic

security of the encryption scheme.

• Hybrid6: in this hybrid, we make some changes. With respect to the layer

evaluation by the garbled circuits, we send the one-time pad encryption OTP

(ri+1) with randomly chosen ri+1 to the server. Similarly, in terms of the each

quadratic approximation layer, a share, which is chosen uniformly at random is

sent at the final round. Furthermore, a uniformly chosen value r1 in the offline

phase will be sent. Eventually, we note that Hybrid6 is identically distributed

to the simulator’s S̃ output.

This completes the proofs for the case of adversarial server.

5.5 Results

In this section, we evaluate Crypto3D with the UCF-101 and HMDB-51

human action recognition datasets. UCF-101 consists of the 13,320 videos from

YouTube, with over 101 categories of human actions. HMDB-51 contains 6,849 video

clips from 51 distinct action classes. More details can be found in Figure 5.1. The

C3D weight model is generated from Sports-1M, which contains more than 1 mil-
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lion YouTube videos annotated with 487 sports classes. The I3D ConvNet model is

trained for action recognition with Kinetics-400, which includes 400 different actions.

In Crypto3D, we adopt the additively homomorphic encryption scheme of

BFV (the scheme used in recent works of Gazelle [123] and Delphi [122]). Also,

we adopt the optimized algorithms of Gazelle and [132] for homomorphic matrix-

vector products and homomorphic convolutions. The BFV scheme uses the bathing

optimization that enables operation on plaintext vectors over the field Zn.

Table 5.1. UCF-101 and HMDB-51 video datasets

UCF-101 [127] HMDB-51 [134]

Average Resolution 360 × 288 360 × 240

Pretrained Sports-1M Sports-1M

Accuracy 85.8% 54.9%

Category/Class 101 51

5.5.1 Evaluation Setup. Our Crypto3D is implemented with Rust, Python and

C++. All the experiments are evaluated on a Ubuntu 20.04.2 LTS server with the

NVIDIA-SMI 460.80 GPU. The CPU is Intel(R) Core(TM) i7-10700K at 3.80GHz

featuring 8 cores with 64 GB. We evaluate Crypto3D with the following datasets

and network architecture:

• Datasets and 3D DNN Models. We evaluate C3D and I3D features on the

UCF-101 and HMDB-51 datasets, as described in Table 5.1. The C3D network

contains 8 convolutions, 5 pooling layers and 2 fully connected layers. The

first convolution layer (Convolution (1a)) has a size of 1x3x3 and it is followed
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by a 1x2x2 pooling layer. This helps the temporal information preservation

in the first layer and then builds higher level representation of the temporal

information with the subsequent layers. In addition, other convolution and

pooling layers have a size of 3x3x3 and 2x2x2 with the strides of 1 and 2,

respectively. The fully connected layers have a size of 4096 dimensions with

softmax outputs. The I3D model can further improve C3D via inflating 2D

models. With I3D, we can reuse the 3D models’ network architecture (e.g.,

ResNet, Inception) and bootstrap the weights of model from the 2D pre-trained

model.

Figure 5.4. Gallze (3D) vs. Crypto3D

Figure 5.5. Intel SGX (3D) vs. Crypto3D

• Comparison with Existing Systems. We provide the performance com-
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Figure 5.6. CryptoDL (3D) vs. Crypto3D

Figure 5.7. MP-SPDZ (3D) vs. Crypto3D

Figure 5.8. CryptoDL (3D) vs. Crypto3D

parison of Crypto3D and other privacy-preserving frameworks with 3D struc-

ture. All the benchmark systems cannot be directly applied to for video in-
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Figure 5.9. E2DM (3D) vs. Crypto3D

ferences based on the C3D model. We significantly extend them by modifying

the 2D CNN network to embed with 3D architecture. With the 3D filters, the

spatio-temporal features are able to be extracted. We re-implement the fol-

lowing systems on the C3D model: Gazelle (3D), Intel SGX (3D), MP-SPDZ

(3D), CryptoDL (3D), HEANN (3D) and E2DM (3D). However, Delphi and

GALA cannot be extended due to the 2D structure or lack of source codes. As

we reported, it summarizes the cryptographic method, library, total execution

time, speedup and amortized time. Crypto3D significantly outperforms all

other benchmarks. The execution time of Crypto3D is over 186.89×, 63.75×,

61.52×, 45× 3.74× and 3× faster than CrytoDL (3D), HEANN (3D), MP-

SPDZ (3D), E2DM (3D), Intel SGX (3D) and Gazelle (3D), respectively. These

results show that Crypto3D is much more efficient in 3D privacy-preserving

video input inference. Additionally, Crypto3D only takes 0.83 sec on average

to process the secure inference for each frame, while other HE-based frameworks

take much longer time because of the computational overhead. Note that the

accuracy of the all other benchmarks is only less than 70% while Crypto3D

can achieve the accuracy of 82.3%.
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5.5.2 Performance of Crypto3D on C3D.

Figure 5.10. Execution time on GPU and CPU with (Crypto3D) and (C3D) without
privacy support.

We first show the performance of our privacy-preserving Crypto3D system

on CPU and GPU, and compare it with the native C3D that does not support pri-

vacy. The mixed cryptographic protocol introduces moderate performance overheads.

On GPU, Crypto3D is 44.89× slower than C3D, and on CPU, Crypto3D is 12×

slower than C3D. In Crypto3D, the inference runtime on GPU is 3.74× faster than

CPU. Therefore, for the performance evaluation in the following sections, we run the

experiments on GPU since it provides more parallelism and computation power. The

mixed cryptographic protocol introduces moderate performance overheads. On GPU,

Crypto3D is 44.89× slower than C3D, and on CPU, Crypto3D is 12× slower than

C3D. In Crypto3D, the inference runtime on GPU is 3.74× faster than CPU. There-

fore, for the performance evaluation in the following sections, we run the experiments

on GPU since it provides more parallelism and computation power.

5.5.3 Comparison with C3D and I3D. For the generic human action recognition

setting, we work on the microbenchmarks for the most representative two datasets

(UCF101 and HMDB51). The pre-trained weight models we used are extracted from

Sports-1M for C3D and kinetics400 for I3D, respectively. There are faster amortized
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execution time for the HMDB-51 than UCF101 in both C3D and I3D along with

related comparison benchmarks. C3D performs better than I3D on both UCF101

and HMDB-51 as well. Compared to the pre-trained model and DNNs architecture,

we find that the dataset would not be the main factor for the performance impact

under this case. It indicates that our system is able to the implemented based on

different 3D models (e.g., C3D and I3D) with UCF101 and HMDB51 datasets.

5.5.4 Comparison with PPVC. We compare with PPVC [126], which is the

current state-of-the art for 2-party secure video classification. It uses MPC technique

for private classification. In Figure 5.3, we find that the PPVC takes slightly less

time since it uses 2D ConvNets trained model for video processing instead of C3D

model. The architecture of ConvNets is [(CONV-RELU)-POOL]-[(CONV-RELU)*2-

POOL]*2-[FCRELU]*2-[FC-SOFTMAX] on the FER 2013 data. The construct of

C3D network is similar to the common 2D ConvNets, but the main difference is that

C3D uses 3D operations like Conv3D while 2D ConvNets are entirely 2D architecture.

This data is used to extract facial features for emotion recognition. Note that our

model C3D [124] aims at action recognition, which is trained on Sports-1M dataset

[128]. Moreover, the dataset used in the PPVC is RAVDESS [135] for the emotion

detection. Thus, PPVC cannot work well on private video inferences given the very

low accuracy (e.g., 56%).

5.6 Related work

Cryto3D is essentially a two-party secure inference protocol. We review the

privacy preserving on DNNs with different technique as well as secure two-party

frameworks. Most of recent work contains these techniques: homomorphic encryption

[136,137], SMC [122,123,126] and differential privacy [138–140].

Homomorphic Encryption-based Protocols: Homomorphic encryption allows
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the mathematical operations on ciphertext without knowing the unencrypted data.

FHE enable the secure DNNs training and inference without any interaction. The

CryptoNets [136] is proposed for HE-based secure neural network inference. The

client can obtain the ciphertext results from the server once given the encrypted

input without inferring any information. Other DNNs applications apply much faster

HE [117, 141]. But it only supports limited depth of encryption and multiplication

operations without bootstrapping [141]. Hesamifard et al. [137] propose CryptoDL,

which is a privacy-preserving Machine Learning as a Service (MLaaS) with LHE. In

CryptoDL, the polynomials are used to replace the complex nonlinear action function

such as Sigmoid and tanh. However, HE is not ideal and practical for the efficiency,

because of the computational overhead.

MPC-based Protocols. MPC enable multiple parties to evaluate the function

without releasing any inputs information to each other except the results. Generally,

existing works include Garbled Circuit(GC) [142–144], Secret Sharing [145–147] ,

and Mixed Protocol [123, 148, 149]. [143] and [142] propose a way to optimize the

neural network activation functions with garbled circuit. In [142] , the practical

data aggregation protocols are designed by Shamir’s t-out-of-n secret sharing protocol

[150]. SPDZ [147] is a secure computation protocol with additive secret sharing to

against n−1 corrupted computation modes in the malicious model. XONN [143] and

DeepSecure [144] both use circuit garbling schemes for neural network predictions.

In [151], pure MPC-based solution is studied. It proposes a framework SecureML with

three honest party for privacy preserving machine learning, which focuses on linear

active function. MiniONN [116] develops a technique for turning a pretrained model

into an oblivious one, which includes additive secret sharing and GC. It supports all

operations commonly used by neural network with a lower overhead at prediction

time.
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However, the limitation of the secret sharing and garbled circuits will bring

the computational overhead. Instead, the Mixed Protocol [123,148,149], use additive

secret sharing or homomorphic encryption to perform linear operations while garbled

circuits to address the non-linear computations. Gazelle [123] is a hybrid HE-MPC

protocol, which contains additive HE for polynomial functions and garbled circuits

for non-polynomial activation functions with boost efficiency. ABY3 [148] is able

to support the secure evaluation of linear and non-linear operation via arithmetic

or boolean circuit. Chameleon [149] is an extension of ABY framework, which is a

secure two-party computation framework. It performs polynomial operations with

arithmetic secret sharing and non-linear operations (ReLU) with boolean sharing

protocols or GC. The Delphi [122] improves the gazelle based on the GC and quadratic

polynomials for activation functions. However, these prior works are all based on the

2D ConNets, the inference results does not keep the temporal information for video.

In the Crypto3D, the C3D model is used to perform the cryptographic inference for

video classification. The temporal features is remained from the prediction results.

TEE-based Protocols. Trusted Execution Environments (TEE) [118–120,152,153]

based provides secure enclave, the model/data owner is able isolate sensitive com-

putations for DNNs models from the untrusted software stack. It can guarantee the

both data privacy and integrity. Florian et al. [120] propose Slalom, which enables all

linear layers in secure infernce with TEE (Intel SGX). It is executed by a faster but

untrusted co-located processor. Also, it uses ZKP to attest their correct execution.

Ghodsi et al. proposes SafetyNet [154], it converts the specific type of DNNs frame-

work into an arithmetic circuit. The results are able to be verified by interactions

with the servers. In [121], visor, a proposed system that enables privacy preserving

video analytics services with a hybrid TEE architecture. It supports and guaran-

tees strong confidentiality and integrity for video streams. Most TEE-based secure
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cryprographic inference show the better performance than the protocols that rely on

crypto tools. However, it requires trust in hardware for a weaker threat model and

it needs to be implemented in the enclave. Also, side-channel attack also will be a

more dangerous problem needs to be considered.

Differential Privacy-based Solutions. The differential privacy-based DNNs tech-

niques aim at the reducing amount of sensitive information for the data carrying.

And it is enable to reduce the negative impact of the addition of noise on training

under the privacy budget. Shokri et al. [138] use the differential privacy for the deep

learning model. It guarantees the data privacy is not compromised by sharing local

parameters to the server. In other works [139, 155] propose different ways to handle

the trade-off between the privacy and accuracy, ( i.e., noise adding to the weights [139]

, budget setting dynamically [140], etc.).

5.7 Summary

Many existing techniques are proposed to perform the secure two-party infer-

ences with the cryptographic schemes for the deep neural networks. However, they

cannot be directly applied to video inferences which extracts spatio-temporal (3D)

features for more accurate video recognition. In this paper, we propose crypto3D,

the first cryptographic neural network inference based on 3D features, which achieves

significant performance by (i) privately inferring videos (e.g., action recognition, and

video, and classification) on 3D spatial-temporal features with the C3D and I3D pre-

trained DNN models; (ii) involving an optimized matrix operations and ciphertext

packing technique in Crypto3D for efficiency boosting. In addition, we significantly

modify most of the state-of-the-art secure DNNs protocols (CryptoDL, HEANN, MP-

SPDZ, E2DM, Intel SGX, and Gazelle) to privately infer videos with 3D features (C3D

and I3D models) as the benchmarks.
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APPENDIX A

DIFFERENTIAL PRIVACY
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A.1 Proofs

A.1.1 Proof of Theorem 1.

Proof. Note that ∀O1 ∈ S+, Pr[A1(D
′) = O1] = 0, then

Pr[A1(D
′) ∈ S] =

∫
∀O1∈S+

Pr[A1(D
′) = O1]dO1 +

∫
∀O2∈S−

Pr[A1(D
′) = O2]dO2

≤eε
∫
∀O2∈S−

Pr[A1(D) = O2]dO2

=eεPr[A1(D) ∈ S−]

≤eεPr[A1(D) ∈ S]

This completes the proof.

A.1.2 Proof of Theorem 2.

Proof. It is straightforward to prove that the probabilities that results in Case (2) for

all the vehicles and positions are bounded by δ if inequality 2.5 holds (by setting δ

in the preprocessing). In addition, as analyzed in Case (1), if inequality 2.3 holds for

all Θr, per Theorem 1, we have:

e−ε ≤ Pr[A1(D) ∈ S]

Pr[A1(D′) ∈ S]
≤ eε (A.1)

where S represents any set of possible outputs (without data from Θr). This

completes the proof.

A.2 Expectation of Dirichlet Distribution

In Dirichlet-Multinomial sampling, the expectation of Dirichlet distribution

[56] can be derived as:
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E[θi(j)|λi(j)]

=

∫
Δ
θi(j)

Γ(
∑

∀j λi(j))∏
∀j Γ(λi(j))

[θi(1)]
λi(1)−1 . . . [θi(|Φ|)]λi(|Φ|)−1dθi

=
Γ(λi(j) + 1)Γ(

∑
∀j λi(j))

Γ(λi(j))Γ(
∑

∀j λi(j) + 1)
×

∫
Δ
θi(j)

Γ(
∑Φ

j=1 λi(j) + 1)

(λi(j) + 1)
∏

s �=j Γ(λi(s))

|Φ|∏
s=1

[θi(s)]
λi(s)−1dθi

=
Γ(λi(j) + 1)Γ(

∑
∀j λi(j))

Γ(λi(j))Γ(
∑

∀j λi(j) + 1)
=

λi(j)∑|Φ|
j=1 λi(j)

(A.2)

The expectation of the Dirichlet distribution is adapted for learning the pos-

terior probability vector in phase II.
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APPENDIX B

CRYPTOGRAPHIC INFERENCES FOR VIDEO
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B.1 Notation Table

Table B.1. Frequently used notations

Notation Description

S cloud service provider

C client

x a feature vector DNNs inputs

V video streams given by client

N frames (F0, F1, ..., FN−1) frame divided from a video

l the number of layer for DNNs

P = (P1,P2, ...,P|l|) weight model for l layer

∏
SecureINF secure inference protocol

∏
SecureONL online phase for

∏
SecureINF

∏
SecureOFL offline phase for

∏
SecureINF

f(.) functions for arbitrary inputs

B.2 C3D Network and Architecture

We consider the video clips with the size c × l × h × w where c denotes the

number of channels, l as the length in number of frames, h and w represent the height

and width of each frame, respectively. In terms of the network settings, the video clips

are taken as inputs to predict the class labels (e.g., from 101 different actions while

performing inferences using the C3D model trained on UCF101 dataset). All video

frames are resized to 128 × 171 and split into non-overlapped 16-frames clips. The
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network includes 8 convolution layers, 5 max-pooling layers, 2 fully connected layers

and followed by one softmax layer for predicting the class label. The first pooling

layer includes the kernel size 1× 2× 2 while others include the kernel size 2× 2× 2.

The output after the fully connected layer includes 4096 vector entries. With the

homogenous architecture with small kernel sizes of 3, the C3D model can boost for

optimized implementation of these architectures for efficient inference.

B.3 Description Benchmarks

Libraries for FHE Many existing works use the privacy preserving compu-

tation based on the homomorphic encryption (HE). HE enables the computation on

the encrypted data without decryption. However, it consists of many restrictions.

Therefore, we benchmarks the different state-of-the-art secure two party inference

frameworks for valuations by integrating different HE libraries. We discuss the de-

tails of the provided benchmark. For the benchmark of Gazelle 3D, we still use

Brakerski-Fan-Vercauteren (BFV) scheme from the 2D CNN inference [123]. That

supports the integer operations with the Lattice encryption library. And PALISADE

is a framework that provides a general API for multiple FHE schemes including BFV,

BGV, and CKK.

Microsoft SEAL is a HE library that enable additions and multiplications to

be performed on encrypted integers or real numbers. Also, it comes with two different

FHE schemes with different properties: BFV and CKK. The modular arithmetic can

be performed on encrypted integers by the BFV scheme. And CKKS scheme allows

additions and multiplications on encrypted real or complex numbers, however, the

approximate results can be generated. The CKKS scheme would be the one of best

options for the application such as calculating the total encrypted real numbers or

evaluating machine learning models on encrypted data. The BFV scheme is the only

option for the application, which requires the exact value.
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With respect to the hardware-based protection TEE, the strong privacy and in-

tegrity can be guaranteed. In our evaluation, we use the Graphene [102] (a lightweight

guest OS) as Intel SGX for the C3D inference execution. It can replaces the Intel

SDK for the enclave and host process. Furthermore, the MP-SPDZ library is designed

for the Secure Multiparty Computation (MPC) implementation. In [126], it uses the

MP-SPDZ library for the private video classification based on the Secure MPC. The

privacy preserving technique can be achieved and executed for the video classificiation

in [126], it still utilizes single frame method for inference with 2D ConvNet instead

of the 3D CNN model.

CryptoDL uses the HElib library, it supports the SIMD operations, however

there are limitations. Firstly, the division of ciphertexts is not supported.Also, it may

causes the incorrect decryption with the exceeded noise, since the additional noise

will be added for every computation performed on the ciphertext. Thus, an arbitrary

number of computations (i.e., Activation functions) can not be supported. In this

case, we use the polynomials as activation functions. The fixed point arithmetics

can be supported by HEAAN library. This library supports approximate operations

between rational numbers. The approximate error depends on some parameters and

almost same with floating point operation errors. The [133] use the scheme in this

library. And the HEMat is a extension from the HEANN schemes, where it designed

for performing a optimized matrix computation with homomorphic encryption.

B.4 Matrix-Vector Multiplication

We assume that the input matrix P has the size n0×ni, where ni is smaller than

the number of plaintext slots ns. We denote the sub-matrices Pij (where 0 ≤ i < n0

and 0 ≤ j < l) with the size of 1× (ni/l), which is splited from the P . Next we pack

the different matrics (l · ns)/ni into a single ciphertext, and the nc = (ns/ni) copies

of the input vector r into a single cipertext. With the encoding nc, the first diagonal



118

vectors of the matrix into a plaintext vector as below:

((P0,0|P1,1|...|Pl−1,l−1)|(Pl,0|Pl+1,1|...|P2l−1,l−1)|...

(Pl·(nc−1),0|Pl·(nc−1)+1,1...|Pl·(nc−1)+l−1,l−1)) ∈ R
ns

Each extended diagonal vector is encrypted in a single ciphertext and these

ciphertexts are multiplied with l rotations of the encrypted vector r. Next we add

together and the output (ciphertext) represents (ni/l)- sized (l ·nc) chunks. With the

log(ni/l) rotations, we get the ciphertext with the first (l · nc) entries of P · r ∈ Rn0 .

Finally, we get the n0/(l · nc) ciphertexts after repeating the procedures n0/(l · nc).
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[79] S. Parsons, J. A. Rodŕıguez-Aguilar, and M. Klein, “Auctions and bidding: A
guide for computer scientists,” ACM Comput. Surv., vol. 43, no. 2, pp. 10:1–
10:59, 2011.

[80] B. Liu, Y. Yang, R. Wang, and Y. Hong, “Poster: Privacy preserving divisible
double auction with A hybridized tee-blockchain system,” in 41st IEEE Inter-
national Conference on Distributed Computing Systems, ICDCS 2021, Wash-
ington DC, USA, July 7-10, 2021, pp. 1144–1145, IEEE, 2021.



125

[81] B. Liu, S. Xie, Y. Yang, R. Wang, and Y. Hong, “Privacy preserving divisible
double auction with a hybridized tee-blockchain system,” Cybersecur., vol. 4,
no. 1, p. 37, 2021.

[82] F. Brandt, T. Sandholm, and Y. Shoham, “Spiteful bidding in sealed-bid auc-
tions,” in Proc. of IJCAI, 2007, pp. 1207–1214.
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